Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 286(Pt 1): 131683, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34351278

RESUMO

Butachlor being an important member of chloroacetanilide herbicides, is frequently used in agriculture to control unwanted weeds. Exposure to butachlor can induce cancer, human lymphocyte aberration, and immunotoxic effects in animals. The current experimental trial was executed to determine the potential risks of herbicide butachlor to immunotoxicity and its mechanism of adverse effects on the spleen. For this purpose, mice were exposed to 8 mg/kg butachlor for 28 days, and the toxicity of butachlor on the spleen of mice was evaluated. We found that butachlor exposure led to an increase in serum ALB, GLU, TC, TG, and TP and changes in the morphological structure of the spleen of mice. More importantly, results showed that butachlor significantly increased the expression level of ATG-5, decreased the protein expression of LC3B and M-TOR, and significantly decreased the mRNA content of M-TOR and p62. Results revealed that the mRNA contents of APAF-1, CYTC, and CASP-9 related genes were significantly decreased after butachlor treatment. Subsequently, the mRNA levels of inflammatory cytokines (IL-1ß, TNF-α, IL-10) were reduced in the spleen of treated mice. This study suggested that butachlor induce spleen toxicity and activate the immune response of spleen tissue by targeting the CYTC/BCL2/M-TOR pathway and caspase cascading activation of spleen autophagy and apoptosis pathways which may ultimately lead to immune system disorders.


Assuntos
Herbicidas , Acetanilidas , Animais , Apoptose , Autofagia , Herbicidas/toxicidade , Camundongos , Baço
2.
Toxicology ; 462: 152957, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34537261

RESUMO

Zearalenone (ZEN), a mycotoxin is frequently detected in different food products and has been widely studied for its toxicity. However, the underlying mechanisms of hepatotoxic effects, relationship between gut microbiome and liver metabolite mediated hepatotoxicity mechanisms induced by ZEN are still not clear. Here, we reported that the different microscopic changes like swelling of hepatocyte, disorganization of hepatocytes and extensive vacuolar degeneration were observed, and the mitochondrial functions decreased in exposed mice. Results exhibited up-regulation in expression of signals of apoptosis and autophagy in liver of treated mice via mitochondrial apoptotic and autophagy pathway (Beclin1/p62). The diversity of gut microbiome decreased and the values of various microbiome altered in treated mice, including 5 phyla (Chloroflexi, Sva0485, Methylomirabilota, MBNT15 and Kryptonia) and genera (Frankia, Lactococcus, Anaerolinea, Halomonas and Sh765B-TzT-35) significantly changed. Liver metabolism showed that the concentrations of 91 metabolite including lipids and lipid like molecules were significantly changed. The values of phosphatidylcholine, 2-Lysophosphatidylcholine and phosphatidate concentrations suggestive of abnormal glycerophosphate metabolism pathway were significantly increased in mice due to exposure to ZEN. In conclusion, the findings suggest that the disorders in gut microbiome and liver metabolites due to exposure to ZEN in mice may affect the liver.

3.
Toxicology ; 461: 152906, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34450209

RESUMO

Fluoride is one of the most widely distributed elements in nature, while some fluorine-containing compounds are toxic to several vertebrates at certain levels. The current study was performed to evaluate the nephrotoxic effects of fluoride exposure in ducks. The results showed that the renal index was decreased in NaF group, and fluoride exposure significantly decreased the levels of serum Albumin, Glucose, Total cholesterol, Urea, protein and Triglycerides, confirming that NaF exhibited adverse effects on the kidney. The overall structure of renal cells showed damage with the signs of nuclelytic, vacuolar degeneration, atrophy, renal cystic cavity widening after fluoride induction. Renal vascular growth was impaired as the expression of VEGF and HIF-1α decreased (p > 0.05). More importantly, autophagy and apoptosis levels of CYT C, LC3, p62, Beclin, M-TOR, Bax and Caspase-3 were increased (p < 0.05) in the NaF treated group. Interestingly, our results showed that Phosphatidylethanolamine (PE) and Phosphatidylcholine (PC) activated the M-TOR autophagy pathway. Meanwhile, the PE acted on Atg5/ LC3 autophagy factor, followed by the auto-phagosome generation and activation of cell autophagy. These results indicate that NaF exposure to duck induced nephron-toxicity by activating autophagy, apoptosis and glucolipid metabolism pathways, which suggest that fluorine exposure poses a risk of poisoning.

4.
Ecotoxicol Environ Saf ; 224: 112662, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34411823

RESUMO

Fluorine being a well-known and essential element for normal physiological functions of tissues of different organisms is frequently used for growth and development of body. The mechanisms of adverse and injurious impacts of fluoride are not clear and still are under debate. Therefore, this study was executed to ascertain the potential mechanisms of sodium fluoride in liver tissues of ducks. For this purpose, a total of 14 ducks were randomly divided and kept in two groups including control group and sodium fluoride treated group. The ducks in control group were fed with normal diet while the ducks in other group were exposed to sodium fluoride (750 mg/kg) for 28 days. The results showed that exposure to sodium fluoride induced deleterious effects in different liver tissues of ducks. The results indicated that mRNA levels of Cas-3, Cas-9, p53, Apaf-1, Bax and Cyt-c were increased in treated ducks with significantly higher mRNA level of Cas-9 and lower levels of the mRNA level of Bcl-2 as compared to untreated control group (P < 0.01). The results showed that protein expression levels of Bax and p53 were increased while protein expression level of Bcl-2 was reduced in treated ducks. No difference was observed in protein expression level of Cas-3 between treated and untreated ducks. The results of this study suggest that sodium fluoride damages the normal structure of liver and induces abnormal process of apoptosis in hepatocyte, which provide a new idea for elucidating the mechanisms of sodium fluoride induced hepatotoxicity in ducks.

5.
Chemosphere ; 283: 131226, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146870

RESUMO

Butachlor is a systemic herbicide widely applied on wheat, rice, beans, and different other crops, and is frequently detected in groundwater, surface water, and soil. Therefore, it is necessary to investigate the potential adverse health risks and the underlying mechanisms of hepatotoxicity caused by exposure to butachlor in invertebrates, other nontarget animals, and public health. For this reason, a total of 20 mice were obtained and randomly divided into two groups. The experimental mice in one group were exposed to butachlor (8 mg/kg) and the mice in control group received normal saline. The liver tissues were obtained from each mice at day 21 of the trial. Results indicated that exposure to butachlor induced hepatotoxicity in terms of swelling of hepatocyte, disorders in the arrangement of hepatic cells, increased concentrations of different serum enzymes such as alkaline phosphate (ALP) and aspartate aminotransferase (AST). The results on the mechanisms of liver toxicity indicated that butachlor induced overexpression of Apaf-1, Bax, Caspase-3, Caspase-9, Cyt-c, p53, Beclin-1, ATG-5, and LC3, whereas decreases the expression of Bcl-2 and p62 suggesting abnormal processes of apoptosis and autophagy. Results on different metabolites (61 differential metabolites) revealed upregulation of PE and LysoPC, whereas downregulation of SM caused by butachlor exposure in mice led to the disruption of glycerophospholipids and lipid metabolism in the liver. The results of our experimental research indicated that butachlor induces hepatotoxic effects through disruption of lipid metabolism, abnormal mechanisms of autophagy, and apoptosis that provides new insights into the elucidation of the mechanisms of hepatotoxicity in mice induced by butachlor.


Assuntos
Herbicidas , Acetanilidas/toxicidade , Animais , Herbicidas/toxicidade , Metabolismo dos Lipídeos , Fígado , Camundongos
6.
Life Sci ; 258: 118213, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768583

RESUMO

AIMS: Intermittent cyclic tension stimulation(ICMT) was shown to promote degeneration of endplate chondrocytes and induce autophagy. However, enhancing autophagy can alleviate degeneration partly. Studies have shown that curcumin can induce autophagy and protect chondrocytes, we speculated that regulation of autophagy by curcumin might be an effective method to improve the stress resistance of endplate cartilage. In this study, human cervical endplate cartilage specimens were collected, and expression of autophagy markers was detected and compared. MAIN METHODS: Human cervical endplate chondrocytes were cultured to establish a tension-induced degeneration model, for which changes of functional metabolism and autophagy levels were detected under different tension loading conditions. Changes in functional metabolism of endplate chondrocytes were observed under high-intensity tension loading in the presence of inhibitors, inducers, and curcumin to regulate the autophagy level of cells. In addition, a rat model of lumbar instability was established to observe the degeneration of lumbar disc after curcumin administration. KEY FINDINGS: Through a series of experiments, we found that low-intensity tension stimulation can maintain a stable phenotype of endplate chondrocytes, but high-intensity tension stimulation has a negative effect. Moreover, with increasing tension intensity, the degree of degeneration of endplate chondrocytes was gradually aggravated and the level of autophagy increased. Besides, curcumin upregulated autophagy, inhibited apoptosis, and reduced phenotype loss of endplate chondrocytes induced by high-intensity tension loading, thereby relieving intervertebral disc degeneration induced by mechanical imbalance. SIGNIFICANCE: Curcumin mediated autophagy and enhanced the adaptability of endplate chondrocytes to high-intensity tension load, thereby relieving intervertebral disc degeneration.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Autofagia/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Curcumina/uso terapêutico , Degeneração do Disco Intervertebral/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Autofagia/fisiologia , Cartilagem/patologia , Curcumina/farmacologia , Feminino , Degeneração do Disco Intervertebral/patologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Masculino , Ratos , Ratos Sprague-Dawley
7.
J Cell Biochem ; 121(1): 418-429, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31222836

RESUMO

Excessive mechanical tension can lead to the degeneration of endplate chondrocytes. The presence of tension-sensitive circRNA_0058097 molecules has been detected in human endplate chondrocytes, where it was found to be a potential competing endogenous RNA. Indeed, inhibiting the expression of circRNA_0058097 effectively enhanced the stress resistance of endplate chondrocytes, suggesting that it may be an important trigger point for the degeneration of endplate cartilage. Through a series of experiments, we reveal that circRNA_0058097 can upregulate the expression of downstream target gene histone deacetylase 4 by sponge adsorption of miR-365a-5p, which promoted morphological changes of endplate chondrocytes, and increased extracellular matrix degradation and degeneration of endplate cartilage. Therefore, circRNA_0058097 may provide a new way to prevent and treat endplate cartilage degeneration.


Assuntos
Condrócitos/citologia , Histona Desacetilases/metabolismo , MicroRNAs/metabolismo , RNA Circular/genética , Proteínas Repressoras/metabolismo , Actinas/metabolismo , Adsorção , Cartilagem/metabolismo , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Hibridização in Situ Fluorescente , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , RNA/metabolismo , Transdução de Sinais , Estresse Mecânico
8.
Mol Med Rep ; 18(6): 5751-5759, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30365096

RESUMO

The present study aimed to verify the presence of stem cells with multilineage differentiation potential in human lumbar zygapophyseal articular cartilage (LZAC) and to compare the chondrogenic potential of cells obtained from differentially degenerated articular cartilage samples. Surgically obtained human lumbar zygapophyseal joint tissues were classified into the normal, mildly degenerated and severely degenerated groups, according to their pathological characteristics. Primary chondrocytes from these groups were cultured, and stem cells were selected using a monoclonal cell culture method. Differences in stem cell morphology between the three groups were observed using inverted microscopy and phalloidin staining. In addition, stem cell chondrogenic potential was determined through induced differentiation and cellular staining. Gene and protein expression levels of the chondrogenic­specific markers aggrecan, collagen type­II and SRY­related high­mobility­group box 9 were determined using reverse transcription­quantitative polymerase chain reaction and western blotting. The clonogenic ability of stem cells in the three groups was determined using a clonogenic assay. It was revealed that stem cells with multilineage differentiation potential were isolated from all three cartilage groups; however, the cells obtained from severely degenerated articular cartilage resulted in severe fibrosis, whilst those obtained from mildly degenerated articular cartilage possessed stronger chondrogenic and clonogenic abilities. Taken together, stem cells with multilineage differentiation potential and clonal properties were identified in human LZAC, and these characteristics were more prominent in mildly degenerated as compared with severely degenerated articular cartilage.


Assuntos
Cartilagem Articular/citologia , Separação Celular , Células-Tronco/citologia , Células-Tronco/metabolismo , Articulação Zigapofisária/patologia , Adulto , Idoso , Biomarcadores , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Diferenciação Celular , Separação Celular/métodos , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Articulação Zigapofisária/metabolismo
9.
J Cell Biochem ; 119(12): 10415-10425, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132981

RESUMO

A mechanical stimulation plays a pivotal role in maintaining normal cartilage function. Our objective was to reveal the mechanism of action of the tension-sensitive molecule miR-455-5p in the degeneration of endplate chondrocytes and to identify whether the transforming growth factor beta (TGF-ß)/SMAD signaling pathway has a regulatory effect on it. The expression profiles of members of the TGF-ß/SMAD pathway, miR-455-5p, and RUNX2 were determined by microRNA microarray analysis, reverse transcription quantitative polymerase chain reaction, luciferase reporter assay, and Western blot analysis. Intermittent cyclic mechanical tension (ICMT) induced the degeneration of endplate chondrocytes without affecting their viability. The tension-sensitive molecule miR-455-5p specifically bound to RUNX2, a gene involved in the degeneration of endplate chondrocytes. Activation of the TGF-ß/SMAD signaling pathway upregulated miR-455-5p expression and thus inhibited RUNX2 levels. Therefore, the TGF-ß/SMAD signaling pathway inhibits the ICMT-induced degeneration of endplate chondrocytes by regulating the miR-455-5p/RUNX2 axis.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Disco Intervertebral/metabolismo , MicroRNAs/genética , Estresse Mecânico , Fator de Crescimento Transformador beta/genética , Cartilagem/fisiopatologia , Condrócitos/metabolismo , Condrócitos/patologia , Regulação da Expressão Gênica/genética , Humanos , Disco Intervertebral/fisiopatologia , Análise em Microsséries , Placa Motora/metabolismo , Placa Motora/fisiopatologia , Cultura Primária de Células , Transdução de Sinais/genética , Proteínas Smad/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...