Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
BMJ Open ; 10(1): e033230, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31900273


INTRODUCTION: Stair ascent and descent require complex integration between sensory and motor systems; individuals with knee osteoarthritis (KOA) have an elevated risk for falls and fall injuries, which may be in part due to poor dynamic postural control during locomotion. Tai chi exercise has been shown to reduce fall risks in the ageing population and is recommended as one of the non-pharmocological therapies for people with KOA. However, neuromuscular mechanisms underlying the benefits of tai chi for persons with KOA are not clearly understood. Postural control deficits in performing a primary motor task may be more pronounced when required to simultaneously attend to a cognitive task. This single-blind, parallel design randomised controlled trial (RCT) aims to evaluate the effects of a 12-week tai chi programme versus balance and postural control training on neuromechanical characteristics during dual-task stair negotiation. METHODS AND ANALYSIS: Sixty-six participants with KOA will be randomised into either tai chi or balance and postural control training, each at 60 min per session, twice weekly for 12 weeks. Assessed at baseline and 12 weeks (ie, postintervention), the primary outcomes are attention cost and dynamic postural stability during dual-task stair negotiation. Secondary outcomes include balance and proprioception, foot clearances, self-reported symptoms and function. A telephone follow-up to assess symptoms and function will be conducted at 20 weeks. The findings will help determine whether tai chi is beneficial on dynamic stability and in reducing fall risks in older adults with KOA patients in community. ETHICS AND DISSEMINATION: Ethics approval was obtained from the Ethics Committee of the Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine (#2018KY-006-1). Study findings will be disseminated through presentations at scientific conferences or publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER: ChiCTR1800018028.

Int J Pharm ; 489(1-2): 210-7, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25956047


To prolong the residence time of dosage forms within gastrointestinal trace until all drug released at desired rate was one of the real challenges for oral controlled-release drug delivery system. Herein, we developed a fine floating tablet via compression coating of hydrophilic polymer (hydroxypropyl cellulose) combined with effervescent agent (sodium bicarbonate) to achieve simultaneous control of release rate and location of ofloxacin. Sodium alginate was also added in the coating layer to regulate the drug release rate. The effects of the weight ratio of drug and the viscosity of HPC on the release profile were investigated. The optimized formulations were found to immediately float within 30s and remain lastingly buoyant over a period of 12 h in simulated gastric fluid (SGF, pH 1.2) without pepsin, indicating a satisfactory floating and zero-order drug release profile. In addition, the oral bioavailability experiment in New Zealand rabbits showed that, the relative bioavailability of the ofloxacin after administrated of floating tablets was 172.19%, compared to marketed common release tablets TaiLiBiTuo(®). These results demonstrated that those controlled-released floating tables would be a promising gastro-retentive delivery system for drugs acting in stomach.

Alginatos/química , Antibacterianos/química , Celulose/análogos & derivados , Ofloxacino/química , Bicarbonato de Sódio/química , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Disponibilidade Biológica , Celulose/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos , Liberação Controlada de Fármacos , Suco Gástrico/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Ofloxacino/administração & dosagem , Ofloxacino/farmacocinética , Coelhos , Comprimidos
Mol Med ; 17(5-6): 523-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21267512


Obesity is an important risk factor for cardiovascular disease, diabetes and certain cancers. The fat mass- and obesity-associated (FTO) gene is tightly associated with the pathophysiology of obesity, whereas the exact role of FTO remains poorly understood. Here, we investigated the alternations of FTO mRNA and protein expression in the peripheral metabolic tissues and the brain upon energy restriction (ER) and explored the involvement of the leptin signaling pathway in FTO regulation under ER status. ER decreased the FTO mRNA and protein expression in hypothalamus and brainstem but not in periphery. Using double-immunofluorescence staining, FTO was found to be colocalized with the leptin receptor long isoform (LepRb) in arcuate nucleus of hypothalamus and the nucleus of the solitary tract. In LepRb mutant db/db mice, the FTO downregulation in brain and body weight reduction induced by ER were completely abolished. The enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) induced by ER was also impaired in db/db mice. Moreover, leptin directly activated the STAT3 signaling pathway and downregulated FTO in in vitro arcuate nucleus of hypothalamus cultures and in vivo wild-type mice but not db/db mice. Thus, our results provide the first evidence that the LepRb-STAT3 signaling pathway is involved in the brain FTO downregulation during ER.

Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Western Blotting , Peso Corporal/genética , Imunofluorescência , Masculino , Camundongos , Isoformas de Proteínas/genética , Proteínas/genética , Ratos , Receptores para Leptina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia