Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32377999

RESUMO

Heat stress-induced reductions in milk yield and the dysfunction of mammary glands are economically important challenges that face the dairy industry, especially during summer. The aim of the present study is to investigate the effects of heat stress on mitochondrial function by using dairy cow mammary epithelial cells (DCMECs) as an in vitro model. Live cell imaging shows that the mitochondria continually change shape through fission and fusion. However, heat stress induces the fragmentation of mitochondria, as well as the decreased of ATP level, membrane potential, and anti-oxidant enzyme activity and the increased of respiratory chain complex I activity. In addition, the cytosolic Ca2+ concentration and cytochrome c expression (Cyto-c) were increased after heat stress treatment. Both qRT-PCR and western blot analysis indicate that mitofusin1/2 (Mfn1/2) and optic atrophy protein-1 (Opa-1) are downregulated after heat stress, whereas dynamin-related protein 1 (Drp1) and fission 1 (Fis-1) are upregulated, which explains the observed defect of mitochondrial network dynamics. Accordingly, the present study indicated that heat stress induced the dysfunction of DCMEC through disruption of the normal balance of mitochondrial fission and fusion.

2.
Mol Genet Genomic Med ; : e1272, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32441881

RESUMO

BACKGROUND: To study the effect of microRNA-383 (miR-383) on cell proliferation, migration, and invasion of hepatocellular carcinoma (HCC) cells, and explore its mechanism. METHODS: The expressions of miR-383 and plant homology domain that refers to protein 8 (PHF8) were detected in tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot respectively. The miR-383 group (transfected miR-383 mimics), miR-con group (transfected miR-con), si-con group (transfected si-con), si-PHF8 group (transfected si-PHF8), miR-383 + ctrl group (cotransfected miR-383 mimics and pcDNA-3.1), miR-383 + PHF8 group (cotransfected miR-383 mimics and pcDNA-3.1-PHF8) were transfected into HepG2 cells by liposome method. Cell proliferation, migration and invasion were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) or trans-well assays respectively. The luciferase activity of each group was detected by dual luciferase reporter gene assay. RESULTS: Compared with normal adjacent tissues, the expression of miR-383 was significantly down-regulated and the expression of PHF8 was significantly up-regulated (p < .05). Compared with normal hepatocellular cell LO2, the expression of miR-383 was significantly reduced (p < .05) in HCC cells. Moreover, overexpression of miR-383 or silencing of PHF8 significantly inhibited the proliferation, migration, and invasion of HCC cells. In addition, PHF8 was targeted by miR-383 and its restoration rescued the inhibitory effect of miR-383 on cell proliferation, migration, and invasion of HCC cells. CONCLUSION: miR-383 could inhibit the proliferation, migration, and invasion of HCC cells by targeting PHF8, which will provide a basis for miR-383 targeted therapy for HCC.

3.
Eur J Med Chem ; 198: 112352, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32387838

RESUMO

To address the emergency caused by multi-drug resistant Staphylococcus aureus, a series of novel capsaicin derivatives with nitrothiophene substituents have been designed and evaluated for the antibacterial activities against S. aureus Newman and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108, and NRS-271). The structure-activity relationship was further revealed. Compound 13c, 13f, and 13g were highly active against staphylococcal growth, with minimal inhibition concentration (MIC) values of 0.39-1.56 µg/mL. The oxadiazole-derived compound 21, a bioisostere of ester 13f, is the most potent candidate for anti-growth of five multidrug-resistant S. aureus strains with MICs of 0.20-0.78 µg/mL, which is more active compared with vancomycin in vitro. Notably, these anti-staphylococcal compounds are much less cytotoxic to the normal kidney epithelial cell line (HK293T).

4.
Bioconjug Chem ; 31(5): 1289-1294, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32223180

RESUMO

Bispecific aptamer-drug conjugates (BsApDC) may improve the efficacy of drugs by enhancing cellular internalization and targeted delivery. Nevertheless, the synthesis of single-molecular BsApDC has not yet been reported, and it could be thwarted by synthetic challenges. Herein we report a general approach to synthesize a BsApDC hybridized chemical and biological method. Primers incorporated with 5-Fluorouracil (5-FU), 10-Hydroxycamptothecin, and Maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl-monomethyl auristatin E(vcMMAE) were prepared by chemical synthesis, which were converted to corresponding ApDCs efficiently by enzymatic reaction. Biological studies revealed that BsApDC binds with target cells with enhanced internalization and better inhibitory activity, demonstrating the potential of BsApDCs for targeted tumor therapy.

5.
Mol Microbiol ; 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32323346

RESUMO

Intracellular protein degradation is essential for the survival of all organisms, but its role in interspecies interaction is unknown. Here, we show that the ClpXP protease of Pseudomonas aeruginosa suppresses its antimicrobial activity against Staphylococcus aureus, a common pathogen co-isolated with P. aeruginosa from polymicrobial human infections. Using proteomic, biochemical, and molecular genetic approaches, we found that this effect is due to the inhibitory effects of ClpXP on the quorum sensing (QS) of P. aeruginosa, mainly by degrading proteins (e.g., PhnA, PhnB, PqsR, and RhlI) which are critical for the production of QS signal molecules PQS and C4-HSL. We provide evidence that co-culturing with S. aureus induces a decrease in the activity of ClpXP in P. aeruginosa, an effect which was also achieved by the treatment of P. aeruginosa with N-acetylglucosamine (GlcNAc), a widespread chemical present on the surface of diverse cell types from bacteria to humans. These findings extend the range of biological events governed by proteolytic machinery to microbial community structure, thus also suggesting that a chemical-induced alteration of protein homeostasis is a mechanism for interspecies interactions.

6.
Theor Appl Genet ; 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313991

RESUMO

KEY MESSAGE: One hundred and thirty four introgressions from Thinopyrum elongatum have been transferred into a wheat background and were characterised using 263 SNP markers. Species within the genus Thinopyrum have been shown to carry genetic variation for a very wide range of traits including biotic and abiotic stresses and quality. Research has shown that one of the species within this genus, Th. elongatum, has a close relationship with the genomes of wheat making it a highly suitable candidate to expand the gene pool of wheat. Homoeologous recombination, in the absence of the Ph1 gene, has been exploited to transfer an estimated 134 introgressions from Th. elongatum into a hexaploid wheat background. The introgressions were detected and characterised using 263 single nucleotide polymorphism markers from a 35 K Axiom® Wheat-Relative Genotyping Array, spread across seven linkage groups and validated using genomic in situ hybridisation. The genetic map had a total length of 187.8 cM and the average chromosome length was 26.8 cM. Comparative analyses of the genetic map of Th. elongatum and the physical map of hexaploid wheat confirmed previous work that indicated good synteny at the macro-level, although Th. elongatum does not contain the 4A/5A/7B translocation found in wheat.

7.
J Cell Physiol ; 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32239703

RESUMO

Long noncoding RNAs (lncRNAs) regulate a variety of physiological and pathological processes. However, the biological function of lncRNAs in mammalian germ cells remains largely unexplored. Here we identified one novel lncRNA (lncRNA2193) from single-cell RNA sequencing performed on porcine oocytes and investigated its function in oocyte meiosis. During in vitro maturation (IVM), from germinal vesicle (GV, 0 hr), GV breakdown (GVBD, 24 hr), to metaphase II stage (MII, 44 hr), the transcriptional abundance of lncRNA2193 remained stable and high. LncRNA2193 interference by small interfering RNA microinjection into porcine GV oocytes could significantly inhibit rates of GVBD and the first polar body extrusion, but enhance the rates of oocytes with a nuclear abnormality. Moreover, lncRNA2193 knockdown disturbed cytoskeletal organization (F-actin and spindle), and decreased DNA 5-methylcytosine (5mC) and histone trimethylation (H3K4me3, H3K9me3, H3K27me3, and H3K36me3) levels. The lncRNA2193 downregulation induced a decrease of 5mC level could be partially due to the reduction of DNA methyltransferase 3A and 3B, and the elevation of 5mC-hydroxylase ten-11 translocation 2 (TET2). After parthenogenetic activation of MII oocytes, parthenotes exhibited higher fragmentation but lower cleavage rates in the lncRNA2193 downregulated group. However, lncRNA2193 interference performed on mature MII oocytes and parthenotes at 1-cell stage did not affect the cleavage and blasctocyst rates of pathenotes. Taken together, lncRNA2193 plays an important role in porcine oocyte maturation, providing more insights for relevant investigations on mammalian germ cells.

8.
J Med Chem ; 63(9): 4849-4866, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32297747

RESUMO

Speckle-type POZ protein (SPOP) is overexpressed in the nucleus and misallocated in the cytoplasm in almost all the clear-cell renal cell carcinomas (ccRCCs), which leads to kidney tumorigenesis. Previously, we elucidated that the oncogenic SPOP-signaling pathway in ccRCC could be suppressed by 6b that inhibits SPOP-mediated protein interactions. Herein, we have established a structure-activity relationship for 6b analogues as SPOP inhibitors. Compound 6lc suppresses the viability and inhibits the colony formation of ccRCC cell lines driven by cytoplasmic SPOP, superior to 6b. Compound 6lc binds to the SPOP protein in vitro and disrupts SPOP binding to phosphatase-and-tensin homologue (PTEN) in HEK293T cells, which causes the observable phenomena: a decline in the ubiquitination of PTEN, elevated levels of both PTEN and dual-specificity phosphatase 7, and decreased levels of phosphorylated AKT and ERK when ccRCC cell lines are exposed to 6lc in a dose-response manner. Taken together, compound 6lc is a potent candidate against kidney tumorigenesis.

9.
Nat Commun ; 11(1): 1399, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170089

RESUMO

Deleted in azoospermia-like (DAZL) is an RNA-binding protein critical for gamete development. In full-grown oocytes, the DAZL protein increases 4-fold during reentry into the meiotic cell cycle. Here, we have investigated the functional significance of this accumulation at a genome-wide level. Depletion of DAZL causes a block in maturation and widespread disruption in the pattern of ribosome loading on maternal transcripts. In addition to decreased translation, DAZL depletion also causes translational activation of a distinct subset of mRNAs both in quiescent and maturing oocytes, a function recapitulated with YFP-3'UTR reporters. DAZL binds to mRNAs whose translation is both repressed and activated during maturation. Injection of recombinant DAZL protein in DAZL-depleted oocytes rescues the translation and maturation to MII. Mutagenesis of putative DAZL-binding sites in these mRNAs mimics the effect of DAZL depletion. These findings demonstrate that DAZL regulates translation of maternal mRNAs, functioning both as the translational repressor and activator during oocyte maturation.

10.
Anal Chem ; 92(5): 4108-4114, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32037790

RESUMO

Developing cancer targeted medicine depends on increasing delivery efficiency and tumor site accumulation of theranostic agents. To accomplish this, we report a modification of PTK7 receptor-specific aptamer Sgc8 with the small molecule Evans Blue (EB), thus implementing an albumin binding hitchhike strategy for prolonged blood circulation. The EB molecule could insert into the hydrophobic region of serum albumin and form an aptamer/albumin complex. This complex showed superior physiological stability, facilitating longer blood half-life, and maintaining its targeting capacity. Successful conjugation of EB-aptamers was confirmed by a series of characterization methods. Targeting performance was tested on a xenografted mouse tumor model. Taking advantage of the long circulating aptamer/HSA complex, improved accumulation, and delivery efficiency to the tumor site were achieved. Through ex vivo quantification of the EB-Sgc8 aptamers' biodistribution, the mechanism of improved targeting performance was illuminated. Therefore, the increased aptamers tumor delivery efficiency and accumulation indicate that prolonging blood circulation is a promising strategy to improve aptamers' targeted delivery performance in the future clinical translation.

11.
Aging (Albany NY) ; 12(3): 2647-2658, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32040942

RESUMO

Retinoic acid (RA), produced by the metabolism of vitamin A, makes effects on depression and stroke. This study was aimed to evaluate the relationship between RA levels in serum and post-stroke depression (PSD). A single-center (Chengdu, China) prospective cohort study was conducted on patients with acute ischemic stroke. The RA serum level was measured at admission. The PSD was assessed in the 3-month follow-up. The RA-PSD relationship was evaluated with conditional logistic regression. In total, 239 ischemic stroke cases and 100 healthy controls were included. The median RA serum level in patients with ischemic stroke was 2.45 ng/ml (interquartile range [IQR], 0.72-4.33), lower(P<0.001) than 3.89 ng/ml of those in control cases ([IQR]: 2.62-5.39). The crude and adjusted odds ratios [OR] (and 95% confidence intervals [CI]) of PSD associated with an IQR increase for RA were 0.54 (0.44, 0.67) and 0.66 (0.52, 0.79), respectively. Higher ORs of PSD associated with reduced RA levels (

12.
Nucleic Acids Res ; 48(6): 3257-3276, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31970406

RESUMO

During oocyte maturation, changes in gene expression depend exclusively on translation and degradation of maternal mRNAs rather than transcription. Execution of this translation program is essential for assembling the molecular machinery required for meiotic progression, fertilization, and embryo development. With the present study, we used a RiboTag/RNA-Seq approach to explore the timing of maternal mRNA translation in quiescent oocytes as well as in oocytes progressing through the first meiotic division. This genome-wide analysis reveals a global switch in maternal mRNA translation coinciding with oocyte re-entry into the meiotic cell cycle. Messenger RNAs whose translation is highly active in quiescent oocytes invariably become repressed during meiotic re-entry, whereas transcripts repressed in quiescent oocytes become activated. Experimentally, we have defined the exact timing of the switch and the repressive function of CPE elements, and identified a novel role for CPEB1 in maintaining constitutive translation of a large group of maternal mRNAs during maturation.

13.
Plant Physiol Biochem ; 146: 133-142, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31751913

RESUMO

Avena sativa L. is the most important cultivated oat species worldwide. Although photoperiod-insensitive oat varieties exist, the molecular mechanisms underlying their photoperiod sensitivity are poorly understood. This study investigated the effects of day length on the fioral transition of oats and the mechanisms underlying oat photoperiod insensitivity. Photoperiod-sensitive and photoperiod-insensitive varieties, including gp012, were used in shading experiments, and the developing leaves and main shoot apices (MSAs) of the HONGQI2 and gp012 varieties were used for sequencing. Leaves and MSAs were collected in 2016, and their transcriptomes were sequenced. The photoperiod-insensitive varieties headed under both short-day and long-day conditions, while the photoperiod-sensitive varieties headed only under long-day conditions. A total of 60673 transcript sequences were obtained, 7932 of which were differentially expressed; 3194 and 4738 transcripts were differentially expressed in the leaves and MSAs, respectively. A total of 25793 transcripts were classified into 123 pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The carbon metabolism pathways were dominant, followed by ribosome and protein processing in the endoplasmic reticulum. In addition, 203 transcripts were classified into the circadian rhythm pathway. Compared with the expression of pseudo-response regulator protein 37 (PRR37) in photoperiod-sensitive varieties, that in photoperiod-insensitive varieties was upregulated. Among the differentially expressed transcripts (DETs), 8 MADS-box genes were identified. PRR37 is a key regulator of oat photoperiod insensitivity. The obtained transcriptome dataset may provide a reference for analyzing oat transcript expression, and the results should be used as a reference for oat breeding and production.

14.
Biochemistry ; 59(2): 125-127, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31498602
15.
Complement Ther Med ; 47: 102167, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31780021

RESUMO

OBJECTIVE: To systematically review and evaluate the effectiveness of Chinese herbal medicine (CHM) therapy for epidermal growth factor receptor inhibitor (EGFRI)-induced skin rash in patients with malignancy. METHODS: The electronic databases of Medline, PubMed, EMBASE, the Cochrane Library, China National Knowledge Infrastructure, VIP Chinese Sci-tech Journal, Wan Fang, and Chinese Biomedicine were searched from their inception to 31 st September 2018. Randomized controlled trials (RCTs) investigating the effectiveness of CHM in improving EGFRI-induced skin rash were analyzed by Review Manager 5.3. RESULTS: Twenty-three eligible RCTs with 1392 participants were identified and divided into four subgroups according to different treatment rules of Traditional Chinese Medicine (TCM) and different controls. CHM (dispel wind, clear heat, and eliminate dampness), the representative formula Xiao Feng San, is more effective than western medicine in improving and curing skin rash(RR,95%CI: 1.46,1.26-1.70 and 1.65,1.24-2.20); CHM (nourish yin, clear heat, and remove toxin for eliminating blood stasis), the representative formula Yang Fei Xiao Zhen Tang, is more effective than western medicine in improving skin rash(RR,95%CI: 1.45,1.10-1.92). CHM (clear lung and purge heat, cool blood, and remove toxic substance) is more effective in improving and curing skin rash, compared with the western medicine group (RR,95%CI: 1.42,1.21-1.67 and 2.43,1.23-4.81) or the blank control group(RR,95%CI:2.37,1.21-4.63 and 2.98,1.20-7.41). The side effects of CHM are all mild and tolerable. Sensitivity analysis indicates that the results of the study are stable. The asymmetry funnel plots described that publication bias of this research may exist. CONCLUSION: The limited evidence suggests that CHM exhibits clinical effectiveness and good safety on the treatment of EGFRI-induced skin rash. Large-sample RCTs are required to further determine the effectiveness of CHM.

16.
Onco Targets Ther ; 12: 6907-6915, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692554

RESUMO

Purpose: Lung cancer is the most common malignant tumor in the world, and its incidence and mortality are very high. This study focuses on the mechanism of non-small cell lung cancer to find new therapeutic targets. Methods: We used RT-PCR and Western blot to verify the linear relationship between E2F1 and IRF5 in normal lung tissue and lung cancer tissues. Secondly, we used overexpression and knock down E2F1 in cell lines to detect the expression of IRF5. The prime enzyme reporter plasmid verified that E2F1 binds to the core promoter region of IRF5; finally, CHIP experiments demonstrated that E2F1 binds directly to IRF5. Results: We verified that E2F1 and IRF5 are decreased in patient tissues, and there is a strong linear relationship between E2F1 and IRF5. Secondly, we used overexpression of E2F1 or E2F1 siRNA transfected into HCC827 cells and found that E2F1 positively regulates the activity of the IRF5 promoter and the mRNA level of IRF5. Finally, the results of a chromatin immunoprecipitation assay demonstrated that E2F1 bound to the promoter region of IRF5 in vitro. These results suggested that the E2F1 transcription factor is the primary determinant for activating the basal transcription of the IRF5. Conclusion: The transcription factor E2F1 positively regulates IRF5 in non-small cell lung cancer.

17.
Anal Chem ; 91(21): 13818-13823, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31593429

RESUMO

Aptamer-drug conjugates (ApDCs) are emerging as targeted therapeutic drugs that can effectively broaden the chemotherapeutic window with higher efficacy and less toxicity. They show promising targeted tumor-killing effects both in vitro and in vivo. However, the mechanisms underlying the cellular internalization and transport of ApDCs remain unclear, and no systematic study on this topic has been reported. Therefore, we herein investigated the endocytic internalization and subsequent transport of ApDCs in mammalian cells through single-particle tracking. We found that ApDC enters the cells mainly by caveolin-mediated endocytosis and that it exhibits cytoskeleton-dependent transport, along microfilaments and microtubules, to acidic endosomes near the cell nucleus in cytoplasm. We also found that the cellular uptake pathways of ApDCs are identical to those of the aptamer itself, confirming that aptamers play a prominent role in the internalization of ApDCs. This study extends our understanding of the internalization and transport process of ApDCs such that the results could serve as the theoretical foundation for designing new ApDCs and, in turn, promoting cancer-targeted therapy.

18.
Materials (Basel) ; 12(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547280

RESUMO

The high-strength bolt shear connector in prefabricated concrete slab has advantages in applications as it reduces time during the construction of steel-concrete composite building structures and bridges. In this research, an innovative and advanced bolt shear connector in steel-concrete composite structures is proposed. To investigate the fundamental mechanical behavior and the damage form, 22 static push-off tests were conducted with consideration of different bolt dimensions, the reserved hole constraint condition, and the dimension of slab holes. A finite element (FE) model was established and verified by using test results, and then the model was utilized to investigate the influence of concrete strength, bolt dimension, yield strength, bolt pretension, as well as length-to-diameter ratio of high strength bolts on the performances of shear connectors. On the basis of FE simulation and test results, new design formulas for the calculation of shear resistance behavior were proposed, and comparisons were made with current standards, including AISC, EN 1994-1-1, GB 50017-2017, and relevant references, to check the calculation efficiency. It is confirmed that the proposed equation is in better agreement with the experimental results.

19.
Theriogenology ; 140: 44-51, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31437668

RESUMO

Lysosome, an important organelle in eukaryotes, can sequester macromolecules submitted by the endocytosis and autophagy pathways for degradation and recycling. Massive macromolecular turnover is also vital to the growth and development of mammalian oocytes. However, the functional role of lysosomes in the meiotic maturation of mammalian oocytes remains largely unexplored. Here, by treating in vitro matured porcine cumulus-oocyte complexes (COCs) with chloroquine (CQ), a lysosome inhibitor, we showed that regardless of CQ concentration, lysosomal inhibition affected neither the extrusion of the first polar body (PB1), nor the ROS levels. However, CQ treatment dramatically decreased the rates of oocytes with normal chromosome alignment and cytoskeleton organization (P < 0.05), but boosted the rates of oocytes with apoptosis (P < 0.05). Subsequently, after pathenogenetic activation or in vitro fertilization, the death or fragmentation rates of oocytes treated by CQ (both 35 µM and 45 µM) were significantly higher (P < 0.05), whereas the rates of embryo cleavage, embryos developed to blastocysts, and average blastomere number per blastocyst, were all significantly lower (P < 0.05), respectively. Furthermore, CQ (35 µM) treatment activated the autophagy pathway by elevating the LC3 II/I ratio. Taken together, lysosomes could affect porcine oocyte maturation and subsequent developmental capacity partially through the chromosome organization/cytoskeleton assembly and autophagy/apoptosis pathways.

20.
Sci Adv ; 5(7): eaax0250, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31281898

RESUMO

N 6-methyladenosine (m6A) is one of the most abundant messenger RNA modifications in eukaryotes involved in various pivotal processes of RNA metabolism. The most popular high-throughput m6A identification method depends on the anti-m6A antibody but suffers from poor reproducibility and limited resolution. Exact location information is of great value for understanding the dynamics, machinery, and functions of m6A. Here, we developed a precise and high-throughput antibody-independent m6A identification method based on the m6A-sensitive RNA endoribonuclease recognizing ACA motif (m6A-sensitive RNA-Endoribonuclease-Facilitated sequencing or m6A-REF-seq). Whole-transcriptomic, single-base m6A maps generated by m6A-REF-seq quantitatively displayed an explicit distribution pattern with enrichment near stop codons. We used independent methods to validate methylation status and abundance of individual m6A sites, confirming the high reliability and accuracy of m6A-REF-seq. We applied this method on five tissues from human, mouse, and rat, showing that m6A sites are conserved with single-nucleotide specificity and tend to cluster among species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA