Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 12(1): 260-287, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31905172

RESUMO

Our pre-experiments found that the brain circRNA sequence profiles and gut microbiota in AD-like mice were changed, as circNF1-419 could enhance autophagy to ameliorate senile dementia in AD-like mice, so we conclude that there might some connections between circRNA and gut microbiome. Therefore, we use the over-expressed circNF1-419 adeno-associated virus (AAV) animal system with the aim of identifying possible connections. Our results showed that over-expression of circNF1-419 in brain not only influenced the cholinergic system of brain, but also changed the gut microbiota composition as the Candidatus Arthromitus, Lachnospiraceae FCS020 group, Lachnospiraceae UCG-006, and [Eubacterium] xylanophilum group, and the intestinal homeostasis and physiology, and even the gut microbiota trajectory in new born mice. These findings demonstrate a link between circRNA and gut microbiome, enlarge the 'microbiome- transcriptome' linkage library and provide more information on gut-brain axis.

2.
Int J Biol Sci ; 16(1): 61-73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31892846

RESUMO

Cynomorium coccineum has long been used as the health and medicinal plant known to induce cancer cell death. However, the bioactive compounds of C. coccineum and the underlying mechanism of their regulator in cell autophagy and cell apoptosis remain unexplored. In our previous study, we found that the ethanol extract had antitumor activity through inducing cancer cell death. In this study, by detecting the anti-tumor effect of sequence extracts from Cynomorium coccineum, the active constituents were collected in solvent ethyl acetate. A strategy based on ultra-performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry (UPLC-Q-Orbitrap/MS) was first utilized to analyze the chemical constituents of active fraction (ethyl acetate fraction, CS3). A total of 29 compounds including 8 triterpenoids, 6 flavonoids, 4 fatty acids, 8 phenolic acids, 1 anthraquinones, 1 nucleoside and 1 sterol were detected and identified or tentatively identified for the first time in Cynomorium coccineum. We found that CS3 induces cancer cell death accompanied with a great number of vacuoles in the cytoplasm. CS3-induced autophagosome formation was found and confirmed by electron microscopy and the high expression levels of microtubule-associated protein-1 light chain 3-II (LC3II), a marker protein of autophagy. We additionally demonstrated that CS3 activated and increased the pro-apoptotic mitochondrial proteins, BNIP3 and BNIP3L, in mRNA and protein levels. The constituents of CS3 down-regulated anti-apoptotic BCL2, and then releases autophagic protein Beclin-1. These finding for the first time systematically not only explore and identify the active constituents of CS3 in Cynomorium coccineum, but also examined the mechanism associated with CS3-induced cell death via cell autophagy. This active component may serve as a potential source to obtain new autophagy inducer and anti-cancer compounds for hepatocellular carcinoma.

3.
J Ethnopharmacol ; 247: 112256, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31586690

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The mushroom Ganoderma lucidum (G. lucidum) is a traditional Chinese medicine reported to have a variety of pharmacological properties, including anti-cancer activity. G. lucidum spore oil (GLSO) is a lipid substance extracted from sporoderm-broken spore of G. lucidum. However, the effect of GLSO on breast cancer and the underlying molecular mechanism remain unclear. AIM OF THE STUDY: The aim of this study was to identify the effects of GLSO on breast cancer cells in vitro and in vivo as well as to investigate the mechanistic basis for the anticancer effect of GLSO. MATERIALS AND METHODS: First, in vitro MDA-MB-231 cells were treated with GLSO (0.2, 0.4, and 0.6 µL/mL). The protein levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), X-linked inhibitor of apoptosis (XIAP), total poly (ADP-ribose) polymerase (PARP), caspase-3 and caspase-8 were examined using western blotting. The mRNA expression levels of Fas-associated protein with death domain (FADD), TNF receptor-associated factor 2 (TRAF2), caspases-3, -8, -9 and Bax were examined using qRT-PCR. Second, in vivo the anticancer properties of GLSO were assessed by H&E, TUNEL and immunohistochemistry in BALB/c mice injected with 4T1 cells. In addition, the levels of caspase-9/caspase-3 signaling pathway proteins in tumor tissue were evaluated by immunoblotting. Finally, MDA-MB-231 cells were treated with caspase inhibitors to measure cell viability, the protein levels were examined with western blotting. RESULTS: The results in vitro showed that GLSO up-regulated the expression of Bax and caspase-3 in MDA-MB-231 cells, but had no effect on the expression of caspase-8. Moreover, the growth of tumors in vivo was significantly suppressed in the GLSO-treated group. The results of Western blot were consistent with in vitro. In vitro, co-treatment of MDA-MB-231 cells with caspase inhibitors reduced the inhibitory effect of GLSO on cell growth. CONCLUSIONS: GLSO inhibits the growth of MDA-MB-231 cells and tumors in vivo by inducing apoptosis, which may be achieved through the mitochondrial apoptotic pathway.

4.
Aging (Albany NY) ; 11(23): 11369-11381, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819016

RESUMO

Chemoresistance of triple negative breast cancer against paclitaxel (PAX) is one of the major issues for the patients under chemotherapy. However, the mechanism by which the breast cancer cells are resistant to PAX remains unclear. Here, we identified a circular RNA of angiomotin-like 1 (circAMOTL1) as an important player which may be responsible for the adverse resistance against PAX in breast cancer cells. The circAMOTL1 were overexpressed in MDA-MB-231 breast cancer cells via transfection of circAMOTL1 construct. Overexpression of circAMOTL1 caused significant increase of cell viability, reduction of apoptosis, and enhancement of invasion when MDA-MB-231 cells were exposed to PAX compared to those cells with vector control. Moreover, these resistant effects could be blocked by the application of circAMOTL1 siRNA. In these circAMOTL1 overexpressing cells, we found notable increase of both phosphorylated and total AKT protein, which suggested that AKT might be the downstream factor mediating the resistant effects. Consequently, the gene and protein expression of AKT related pro-apoptotic (BAX and BAK) and anti-apoptotic (BCL-2) factors were significantly changed by circAMOTL1 as well. These results suggest circAMOTL1 may play an important role in the PAX resistance of breast cancer cells via regulation of AKT pathway, facilitation of anti-apoptotic protein and inhibition of pro-apoptotic protein. While providing a new mechanism of PAX resistance in breast cancer cells, our findings may lay groundwork for a novel therapeutic target of the breast cancer treatment in the future.

5.
Aging (Albany NY) ; 11(24): 12002-12031, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860870

RESUMO

Recent studies have demonstrated circular RNAs (circRNAs) to be widely expressed and to have important physiological functions. However, the expression, regulation, and function of circRNAs in neuroglial cells are unknown. Herein, we characterized the expression, regulation, and function of circRNAs in astrocytes. Astrocyte circRNAs were identified by computational analysis of newborn SD rat primary astrocytes cultured with 20 g/L D-galactose. In this manner, 7376 circRNAs were identified, among which most circRNAs (5754) were derived from annot_exons, whereas 27 were antisense, 853 were exon/intron, 329 were intergenic, 41 were intronic, and 372 were one exon. Among these, circNF1-419 was demonstrated to regulate autophagy, in over-expressing circNF1-419 transfected astrocytes, through the PI3K-I/Akt-AMPK-mTOR and PI3K-I/Akt-mTOR signaling pathways. An adenovirus associated virus packaging system (virus titer 1 ×1012), over-expressing circNF1-419 and injected into mouse cerebral cortex, showed autophagy enhancing activity by binding the proteins Dynamin-1 and Adaptor protein 2 B1 (AP2B1). This binding regulated aging markers (p21, p35/25, and p16) and inflammatory factors (TNF-α and NF-κB), and reduced the expression of Alzheimer's disease marker proteins (Tau, p-Tau, Aß1-42, and APOE), which delayed senile dementia. Transcriptome analysis of the brain showed that circNF1-419 improved other signaling pathways, especially those related to the synapses of SAMP8 mice. These findings provide novel insights into circNF1-419 and its potential usefulness for the diagnosis and treatment of dementia by regulating Dynamin-1 and AP2B1 mediated autophagy.

6.
Mol Ther Nucleic Acids ; 18: 518-532, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31671345

RESUMO

Long non-coding RNAs (lncRNAs) have been shown to be crucial regulators in numerous human diseases. However, little is known about their effects on early recurrent miscarriage (RM). Here we aimed to investigate the role of lncRNA EPB41L4A-AS1 on placental trophoblast cell metabolic reprogramming, which might be involved in the pathogenesis of RM. After microarray and GEO database analyses, we found that EPB41L4A-AS1 was significantly increased in early RM placental tissue, and this increase may relate to estradiol-mediated upregulation of PGC-1α. EPB41L4A-AS1 overexpression inhibits glycolysis but increases the dependence on fatty acid oxidation in mitochondrion metabolism and suppresses the Warburg effect, which is necessary for rapid growth of the placental villus, leading to miscarriage. Mechanistic analyses demonstrated that EPB41L4A-AS1 functions as a lncRNA in the regulation of VDAC1 and HIF-1α expression through enhancement of H3K4me3 levels in the promoters of VDAC1 and HIF1A-AS1, a natural antisense transcript (NAT) lncRNA of HIF-1α. Taken together, these findings demonstrate that aberrant expression of EPB41L4A-AS1 is involved in the etiology of early RM, and it may be a candidate diagnostic hallmark and a potential therapeutic target for early RM treatment.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31523359

RESUMO

The growth of neurites underlies the axonal pathfinding and synaptic formation during neuronal development and regeneration. Neurite growth is regulated by specific interactions between growth cone receptors and their ligands that function as molecular cues existing in microenvironments. Neurexins (NRXNs) are concentrated on growth cones and they may function to constrain axonal branches of invertebrate neurons. The present study explored the role of NRXN-1α in regulating neurite growth of mammalian neurons. Results showed that transfecting an effective NRXN-1α siRNA to cultured rat hippocampal neurons significantly increased neurite length. Adding NRXN-1α ligands including neuroligin (NLGN) peptide and/or α-latrotoxin (α-LTX) to the culture media largely decreased neurite growth of naïve neurons in a Ca2+-dependent manner, but had no effect on neurite growth of neurons transfected with NRXN-1α siRNA. Our results suggest that NRXN-1α regulates neurite development of mammalian neurons.

9.
Cell Cycle ; 18(21): 3030-3043, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31544588

RESUMO

This study was designed to purify molecules possess anti-cancer cell activity from the fruit body of Ganoderma leucocontextum. Bio-activity-guided purification and chromatographic separation of Ganoderma leucocontextum extract led to the enrichment of bioactive fractions and isolation of a single compound. The purified compound was identified as Ganoderiol F, which induced cancer cell death. In the in vivo experiments, we founded ethanol extract and ethyl acetate fraction inhibited tumor growth in the mice injected with 4T1 cells. We found that Ganoderiol F-mediated suppression of breast cancer cell viability occurred through cell cycle arrest. Ganoderiol F down-regulated expression of cyclin D, CDK4, CDK6, cyclin E and CDK2 and inhibited cell cycle progression arresting the cells in G1 phase. In addition, Ganoderiol F up-regulated pro-apoptotic Foxo3, down-regulated anti-apoptotic c-Myc, Bcl-2 and Bcl-w leading to apoptosis in human breast cancer cells MDA-MB-231. These results showed that c-Myc, cyclin D-CDK4/CDK6 and cyclin E-CDK2 are the central components of Ganoderiol F regulation of cell cycle progression. Hence Ganoderiol F may serve as a potential CDK4/CDK6 inhibitor for breast cancer therapy. Abbreviations: GLE: Ganoderma leucocontextum ethanol extract; GLEA: Ganoderma leucocontextum ethyl acetate fraction; GLPE: Ganoderma leucocontextum petroleum ether fraction; RP-HPLC: reversed-phase high-performance liquid chromatograph; DMEM: Dulbecco's modified Eagle's medium; FBS: fetal bovine serum; PAGE: polyacrylamide gel electrophoresis.

10.
Cancer Lett ; 459: 216-226, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199987

RESUMO

Circular RNAs represent a large class of non-coding RNAs that are extensively expressed in mammals. However, the functions of circular RNAs are largely unknown. We recently reported that the circular RNA circ-Ccnb1 could bind with H2AX in p53 mutant cells and suppressed mutant p53 in tumor progression. Here we found that circ-Ccnb1 could interact with both Ccnb1 and Cdk1 proteins. Normally, Ccnb1 and Cdk1 proteins form a complex, allowing Ccnb1 to function as an all-or-none switch for cell mitosis. The interaction of circ-Ccnb1 with Ccnb1 and Cdk1 proteins dissociated the formation of Ccnb1-Cdk1 complex, by forming a large complex containing circ-Ccnb1, Ccnb1 and Cdk1. Formation of this large complex may occur in cytosol and nuclei, and Ccnb1 loses its roles in enhancing cell migration, invasion, proliferation and survival. In vivo, ectopic delivery of circ-Ccnb1 inhibited tumor growth and extended mouse viability. These results have added another layer of mechanisms for circ-Ccnb1 to regulate tumor progression in vitro and in vivo.

11.
Cell Death Differ ; 26(12): 2758-2773, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31092884

RESUMO

Yap is the key component of Hippo pathway which plays crucial roles in tumorigenesis. Inhibition of Yap activity could promote apoptosis, suppress proliferation, and restrain metastasis of cancer cells. However, how Yap is regulated is not fully understood. Here, we reported Yap being negatively regulated by its circular RNA (circYap) through the suppression of the assembly of Yap translation initiation machinery. Overexpression of circYap in cancer cells significantly decreased Yap protein but did not affect its mRNA levels. As a consequence, it remarkably suppressed proliferation, migration and colony formation of the cells. We found that circYap could bind with Yap mRNA and the translation initiation associated proteins, eIF4G and PABP. The complex containing overexpressed circYap abolished the interaction of PABP on the poly(A) tail with eIF4G on the 5'-cap of the Yap mRNA, which functionally led to the suppression of Yap translation initiation. Individually blocking the binding sites of circYap on Yap mRNA or respectively mutating the binding sites for PABP and eIF4G derepressed Yap translation. Significantly, breast cancer tissue from patients in the study manifested dysregulation of circYap expression. Collectively, our study uncovered a novel molecular mechanism in the regulation of Yap and implicated a new function of circular RNA, supporting the pursuit of circYap as a potential tool for future cancer intervention.

12.
Cell Mol Life Sci ; 76(15): 3005-3018, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31006037

RESUMO

The accumulation of intracellular ß-amyloid peptide (Aß) is important pathological characteristic of Alzheimer's disease (AD). However, the exact underlying molecular mechanism remains to be elucidated. Here, we reported that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), a long n on-coding RNA, exhibits repressed expression in the early stage of AD and its down-regulation declines neuroglial cell mediating Aß clearance via inhibiting expression of endocytosis-related genes. We find that NEAT1 is associated with P300/CBP complex and its inhibition affects H3K27 acetylation (H3K27Ac) and H3K27 crotonylation (H3K27Cro) located nearby to the transcription start site of many genes, including endocytosis-related genes. Interestingly, NEAT1 inhibition down-regulates H3K27Ac but up-regulates H3K27Cro through repression of acetyl-CoA generation. NEAT1 also mediates the binding between STAT3 and H3K27Ac but not H3K27Cro. Therefore, the decrease of H3K27Ac and/or the increase of H3K27Cro declines expression of multiple related genes. Collectively, this study first reveals the different roles of H3K27Ac and H3K27Cro in regulation of gene expression and provides the insight of the epigenetic regulatory mechanism of NEAT1 in gene expression and AD pathology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Longo não Codificante/metabolismo , Acetilcoenzima A/metabolismo , Acetilação/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Animais , Caveolina 2/antagonistas & inibidores , Caveolina 2/genética , Caveolina 2/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Neuroglia/citologia , Neuroglia/metabolismo , Fragmentos de Peptídeos/farmacologia , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
13.
RNA Biol ; 16(7): 899-905, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023147

RESUMO

Circular RNAs (circRNAs) represent a new type of regulatory RNA which forms a covalently closed continuous loop from back-splicing events, a process in which the downstream 5' splice site and the 3' splice site are covalently linked. Emerging evidence indicates that circRNAs exert a new layer of transcriptional and post-transcriptional regulation of gene expression. However, there is no standard nomenclature of circRNA, although the study of circRNAs has exploded in the past few years. Here we present circbank ( www.circbank.cn ), a comprehensive database for human circRNAs, where a novel naming system of circRNAs based on the host genes of circRNAs was implemented. In addition to the new naming system, circbank collected other five features of circRNAs including the miRNA binding site, conservation of circRNAs, m6A modification of circRNAs, mutation of circRNAs and protein-coding potential of circRNAs. Circbank is publicly available and allows users to query, browse and download circRNAs with all six features we provided, based on different search criteria. The database may serve as a resource to facilitate the research of function and regulation of circRNAs.


Assuntos
Bases de Dados Genéticas , RNA/genética , Terminologia como Assunto , Sítios de Ligação , Sequência Conservada/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fases de Leitura Aberta/genética
14.
Front Pharmacol ; 10: 272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971923

RESUMO

Age-related changes in methylation are involved in the occurrence and development of tumors, autoimmune disease, and nervous system disorders, including Alzheimer's disease (AD), in elderly individuals; hence, modulation of these methylation changes may be an effective strategy to delay the progression of AD pathology. In this study, the AD model rats were used to screen the main active extracts from the mushroom, Ganoderma lucidum, for anti-aging properties, and their effects on DNA methylation were evaluated. The results of evaluation of rats treated with 100 mg/kg/day of D-galactose to induce accelerated aging showed that alcohol extracts of G. lucidum contained the main active anti-aging extract. The effects on DNA methylation of these G. lucidum extracts were then evaluated using SAMP8 and APP/PS1 AD model mice by whole genome bisulfite sequencing, and some methylation regulators including Histone H3, DNMT3A, and DNMT3B in brain tissues were up-regulated after treatment with alcohol extracts from G. lucidum. Molecular docking analysis was carried out to screen for molecules regulated by specific components, including ganoderic acid Mk, ganoderic acid C6, and lucidone A, which may be active ingredients of G. lucidum, including the methylation regulators of Histone H3, MYT, DNMT3A, and DNMT3B. Auxiliary tests also demonstrated that G. lucidum alcohol extracts could improve learning and memory function, ameliorate neuronal apoptosis and brain atrophy, and down-regulate the expression of the AD intracellular marker, Aß1-42. We concluded that alcohol extracts from G. lucidum, including ganoderic acid and lucidone A, are the main extracts involved in delaying AD progression.

15.
EBioMedicine ; 41: 200-213, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30796006

RESUMO

BACKGROUND: LncRNAs have been found to be involved in various aspects of biological processes. In this study, we aimed to uncover the molecular mechanisms of lncRNA EPB41L4A-AS1 in regulating glycolysis and glutaminolysis in cancer cells. METHODS: The expression of EPB41L4A-AS1 in cancer patients was analyzed in TCGA and GEO datasets. The level of cellular metabolism was determined by extracellular flux analyzer. The relationship between p53 and EPB41L4A-AS1 was explored by qRT-PCR, luciferase assay and ChIP assay. The interactions between EPB41L4A-AS1 and HDAC2 or NPM1 were determined by RNA immunoprecipitation, RNA pull-down assay and RNA-FISH- immunofluorescence. FINDINGS: EPB41L4A-AS1 was a p53-regulated gene. Low expression and deletion of lncRNA EPB41L4A-AS1 were found in a variety of human cancers and associated with poor prognosis of cancer patients. Knock down EPB41L4A-AS1 expression triggered Warburg effect, demonstrated as increased aerobic glycolysis and glutaminolysis. EPB41L4A-AS1 interacted and colocalized with HDAC2 and NPM1 in nucleolus. Silencing EPB41L4A-AS1 reduced the interaction between HDAC2 and NPM1, released HDAC2 from nucleolus and increased its distribution in nucleoplasm, enhanced HDAC2 occupation on VHL and VDAC1 promoter regions, and finally accelerated glycolysis and glutaminolysis. Depletion of EPB41L4A-AS1 increased the sensitivity of tumor to glutaminase inhibitor in tumor therapy. INTERPRETATION: EPB41L4A-AS1 functions as a repressor of the Warburg effect and plays important roles in metabolic reprogramming of cancer.


Assuntos
Núcleo Celular/metabolismo , Glicólise , Histona Desacetilase 2/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , Transporte Ativo do Núcleo Celular , Animais , Glutaminase/metabolismo , Células HeLa , Células Hep G2 , Humanos , Camundongos , Camundongos Nus , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , RNA Longo não Codificante/metabolismo
16.
Mol Cancer ; 17(1): 160, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30454010

RESUMO

BACKGROUND: Recent studies indicate that circular RNA (circRNA) plays a pivotal role in cancer progression. Here, we sought to investigate its role in breast cancer. METHODS: CircANKS1B (a circRNA originated from exons 5 to 8 of the ANKS1B gene, hsa_circ_0007294) was identified by RNA-sequencing and validated by qRT-PCR and Sanger sequencing. Clinical breast cancer samples were used to evaluate the expression of circANKS1B and its associations with clinicopathological features and prognosis. Gain- and loss-of-function experiments in cell lines and mouse xenograft models were performed to support clinical findings and elucidate the function and underlying mechanisms of circANKS1B in breast cancer. RESULTS: CircANKS1B was significantly up-regulated in triple-negative breast cancer (TNBC) compared with non-TNBC tissues and cell lines. Increased circANKS1B expression was closely associated with lymph node metastasis and advanced clinical stage and served as an independent risk factor for overall survival of breast cancer patients. Functional studies revealed that circANKS1B promoted breast cancer invasion and metastasis both in vitro and in vivo by inducing epithelial-to-mesenchymal transition (EMT), while had no effect on breast cancer growth. Mechanistically, circANKS1B abundantly sponged miR-148a-3p and miR-152-3p to increase the expression of transcription factor USF1, which could transcriptionally up-regulate TGF-ß1 expression, resulting in activating TGF-ß1/Smad signaling to promote EMT. Moreover, we found that circANKS1B biogenesis in breast cancer was promoted by splicing factor ESRP1, whose expression was also regulated by USF1. CONCLUSIONS: Our data uncover an essential role of the novel circular RNA circANKS1B in the metastasis of breast cancer, which demonstrate that therapeutic targeting of circANKS1B may better prevent breast cancer metastasis.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , RNA/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , MicroRNAs/genética , Modelos Biológicos , Metástase Neoplásica , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Genética , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Fatores Estimuladores Upstream/metabolismo
17.
Anal Chem ; 90(24): 14610-14615, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30451492

RESUMO

Direct quantitative analysis of multiple miRNAs (DQAMmiR) is a hybridization-based assay, in which the excess of the DNA hybridization probes is separated from the miRNA-probe hybrids, and the hybrids are separated from each other in gel-free capillary electrophoresis (CE) using two types of mobility shifters: single-strand DNA binding protein (SSB) added to the CE running buffer and peptide drag tags conjugated with the probes. Here we introduce the second-generation DQAMmiR, which utilizes peptide nucleic acid (PNA) rather than DNA hybridization probes and requires no SSB in the CE running buffer. PNA probes are electrically neutral, while PNA-miRNA hybrids are negatively charged, and this difference in charge can be a basis for separation of the hybrids from the probes. In this proof-of-principle work, we first experimentally confirmed that the PNA-RNA hybrid was separable from the excess of the PNA probe without SSB in the running buffer, resulting in a near 10 min time window, which would allow, theoretically, separation of up to 30 hybrids. Then, we adapted to PNA-RNA hybrids our previously developed theoretical model for predicting hybrid mobilities. The calculation performed with the modified theoretical model indicated that PNA-RNA hybrids of slightly different lengths could be separated from each other without drag tags. Accordingly, we designed a simple experimental model capable of confirming: (i) separation of tag-free hybrids of different lengths and (ii) separation of same-length hybrids due to a drag tag on the PNA probe. The experimental model included three miRNAs: 20-nt miR-147a, 20-nt miR-378g, and 22-nt miR-21. The three complementary PNA probes had lengths matching those of the corresponding target miRNAs. The probe for miR-147a had a short five-amino-acid drag tag; the other two had no drag tags. We were able to achieve baseline separation of the three hybrids from each other. The LOQ of 14 pM along with the high accuracy (recovery >90%) and precision (RSD ≈ 10%) of the assay at picomolar target concentrations suggest that PNA-facilitated DQAMmiR could potentially support practical miRNA analysis of clinical samples.


Assuntos
Eletroforese Capilar/métodos , MicroRNAs/análise , Ácidos Nucleicos Peptídicos/metabolismo , Limite de Detecção , MicroRNAs/metabolismo , Hibridização de Ácido Nucleico
18.
Cancers (Basel) ; 10(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261584

RESUMO

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum's extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.

19.
Oncogene ; 37(44): 5829-5842, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29973691

RESUMO

Circular RNAs are a large group of noncoding RNAs that are widely expressed in mammalian cells. Genome-wide analyses have revealed abundant and evolutionarily conserved circular RNAs across species, which suggest specific physiological roles of these species. Using a microarray approach, we detected increased expression of a circular RNA circ-Dnmt1 in eight breast cancer cell lines and in patients with breast carcinoma. Silencing circ-Dnmt1 inhibited cell proliferation and survival. Ectopic circ-Dnmt1 increased the proliferative and survival capacities of breast cancer cells by stimulating cellular autophagy. We found that circ-Dnmt1-mediated autophagy was essential in inhibiting cellular senescence and increasing tumor xenograft growth. We further found that ectopically expressed circ-Dnmt1 could interact with both p53 and AUF1, promoting the nuclear translocation of both proteins. Nuclear translocation of p53 induced cellular autophagy while AUF1 nuclear translocation reduced Dnmt1 mRNA instability, resulting in increased Dnmt1 translation. From here, functional Dnmt1 could then translocate into the nucleus, inhibiting p53 transcription. Computational algorithms revealed that both p53 and AUF1 could bind to different regions of circ-Dnmt1 RNA. Our results showed that the highly expressed circular RNA circ-Dnmt1 could bind to and regulate oncogenic proteins in breast cancer cells. Thus circ-Dnmt1 appears to be an oncogenic circular RNA with potential for further preclinical research.


Assuntos
Autofagia/genética , Neoplasias da Mama/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , RNA/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Senescência Celular/genética , Senescência Celular/fisiologia , Progressão da Doença , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Humanos , Camundongos , Camundongos Nus , RNA/genética , RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Death Differ ; 25(12): 2195-2208, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29795334

RESUMO

TP53 mutations occur in many different types of cancers that produce mutant p53 proteins. The mutant p53 proteins have lost wild-type p53 activity and gained new functions that contribute to malignant tumor progression. Different p53 mutations create distinct profiles in loss of wild-type p53 activity and gain of functions. Targeting the consequences generated by the great number of p53 mutations would be extremely complex. Therefore, in this study we used a workaround and took advantage of the fact that mutant p53 cannot bind H2AX. Using this, we developed a new approach to repress the acquisition of mutant p53 functions. We show here that the delivery of a circular RNA circ-Ccnb1 inhibited the function of three p53 mutations. By microarray analysis and real-time PCR, we detected decreased circ-Ccnb1 expression levels in patients bearing breast carcinoma. Ectopic delivery of circ-Ccnb1 inhibited tumor growth and extended mouse viability. Using proteomics, we found that circ-Ccnb1 precipitated p53 in p53 wild-type cells, but instead precipitated Bclaf1 in p53 mutant cells. Further experiments showed that H2AX serves as a bridge, linking the interaction of circ-Ccnb1 and wild-type p53, thus allowing Bclaf1 to bind Bcl2 resulting in cell survival. In the p53 mutant cells, circ-Ccnb1 formed a complex with H2AX and Bclaf1, resulting in the induction of cell death. We found that this occurred in three p53 mutations. These results shed light on the possible development of new approaches to inhibit the malignancy of p53 mutations.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Conformação de Ácido Nucleico , RNA/química , RNA/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Sítios de Ligação/efeitos dos fármacos , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Feminino , Células HEK293 , Humanos , Injeções Intraperitoneais , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Mutação , Proteômica , RNA/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA