Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Oxid Med Cell Longev ; 2021: 8049079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643519

RESUMO

Traditional Chinese medicine has shown great safety and efficacy in the treatment of heart failure (HF), whereas the mechanism remains unclear. In this study, the protective effect of Yixin-shu (YXS) capsules, a conventional medicine for various cardiovascular diseases, against myocardial ischemia-induced HF in rats was systematically investigated by RNA-seq technology. HF rats treated with YXS (0.8 or 1.6 g/kg/d, ig) for 6 weeks had significantly decreased brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP) and collagen III and attenuated cardiac structure rupture and collagen deposition. Additionally, YXS treatment decreased the levels of interleukin-1ß (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and lactate dehydrogenase (LDH) and TUNEL-positive rate and the nitrotyrosine staining, but increased levels of glutathione (GSH), total antioxidant capacity (T-AOC) activity, and mitochondrial membrane potential. Further experiments demonstrated that YXS restored Trx2 and inhibited the phosphorylation of JNK and p38, thereby improving cardiac function in the rats with HF. Silencing Trx2 decreased the protection of YXS in the response to H2O2 as evidenced by the increase of caspase-3 activity and decrease of GSH level. Thus, YXS enhanced heart function and decreased myocardial damage through restoring Trx2 and inhibiting JNK and p38 activation in ischemia-induced HF.

2.
Environ Toxicol ; 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559965

RESUMO

The accumulation of cadmium (Cd) in the human body through food chain can lead to adverse pregnancy outcomes. In this study, Cd cytotoxicity and its mechanisms in HTR-8/SVneo cells were investigated. Cd disrupted the cellular submicrostructure and inhibited the cell viability in a time- and dose-dependent manner. The levels of reactive oxygen species, malondialdehyde content, and the activities of glutathione peroxidase (GSH-Px) and total superoxode dismutase (T-SOD) were concentration-dependently increased by Cd. In addition, Cd dose-dependently inducedcell apoptosis and decreased cell migration and invasion capacities. Finally, Cd significantly upregulated all the genes related to oxidative stress (SOD1, ROS1, and HSPA6), inflammatory response, cell cycle, apoptosis, and migration and invasion. This study will provide insights into the prevention and treatment of pregnancy-related diseases caused by Cd intoxication.

3.
Sci Total Environ ; 772: 145501, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571770

RESUMO

Construction of circumlittoral shelter forest is of great significance to maintain ecological security of coastal zones, the safety of people's lives and property in the Yellow River Delta (YRD) in China. Tamarix chinensis-grass patterns have shown obvious advantages in construction of circumlittoral shelter forest and improving the soil quality of coastal saline soil. This study aimed to explore the soil-improving effects of various Tamarix chinensis-grass community patterns and identify the best vegetation pattern for improving the soil quality in the coastal saline-alkali land. Six kinds of Tamarix chinensis-grass community patterns were selected from the saline-alkali soil of the YRD, with bare land as the control. Effects of different Tamarix chinensis-grass patterns on the coastal saline soil were evaluated using statistical methods (e.g. principal component analysis and fuzzy membership function method). The results showed that various Tamarix chinensis-grass community patterns significantly decreased the salt contents and increased the available nutrient contents in the coastal saline-alkali soil. The soil improvement effects showed obvious distinctions among the different Tamarix chinensis-grass patterns. The mixed forest-grass pattern consisting of Tamarix chinensis, Phragmites australis, and other salt-resistant grasses showed the best effects in relation to reducing salt, preventing alkalization and increasing the soil nutrients, which resulted in the lowest salt contents and the highest nutrients. Grass species play a major role in increasing soil nutrient contents, and the density of new Tamarix chinensis forest contributes greatly to the decrease of soil salt. And the more kinds of grass species are, the better improvement effects they will have. Therefore, during the construction of the circumlittoral shelter forest system in the muddy coastal zone of the YRD, it is recommended to prioritize the high density Tamarix chinensis-Phragmites australis (TPA) community pattern, and live together with other kinds of salt-resistant grasses.

4.
Clin Sci (Lond) ; 135(4): 613-627, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33491733

RESUMO

The high disability, mortality and morbidity of diabetic ulcers make it urgent to explore effective strategies for diabetic wound repair. TrxR1 plays a vital role in regulating redox homeostasis in various pathologies. In the present study, the effect of berberine (BBR) on diabetic wounds was investigated in streptozotocin (STZ)-induced diabetic rats and a high glucose (HG)-induced cell model, and the mechanism of BBR on TrxR1 was elucidated. BBR treatment remarkably accelerated wound healing and enhanced extracellular matrix (ECM) synthesis and significantly inhibited HG-induced HaCaT cell damage. Further analysis indicated that BBR activated TrxR1, suppressed its downstream JNK signaling, thereby inhibiting oxidative stress and apoptosis, promoted cell proliferation, down-regulated matrix metalloproteinase (MMP) 9 (MMP9) and up-regulated transforming growth factor-ß1 (TGF-ß1) and tissue inhibitors of MMP 1 (TIMP1), resulting in accelerated wound healing. Importantly, the enhancement of BBR on wound repair was further abolished by TrxR1 inhibitor. Moreover, in diabetic wounds induced by a combination of STZ injection and high-fat diet, BBR significantly increased wound closure rate and TrxR1 expression, and this was reversed by TrxR1 inhibitor. These data indicated that topical BBR treatment accelerated diabetic wound healing by activating TrxR1. Targeting TrxR1 may be a novel, effective strategy for restoring redox homeostasis and promoting diabetic wound healing.

5.
Int J Biol Macromol ; 169: 216-227, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340629

RESUMO

Opisina arenosella is one of the main pests harming coconut trees. To date, there have been few studies on the molecular genetics, biochemistry and physiology of O. arenosella at the transcriptional level, and there are no available reference genomes. Here, Illumina RNA sequencing combined with PacBio single-molecule real-time analysis was applied to study the transcriptome of this pest at different developmental stages, providing reference data for transcript expression analysis. Twelve samples of O. arenosella from different stages of development were sequenced using Illumina RNA sequencing, and the pooled RNA samples were sequenced with PacBio technology (Iso-Seq). A full-length transcriptome with 41,938 transcripts was captured, and the N50 and N90 lengths were 3543 bp and 1646 bp, respectively. A total of 36,925 transcripts were annotated in public databases, 6493 of which were long noncoding RNAs, while 2510 represented alternative splicing events. There were significant differences in the gene expression profiles at different developmental stages, with high levels of differential gene expression associated with growth, development, carbohydrate metabolism and immunity. This work provides resources and information for the study of the transcriptome and gene function of O. arenosella and provides a valuable foundation for understanding the changes in gene expression during development.

6.
Sci Total Environ ; 756: 143801, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33307496

RESUMO

Soil salinization and nutrient deficiency have emerged as the major factors negatively impacting soil quality and primary productivity in the coastal saline-alkali soil of the Yellow River Delta. Biochar has been proposed as an efficient strategy for promoting plant growth and restoring degraded saline-alkali soil. However, knowledge is inadequate regarding the effects of adding Spartina alterniflora-derived biochar alone or in combination with effective microorganisms (EM) on the growth of Sesbania cannabina and soil quality in saline-alkali soil. To enhance this knowledge, a pot experiment with different EM treatments (without EM addition, EM-; with EM addition, EM+) and a gradient of biochar treatments (0%, B0; 0.5%, B1; 1.5%, B2; and 3%, B3; biochar weight/soil weight) was conducted. Our results showed that biochar addition alone and in combination with EM significantly increased seed germination, plant height, stem diameter, total biomass and plant nutrient uptake of S. cannabina. Biochar addition, EM addition and their interaction significantly decreased soil salt content efficiently and increased soil total carbon (TC), total nitrogen (TN), available phosphorus (AP) and available potassium (AK) but had little effect on soil pH. Biochar addition increased soil organic carbon, soil NH4+ and NO3-, microbial biomass carbon, and soil enzyme activities and these effects increased in strength when biochar and EM were present simultaneously. Of the treatments, the EM + B3 treatment had the largest effects in terms of inhibiting salinization, increasing soil fertility, elevating soil nutrients and enzyme activities, and improving plant growth. Moreover, the application of biochar and EM promoted the growth of S. cannabina by enhancing plant nutrient uptake, improving soil fertility (e.g., TN, AP, AK, NH4+ and NO3-), and elevating soil enzyme activities (urease and alkaline phosphatase activity). Overall, the integrated use of an appropriate biochar rate (3%) and EM for coastal saline-alkali soil could be an effective strategy to ameliorate soil salinity, improve soil quality and promote plant productivity.

7.
Steroids ; : 108774, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285175

RESUMO

Giosgenin is a naturally steroidal saponin exhibiting a variety of biological activities including antitumor ones. A series of novel diosgenyl quaternary ammonium derivatives were designed and synthesized to develop potential anti-tumor agents in our research. All novel derivatives were characterized by 1H NMR, 13C NMR and HR-MS, and evaluated for their in vitro anti-proliferative activities using MTT assay. The human cancer cell lines were A549 (Human lung cancer cell), H1975 (Human lung adenocarcinoma cell), A431 (Human skin squamous cell carcinoma), HCT-116 (Human colorectal adenocarcinoma cell), Aspc-1 (Human metastatic pancreatic cancer cell), Ramos (Human B lymphoma cell), HBE (Human bronchial epithelioid cell) and LO2 (Human normal hepatocyte).

8.
Chem Commun (Camb) ; 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33326513

RESUMO

A typical multicyclic branched-topology polystyrene (c-BPS) with high molecular weight (30 K ≤ Mw MALLS ≤ 300 K g mol-1) and narrow dispersity (1.2 ≤ D ≤ 1.3) was efficiently synthesized by combining atom transfer radical polymerization (ATRP) and atom transfer radical coupling (ATRC) techniques. The topological constraints imposed by the presence of cyclic units and branch points had a marked influence on the entanglement behaviors of the polymer chains in solution. Therefore, c-BPS possesses the lowest loss modulus (G'') and viscosity (η), the highest diffusion coefficient (D0), the largest mesh size (ξ) and the fastest terminal relaxation (TR), compared with branched and linear precursors.

9.
Ying Yong Sheng Tai Xue Bao ; 31(9): 3101-3110, 2020 Sep 15.
Artigo em Chinês | MEDLINE | ID: mdl-33345512

RESUMO

We examined the effects of biochar and effective mircoorganisms (EM) application on growth and photosynthetic characteristics of Sesbania cannabina in the Yellow River Delta, by a pot experiment with different EM treatments (without EM addition, EM-; with EM addition, EM+) and a gradient of biochar treatments (0, B0; 0.5%, B1; 1.5%, B2; 3%, B3; biochar weight/soil weight). The growth parameters, photosynthetic light response curve and chlorophyll fluorescence characteristics of S. cannabina were measured. The results showed that the EM+B3 treatment had the best effect among all the treatments. Compared with the EM-B0 treatment, the EM+B3 treatment increased height, stem diameter, and total biomass by 69.5%, 90.0% and 141.1%, respectively. Biochar and EM significantly improved photosynthetic capacity. Compared with the EM-B0 treatment, the EM+B3 treatment significantly enhanced the maximum light response of net photosynthetic rate, transpiration rate, water use efficiency, and stomatal conductance by 93.8%, 35.1%, 43.4%, and 34.8%, respectively. Biochar and EM improved the parameters of chlorophyll fluorescence. Compared with the EM-B0 treatment, the EM+B3 treatment significantly increased the potential photochemical efficiency, the actual photochemical efficiency, the apparent electron transport rate and the non-photochemical quenching coefficient by 25.8%, 31.5%, 37.2%, and 56.8%, respectively. The parameters of growth, photosynthesis and chlorophyll fluorescence increased with the increasing biochar under EM+ treatments, whereas the B3 treatment had negative effect under EM- treatments. The co-addition of EM and 3% biochar (EM+B3) could improve the photosynthetic capacity and chlorophyll fluorescence characteristics of S. cannabina, broaden light ecological amplitude, boost the water retention and drought resistance property, and promote the growth of S. cannabina.


Assuntos
Sesbania , Solo , Álcalis , Carvão Vegetal , China , Clorofila , Fluorescência , Fotossíntese , Folhas de Planta , Rios
10.
PeerJ ; 8: e10223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194414

RESUMO

Background: Red palm weevil, Rhynchophorus ferrugineus Olivier, is one of the most destructive pests harming palm trees. However, genomic resources for R. ferrugineus are still lacking, limiting the ability to discover molecular and genetic means of pest control. Methods: In this study, PacBio Iso-Seq and Illumina RNA-seq were used to generate transcriptome from three developmental stages of R. ferrugineus (pupa, 7th-instar larva, adult) to increase the understanding of the life cycle and molecular characteristics of the pest. Results: Sequencing generated 625,983,256 clean reads, from which 63,801 full-length transcripts were assembled with N50 of 3,547 bp. Expression analyses revealed 8,583 differentially expressed genes (DEGs). Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these DEGs were mainly related to the peroxisome pathway which associated with metabolic pathways, material transportation and organ tissue formation. In summary, this work provides a valuable basis for further research on the growth and development, gene expression and gene prediction, and pest control of R. ferrugineus.

11.
Food Funct ; 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33241234

RESUMO

Antibiotic-associated diarrhea (AAD) is typically mediated by antibiotic therapy, which has increased in prevalence in recent years. Previous studies have suggested that ginger, a common spice and herbal medicine, can modulate the composition of gut microbiota and is beneficial against gastrointestinal disease. This study investigates the therapeutic effects of fresh ginger extract on AAD in a rat model. Gut microbiota and intestinal barrier function were also studied. Ginger was administered to rats with AAD. Diarrhea symptoms were assessed, and 16s rRNA sequencing analysis of gut microbiota was performed. An AAD model was successfully established, and ginger was found to effectively ameliorate AAD-related diarrhea symptoms. After the intervention of ginger decoction, the diversity (rather than richness) of gut microbiota was significantly improved, and the gut microbiota recovery was accelerated. At the genus level, Escherichia_Shigella and Bacteroides levels decreased and increased the most, respectively. Additionally, these changes were demonstrated to be coincidental with the moderate restoration of intestinal barrier function, especially the restoration of tight junction protein ZO-1. Our data indicate that ginger could restore gut microbiota and intestinal barrier function during alleviation of AAD.

12.
ACS Appl Mater Interfaces ; 12(45): 50870-50878, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33125218

RESUMO

The amide bond is one of the most pivotal functional groups in chemistry and biology. It is also the key component of proteins and widely present in synthetic materials. The majority of studies have focused on the formation of the amide group, but its postmodification has scarcely been investigated. Herein, we successfully develop the Michael additions of amide to acrylate, acrylamide, or propiolate in the presence of phosphazene base at room temperature. This amide Michael addition is much more efficient when the secondary amide instead of the primary amide is used under the same conditions. This reaction was applied to postfunctionalize poly(methyl acrylate-co-acrylamide), P(MA-co-Am), and it is shown that the amide groups of P(MA-co-Am) could be completely modified by N,N-dimethylacrylamide (DMA). Interestingly, the resulting copolymer exhibited tailorable fluorescence with emission wavelength ranging from 380 to 613 nm, which is a desired property for luminescent materials. Moreover, the emissions of the copolymer increased with increasing concentration in solution for all excitation wavelengths from 320 to 580 nm. Therefore, this work not only develops an efficient t-BuP4-catalyzed amide Michael addition but also offers a facile method for tunable multicolor photoluminescent polymers, which is expected to find a wide range of applications in many fields, such as in anticounterfeiting technology.

13.
Drug Discov Today ; 25(12): 2080-2088, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33017690

RESUMO

The research and development (R&D) of new drugs indicates scientific progress and economic development. However, little is known regarding ongoing or recent clinical trials in China. We analyzed data from clinical trials published before December 31, 2019, and found that the annual registration numbers are increasing annually in the country. Based on clinical indications, most tested drugs target cancers, nervous system, infections, and the cardiovascular system. Furthermore, clinical trials are mostly concentrated in Beijing, Shanghai, and Jiangsu, and conducted by large pharmaceutical companies, with multiple trials for several generic drugs. Going forward, it will be necessary to promote R&D in China of clinically relevant innovative drugs, drug delivery systems, and novel traditional Chinese medicine (TCM) and biological products, as well as to have a balanced distribution of clinical trials to sustainably meet public health needs.

14.
Carbohydr Polym ; 250: 116922, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049836

RESUMO

Natural hydrogels are widely investigated for biomedical applications because of their structures similar to extracellular matrix of native tissues, possessing excellent biocompatibility and biodegradability. However, they are often susceptible to mechanical disruption. In this study, self-healing hyaluronic acid (HA) hydrogels are fabricated through a facile dynamic covalent Schiff base reaction. Dialdehyde-modified HA (AHA) precursor was synthesized, and then the AHA/cystamine dihydrochloride (AHA/Cys) hydrogels were formed by blending AHA and Cys at acidic pH levels. By varying Cys to AHA ratio, the hydrogel morphology, swelling and kinetics of gelation could be controlled. Gelation occurred fast, which was predominantly attributed to Schiff base reaction between the dialdehyde groups on AHA and amimo groups on Cys. The hydrogel exhibited improved mechanical properties with increase in Cys content. Furthermore, due to dynamic imine bonds, this hydrogel demonstrated excellent self-healing ability based on the stress after mechanical disruption. Also, it was found to be pH-responsive and injectable. Taken together, this kind of hyaluronic acid hydrogel can provide promising future for various biomedical applications in drug delivery, bioprinting, smart robots and tissue regeneration.

15.
Front Pharmacol ; 11: 1337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982747

RESUMO

The aim of this study was to investigate the precise clinical use of Sinitang decoction (SNT) in ulcerative colitis (UC). Network pharmacology-based analysis of the drug components-targets-diseases-pathways was used to predict the possible clinical applications of SNT. Next, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used to establish a rat model of UC, and the efficacy of SNT against UC was tested, followed by a proteomic analysis of the specific signatures regulated by SNT against UC. SNT was predicted to be effective in inflammatory bowel disease, UC, and several other diseases. In the rats with UC, SNT decreased the disease activity index and colon mucosal damage index compared to the untreated UC model rats. Additionally, SNT reversed the upregulated levels of serum tumor necrosis factor (TNF)-α, prostaglandin E2 (PGE2), interleukin (IL)-6, and nitric oxide (NO) in UC model rats. The proteomic analysis identified 78 proteins that were differentially regulated by SNT in the rats with UC, which were associated with the Gene Ontology terms sulfur compound binding, calcium ion binding, and Toll-like receptor (TLR)-4 binding. Among these differentially regulated proteins, C-reactive protein (CRP) and collagen alpha-1(XII) chain (COL12A1) were found to be signature proteins associated with the efficacy of SNT against UC. This study represents the first precise investigation of the efficacy and mechanisms of SNT against UC, and shows that SNT is a promising candidate for personalized management of UC.

16.
ACS Appl Mater Interfaces ; 12(41): 46653-46660, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32940997

RESUMO

The three-dimensional (3D) structural design of solar evaporators has been considered as one of the most promising approaches toward enhancing photothermal performance by improving light absorption and the available evaporation area. Herein, polypyrrole-decorated 3D array structural sunflower discs (PPy-SFD) were prepared for solar steam generation, thereby turning SFD biomass waste into valuable materials. The SFD can absorb a majority of the incident light because of numerous light reflections from each natural 3D array structural unit, and therefore behaves similar to a blackbody. Moreover, a facile pyrrole polymerization method was introduced to further improve SFD light absorption and enhance the photothermal performance of SFD. This circumvents expensive consumption fabrication processes. The black PPy-decorated SFD shows a light absorption of 99.3% across the entire solar spectrum coupled with mechanical stability. During photothermal evaporation, the increased evaporation area of the 3D array structural SFD could effectively reduce heat loss to the environment because the inherent microporous structure of the SFD leaves and cellulose hydrophilicity provide channels for water transport. The PPy-SFD-based evaporator could reach an evaporation rate of 1.74 kg m-2 h-1 under 1 sun. Thus, the 3D array structural PPy-SFD is a possible candidate for high-efficiency photothermal evaporators.

17.
Ecotoxicol Environ Saf ; 205: 111102, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836152

RESUMO

The increased production and environmental release of graphene nanoparticles has raised concerns about its environmental impact, but the effects of graphene on living organisms at the metabolic level remain unknown. In this study, we used matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI)-based untargeted metabolomics to investigate the metabolic response of juvenile earthworms (Eisenia fetida) to graphene exposure in soil tests for the first time. Our results reveal that graphene-exposure significantly disturbs earthworm metabolome, and graphene toxicity on earthworm shows non-concentration-dependent effect. Alanine, phenylalanine, proline, glutamate, arginine, histidine, maltose, glucose, malate, succinate, myo-inositol, and spermidine were successfully screened as significantly change compounds in earthworms for the exposure of graphene. The heterogeneous distributions of these metabolites in earthworm were also clearly imaged by MALDI-MSI. Our MSI results fully showed that the metabolite expression levels in juvenile earthworms significantly changed (up-/down-regulation) after exposure to graphene nanoparticles. This work improves our understanding of graphene nanoparticle toxicity to juvenile earthworms and also enables the continued progression of MALDI-MSI-based metabolomics as an emerging, reliable, and rapid ecotoxicological tool for assessing contaminant toxicity.


Assuntos
Grafite/toxicidade , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Alanina/metabolismo , Animais , Grafite/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Oligoquetos/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Artigo em Inglês | MEDLINE | ID: mdl-32855645

RESUMO

Yunnan is a multiethnic province in southwest China, rich in Materia medica resources, and is popularly known as the kingdom of plants. Biomedicine and public health industry have been the industrial pillars of Yunnan since 2016, which is the important pharmaceutical industrial base for Dai and Yi medicine in China. This review of the Yunnan ethnic medicine industry describes some of the problems to be solved in the development of sustainable ethnomedicine in China. We investigated Chinese patent medicines (CPMs) declared as ethnomedicine on the drug instructions and identified 28 Dai patent medicines (DPMs) and 73 Yi patent medicines (YPMs) that were approved for clinical use in China. In further research, the clinical indications of these CPMs were determined, and the quality standard of medicinal materials and their usage frequencies in DPMs and YPMs were investigated. We also collected and analyzed the data on use of botanical and animal sources of medicines, the rare and endangered medicinal materials, and toxic medicines in DPMs and YPMs. The application of zootherapy in Yi traditional medicine was introduced from its abundant ancient documents and records; based on the "YaGei" theory in Dai traditional medicine, toxic medicines can be relatively safe in DPMs. However, for promoting the Yunnan traditional medicine industry, it is necessary to strengthen medical research to expand evidence-based clinical practice and balance ethnomedicine production and sustainable utilization of Materia medica resources, especially the animal sources of medicines, toxic medicines, and the protected wild resources reported in this survey. Only in this way can industrialization of ethnomedicine promote the improvement of human health.

19.
Microb Pathog ; 147: 104402, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712114

RESUMO

Bovine tuberculosis caused by Mycobacterium bovis remains a major cause of economic loss in cattle industries worldwide. However, the pathogenic mechanisms remain poorly understood. Post-translation modifications (PTM) such as phosphorylation play a crucial role in pathogenesis. While the change of transcriptome and proteome during the interaction between M. bovis and cattle were studied, there are no reports on the phosphoproteome change. We apply Tandem Mass Tag-based (TMT) quantitative proteomics coupled with immobilized metal-chelated affinity chromatography (IMAC) enrichment to obtain the quantified phosphorylation in vivo of M. bovis infected cattle lung tissue. The phosphorylated proteins are widespread in the nucleus, cytoplasm and plasma membrane. By using a change fold of 1.2, 165 phosphosites from 147 proteins were enriched, with 88 upregulated and 77 downregulated sites respectively. We further constructed the protein-protein interaction (PPI) networks of STAT3, SRRM2 and IRS-1 based on their number of differential phosphorylation sites and KEGG pathways. Similar patterns of gene expression dynamics of selected genes were observed in Mycobacterium tuberculosis infected human sample GEO dataset, implicating crucial roles of these genes in pathogenic Mycobacteria - host interaction. The first phosphorproteome reveals the relationship between bovine tuberculosis and glucose metabolism, and will help further refinement of target proteins for mechanistic study.

20.
Zhongguo Zhong Yao Za Zhi ; 45(13): 3028-3034, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32726008

RESUMO

With the global outbreak of coronavirus disease 2019(COVID-19), screening of effective drugs has became the emphasis of research today; furthermore, screening of Chinese classic prescriptions has became one of the directions for drug development. This study analyzed the application of classic prescriptions in the diagnosis and treatment schemes based on the Diagnosis and Treatment Schemes for Coronavirus Disease at the country, provincial and municipal levels, and further explored its disrobing effect on COVID-19 disease severe phase network, and selected representative prescriptions for core target screening and gene enrichment analysis, so as to reveal its mechanism of action. Among them, 13 prescriptions were found to be used for 10 times or more, including Maxing Shigan Tang, Yinqiao San, Shengjiang San, Dayuan Drink, Xuanbai Chengqi Decoction. In addition, the COVID-19 efficacy prediction analysis platform(TCMATCOV platform) was used to calculate the network disturbances of the Chinese classic prescriptions involved. Based on the prediction results, 68 classic prescriptions were assessed on the COVID-19 disease network robustness disturbance. The average disturbance scores for the interaction confidence scores were ranked to be 0.4, 0.5, and 0.6 from the highest to the lowest. There were 7 prescriptions with a score of 17 or more, and 50 prescriptions with a score of 13 or more. Among them, the top three prescriptions were Ganlu Xiaodu Dan(18.19), Lengxiao Wan(17.74), and Maxing Shigan Tang(17.62). After further mining the action targets of these three prescriptions, it was found that COVID-19 disease-specific factors Ccl2, IL10, IL6 and TNF were all the targets of three prescriptions. Through the enrichment analysis of the biological processes of the core targets, it was found that the three prescriptions may prevent the development of the disease by affecting cell-to-cell adhesion, cytokine-mediated signaling pathway, and chronic inflammatory responses to COVID-19 at the severe phase. This study showed that the TCMATCOV platform could evaluate the disturbance effect of different prescriptions on the COVID-19 disease network, and predict potential effectiveness based on the robustness of drug-interfered pneumonia disease networks, so as to provide a reference for further experiments or clinical verification.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Medicamentos de Ervas Chinesas , Pandemias , Pneumonia Viral , Infecções por Coronavirus/tratamento farmacológico , Humanos , Medicina Tradicional Chinesa , Pneumonia Viral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA