Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Appl Opt ; 60(27): 8349-8359, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612932

RESUMO

In this paper, a compact fluorescence hyperspectral imaging system based on a prism-grating-prism (PGP) structure is designed. Its spectrometer spectral range is 400-1000 nm with a spectral resolution of 2.5 nm, and its weight is less than 1.7 kg. The PGP imaging spectrometer combines the technical advantages of prism and grating, by not only using six lenses for imaging and collimation to realize the dual telecentres of object and image but also having a "straight cylinder" structure, which makes the installation and adjustment simple, compact, and stable. By the push-broom method, we obtained the three-dimensional cubic data of different oil products. By normalization processing, minimum noise separation transformation processing, visualization processing, and support vector machine classification processing of different oil fluorescence hyperspectral data, we demonstrate that the fluorescence hyperspectral imaging system can identify different kinds of oil and recognize the oil film thickness. The fluorescence hyperspectral imaging system can be used in oil spill detection, resource exploration, natural disaster monitoring, environmental pollution assessment, and many other fields.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34549866

RESUMO

Miniaturized solid-state lasers with a single longitudinal mode are vital for various photonic applications. Here we prepare red-emissive carbon dots (CDs) with a photoluminescence quantum yield (PLQY) of 65.5% by combining graphitic nitrogen doping and surface modification. High-concentration doping alters the CDs' emission from blue to red, while the electron-donating groups and polymer coating on their surfaces improve the PLQY and photostability. The CDs exhibit excellent stimulated emission characteristics, with a low threshold of amplified spontaneous emission (ASE) and long gain lifetime. A planar microcavity with only one resonant mode, which fitted with the CDs' ASE peak, was constructed. Combining the CDs and microcavity produced a solid-state laser with a single longitudinal mode, a linewidth of 0.14 nm and a signal-to-noise ratio of 14.8 dB. Our results will aid the development of colorful solid-state micro/nano lasers with potential use in practical photonics.

4.
J Phys Chem Lett ; 12(32): 7671-7687, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34351771

RESUMO

Carbon dots (CDs) have excellent luminescence characteristics, such as good light stability, high quantum yield (QY), long phosphorescence lifetime, and a wide emission wavelength range, resulting in CDs' great success in optical applications. Understanding the structure-property relationships in CDs is essential for their use in optoelectronic applications. However, because of the complex nature of CD structures and synthesis processes, understanding the luminescence mechanism and structure-property relationships of CDs is a big challenge. This Perspective reviews the theoretical efforts toward the understanding of structure-property relationships and discusses the challenges that need to be overcome in future development of CDs.


Assuntos
Corantes Fluorescentes/química , Pontos Quânticos/química , Carbono/química , Teoria da Densidade Funcional , Fluorescência , Corantes Fluorescentes/síntese química , Aprendizado de Máquina , Modelos Químicos , Relação Estrutura-Atividade
5.
Macromol Rapid Commun ; : e2100362, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435714

RESUMO

The treatment of large segmental bone defects and complex types of fractures caused by trauma, inflammation, or tumor resection is still a challenge in the field of orthopedics. Various natural or synthetic biological materials used in clinical applications cannot fully replicate the structure and performance of raw bone. This highlights how to endow materials with multiple functions and biological properties, which is a problem that needs to be solved in practical applications. Hydrogels with outstanding biocompatibility, for their casting into any shape, size, or form, are suitable for different forms of bone defects. Therefore, they have been used in regenerative medicine more widely. In this review, versatile hydrogels are compounded with nanoparticles of different dimensions, and many desirable features of these materials in bone regeneration are introduced, including drug delivery, cell factor vehicle, cell scaffolds, which have potential in bone regeneration applications. The combination of hydrogels and nanoparticles of different dimensions encourages better filling of bone defect areas and has higher adaptability. This is due to the minimally invasive properties of the material and ability to match irregular defects. These biological characteristics make composite hydrogels with different dimensional nanoparticles become one of the most attractive options for bone regeneration materials.

6.
Anim Biotechnol ; : 1-8, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289783

RESUMO

This study compared and analyzed the genetic diversity and population structure of exon 2 of the DQB1 gene and 13 autosomal neutral microsatellite markers from 14 Chinese goat breeds to explore the potential evolutionary mechanism of the major histocompatibility complex (MHC). A total of 287 haplotypes were constructed from MHC-DQB1 exon 2 from 14 populations, and 82 nucleotide polymorphic sites (SNPs, 31.78%) and 172 heterozygous individuals (79.12%) were identified. The FST values of the microsatellites and MHC-DQB ranged between 0.01831-0.26907 and 0.00892-0.38871, respectively. Furthermore, 14 goat populations showed rich genetic diversity in the microsatellite loci and MHC-DQB1 exon 2. However, the population structure and phylogenetic relationship represented by the two markers were different. Positive selection and Tajima's D test results showed the occurrence of a diversified selection mechanism, which was primarily based on a positive and balancing selection in goat DQB. This study also found that the DQB sequences of bovines exhibited trans-species polymorphism (TSP) among species and families. In brief, this study indicated that positive and balancing selection played a major role in maintaining the genetic diversity of DQB, and TSP of MHC in bovines was common, which enhanced the understanding of the MHC evolution.

7.
ACS Appl Mater Interfaces ; 13(23): 26770-26781, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34096258

RESUMO

Diabetic foot ulcers (DFUs) are hard-healing chronic wounds and susceptible to bacterial infection. Conventional hydrogel dressings easily lose water at high temperature or freeze at low temperature, making them unsuitable for long-term use or in extreme environments. Herein, a temperature-tolerant (-20 to 60 °C) antibacterial hydrogel dressing is fabricated by the assembly of polyacrylamide, gelatin, and ε-polylysine. Owing to the water/glycerin (Gly) binary solvent system, the resultant hydrogel (G-PAGL) displayed good heat resistance and antifreezing properties. Within the wide temperature range (-20 to 60 °C), all the desirable features of the hydrogel, including superstretchability (>1400%), enduring water retention, adhesiveness, and persistent antibacterial property, are quite stable. Remarkably, the hydrogel wound dressing displayed lasting and broad antibacterial activity against Gram-positive and Gram-negative bacteria. Satisfactorily, the double-network (DN) G-PAGL hydrogel dressing could effectively promote the healing of DFUs by accelerating collagen deposition, promoting angiogenesis, and inhibiting bacterial breed. As far as we know, this is the first time that the extensive temperature-tolerant DN hydrogel with antibacterial ability is developed to use as DFU wound dressing. The G-PAGL hydrogel provides more choices for DFU wound dressings that could be used in extreme environments.


Assuntos
Antibacterianos/administração & dosagem , Diabetes Mellitus Experimental/complicações , Pé Diabético/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hidrogéis/administração & dosagem , Cicatrização/efeitos dos fármacos , Adesivos , Animais , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Bandagens , Pé Diabético/etiologia , Pé Diabético/patologia , Hidrogéis/química , Ratos , Temperatura
8.
Inorg Chem ; 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34180658

RESUMO

Four inorganic-organic hybrid octa-Cu cluster sandwiched polyoxotungstates (POTs), [Cu8(H2O)2(en)4(B-α-H2SiW9O34)2] (1), [Cu8(H2O)2(en)4(B-α-H2GeW9O34)2] (2), K2[Cu8(en)4(B-α-HSiW9O34)2]·6H2O (3), and K2[Cu8(en)4(B-α-HGeW9O34)2]·2H2O (4) (en = ethylenediamine), were hydrothermally made and characterized by single-crystal X-ray diffraction, infrared spectra, powder X-ray diffraction, and thermogravimetric analysis, respectively. Structure analysis reveals that the polyoxoanion of 1/2 is a discrete dimer built by two trivalent Keggin [B-α-XW9O34]10- (X = Si/Ge) fragments and one octa-Cu cluster, whereas 3 and 4 display a two-dimensional network built by octa-Cu-sandwiched POT units via substitution of coordinated water on polyanions of 1 and 2 and further expand into a three-dimensional framework via K cation bridges. Ultraviolet-visible diffuse reflectance spectra reveal that 1-4 are potential semiconductor materials. Moreover, its visible light-driven catalytic H2 evolution activity, electrochemical properties, catalysis for oxygenation reactions of thioethers, and magnetic behaviors have been investigated in detail.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33830583

RESUMO

Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band-gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high-emission Ch-CPDs remains challenging. Reported here for the first time is the synthesis of red- and multicolor-emitting Ch-CPDs using the common precursors L-/D-tryptophan and o-phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch-CPDs was between 31 % and 54 %. Supramolecular self-assembly provided multicolor-emitting Ch-CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum ) of 1×10-2 . Importantly, circularly polarized white-emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch-CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.

11.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33712428

RESUMO

Acetic acid and furfural are the two prevalent inhibitors coexisting with glucose and xylose in lignocellulosic hydrolysate. The transcriptional regulations of Saccharomyces cerevisiae in response to acetic acid (Aa), furfural (Fur), and the mixture of acetic acid and furfural (Aa_Fur) were revealed during mixed glucose and xylose fermentation. Carbohydrate metabolism pathways were significantly enriched in response to Aa, while pathways of xenobiotic biodegradation and metabolism were significantly enriched in response to Fur. In addition to these pathways, other pathways were activated in response to Aa_Fur, i.e., cofactor and vitamin metabolism and lipid metabolism. Overexpression of Haa1p or Tye7p improved xylose consumption rates by nearly 50%, while the ethanol yield was enhanced by nearly 8% under acetic acid and furfural stress conditions. Co-overexpression of Haa1p and Tye7p resulted in a 59% increase in xylose consumption rate and a 12% increase in ethanol yield, revealing the beneficial effects of Haa1p and Tye7p on improving the tolerance of yeast to mixed acetic acid and furfural.IMPORTANCE Inhibitor tolerance is essential for S. cerevisiae when fermenting lignocellulosic hydrolysate with various inhibitors, including weak acids, furans, and phenols. The details regarding how xylose-fermenting S. cerevisiae strains respond to multiple inhibitors during fermenting mixed glucose and xylose are still unknown. This study revealed the transcriptional regulation mechanism of an industrial xylose-fermenting S. cerevisiae strain in response to acetic acid and furfural. The transcription factor Haa1p was found to be involved in both acetic acid and furfural tolerance. In addition to Haa1p, four other transcription factors, Hap4p, Yox1p, Tye7p, and Mga1p, were identified as able to improve the resistance of yeast to these two inhibitors. This study underscores the feasibility of uncovering effective transcription factors for constructing robust strains for lignocellulosic bioethanol production.


Assuntos
Ácido Acético/farmacologia , Fermentação/efeitos dos fármacos , Furaldeído/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição/genética , Resistência a Medicamentos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma/efeitos dos fármacos , Xilose/metabolismo
13.
Sensors (Basel) ; 21(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671316

RESUMO

This paper presents an underwater high-precision line laser three-dimensional (3D) scanning (LLS) system with rotary scanning mode, which is composed of a low illumination underwater camera and a green line laser projector. The underwater 3D data acquisition can be realized in the range of field of view of 50° (vertical) × 360° (horizontal). We compensate the refraction of the 3D reconstruction system to reduce the angle error caused by the refraction of light on different media surfaces and reduce the impact of refraction on the image quality. In order to verify the reconstruction effect of the 3D reconstruction system and the effectiveness of the refraction compensation algorithm, we conducted error experiments on a standard sphere. The results show that the system's underwater reconstruction error is less than 0.6 mm within the working distance of 140 mm~2500 mm, which meets the design requirements. It can provide reference for the development of low-cost underwater 3D laser scanning system.

14.
Anim Biotechnol ; : 1-19, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33635178

RESUMO

The genetic diversity and population structures of five Chongqing local chicken populations were investigated using by 24 microsatellite markers. Results revealed that the mean number of alleles (NA) ranged from 7.08 (Daninghe chicken, DN) to 8.46 (Nanchuan chicken, NC). The highest observed heterozygosity (HO) and expected heterozygosity (HE) were observed in DN (HO = 0.7252; HE = 0.7409) and the lowest HO and HE were observed in XS (Xiushan native chicken [XS], HO = 0.5910 and HE = 0.6697). The inbreeding coefficient (FIS) within population ranged from 0.022 (DN) to 0.119 (XS). Among the 24 microsatellite markers, four loci (MCW0111, MCW0016, ADL0278, and MCW0104) deviated from the Hardy-Weinberg equilibrium in all the studied populations. The results of population polygenetic analysis based on Nei's genetic distance and STRUCTURE software showed that the clustering of the five populations was incomplete consistent with geographical distribution. Moreover, a large number of gene flows were widespread among different populations, suggesting that genetic material exchanges occurred due to human activities and migration which was also verified by PCoA. In summary, this study preliminarily showed that Chongqing local chicken populations had rich genetic diversity and remarkable genetic divergence, but still high risk in conversion. These findings would be useful to the management of conservation strategies and the utilization of local chicken populations in further.

15.
Nano Lett ; 21(3): 1500-1507, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33525865

RESUMO

Solution-processed perovskites as emerging semiconductors have achieved unprecedented milestones in sensor optoelectric devices. Stability along with the device noise issues are the major obstacle for photodetectors to compete with the traditional devices. Here, we demonstrated that l-ascorbic acid (l-AA) as a polyhydroxy ester can coordinate with the amino group of formamidine cations (FA+) through multiple hydrogen bond interactions to stabilize the perovskite, which protect the FA+ ions from nucleophile attack and effectively suppress the degradation of FA+ ions, improving the perovskite stability and suppressing the device noise to below 0.3 pA Hz-1/2 with a large linear dynamic range of 239 dB. The dual functions of l-AA enable the perovskite photodetector to have a high detectivity of 1012 Jones. The self-powered device works with no energy consumption and maintains an undegraded performance over 1200 h of inspection at ambient conditions, which is promising for infrastructure construction, signal sensing, and real-time information delivery.

16.
Biomater Sci ; 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399142

RESUMO

Correction for 'In vivo migration of Fe3O4@polydopamine nanoparticle-labeled mesenchymal stem cells to burn injury sites and their therapeutic effects in a rat model' by Xiuying Li et al., Biomater. Sci., 2019, 7, 2861-2872, DOI: 10.1039/C9BM00242A.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33438321

RESUMO

Ultrathin two-dimensional catalysts are attracting attention in the field of electrocatalytic hydrogen evolution. This work describe a composite material design in which CoP nanoparticles doped with Ru single-atom sites supported on carbon dots (CDs) single-layer nanosheets formed by splicing CDs (Ru1 CoP/CDs). Small CD fragments bore abundant functional groups, analogous to pieces of a jigsaw puzzle, and could provide a high density of binding sites to immobilize Ru1 CoP. The single-particle-thick nanosheets formed by splicing CDs acted as supports, which improved the conductivity of the electrocatalyst and the stability of the catalyst during operation. The Ru1 CoP/CDs formed from doping atomic Ru dispersed on CoP showed very high efficiency for the hydrogen evolution reaction (HER) over a wide pH range. The catalyst prepared under optimized conditions displayed outstanding stability and activity: the overpotential for the HER at a current density of 10 mA cm-2 was as low as 51 and 49 mV under alkaline and acidic conditions, respectively. Density functional theory calculations showed that the substituted Ru single atoms lowered the proton-coupled electron transfer energy barrier and promoted H-H bond formation, thereby enhancing catalytic performance for the HER. The findings open a new avenue for developing carbon-based hybridization materials with integrated electrocatalytic performance for water splitting.

18.
Adm Policy Ment Health ; 48(2): 316-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32740691

RESUMO

This study evaluated the association between the special subsidy policy and the mental health of loss/disability-of-single-child parents (LCPs/DCPs) in China and found that accepting the special subsidy is inversely related to the mental health of LCPs and DCPs. In addition, accepting the subsidy is more inversely related to the mental health of LCPs than DCPs, of rural parents than urban parents, of male parents than female parents, and of loss/disability-of-single-son parents than loss/disability-of-single-daughter parents. According to taboo trade-off theory, we proposed several explanations for the finding and put forward some policy recommendations.

19.
Acta Biomater ; 121: 653-664, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33290912

RESUMO

Rheumatoid arthritis (RA) is a severe inflammatory autoimmune disease, but its treatment has been very difficult. Recently, stem cell-based therapies have opened up possibilities for the treatment of RA. However, the hostile RA pathological conditions impede the survival and differentiation of transplanted cells, and it remains challenging to fabricate a suitable biomaterial for the improvement of stem cells survival, engraftment, and function. Here we construct an optimal scaffold for RA management through the integration of 3D printed porous metal scaffolds (3DPMS) and infliximab-based hydrogels. The presence of rigid 3DPMS is appropriate for repairing large-scale bone defects caused by RA, while the designed infliximab-based hydrogels are introduced because of their self-healable, anti-inflammatory, biocompatible, and biodegradable properties. We demonstrate that the bioengineered composite scaffolds support adipose-derived mesenchymal stem cells (ADSCs) proliferation, differentiation, and extracellular matrix production in vitro. The composite scaffolds, along with ADSCs, are then implanted into the critical-sized bone defect in the RA rabbit model. In vivo results prove that the bioengineered composite scaffolds are able to down-regulate inflammatory cytokines, rebuild damaged cartilage, as well as improve subchondral bone repair. To the best of the authors' knowledge, this is the first time that using the antirheumatic drug to construct hydrogels for stem cell-based therapies, and this inorganic-organic hybrid system has the potential to alter the landscape of RA study.


Assuntos
Artrite Reumatoide , Hidrogéis , Animais , Artrite Reumatoide/terapia , Sobrevivência Celular , Hidrogéis/farmacologia , Infliximab , Coelhos , Células-Tronco , Tecidos Suporte
20.
Nanoscale ; 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33367352

RESUMO

The excited carriers (electrons and holes) and heat energy that originate from plasmonic metal nanomaterials are crucial to the enhancement of the photocatalytic performance. In this study, an Ag@carbon dots (Ag@CDs) hybrid has been prepared with excellent Fenton-like photocatalytic and photothermal conversion properties for catalyzing H2O2 to generate hydroxyl radicals (˙OH) for the degradation of crystal violet (CV) dye under full solar spectrum irradiation based on a unique plasmon effect. We have obtained some intrinsic kinetics information, including the reaction rate and apparent activation energy on the surface of the Ag@CDs, through a surface-enhanced Raman scattering strategy to investigate the contributions made by photocatalytic and photothermal effects in the plasmon mediated reaction under irradiation from ultraviolet (UV)/visible/near-infrared (NIR) light. In the visible light region, the Ag@CDs + H2O2 system exhibits the fastest apparent reaction rate owing to the involvement of a large number of hot carriers, which are generated by the strongest plasmon effect, and the presence of the photothermal effect mediated by the plasmonic effect. As the wavelength of the illumination blue-shifts to the UV region, the plasmon effect is weakened, resulting in a decrease in the number of hot carriers. Furthermore, the hot carriers will not be further thermalized because of interband transitions. In addition, the catalytic performance of Ag@CDs in the NIR region is almost dominated by the photothermal effect. This work provides deep insights into understanding the plasmon-mediated photocatalytic mechanism of the Ag@CDs hybrid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...