Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Exp Eye Res ; : 108585, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33887222

RESUMO

Diabetic retinopathy (DR), characterized by intraretinal vessel formation, is a major complication in diabetes. Neovascularization is an important characteristic of DR, but its formation mechanism remains unclear. In this research, Malat1, miR-205-5p, and VEGF-A levels in high glucose (HG) treat-human retinal microvascular endothelial cells (hRMECs) was detected with qRT-PCR. CCK-8 assay, transwell assay, and tube formation assay was applied to access hRMEC viability, migration, and angiogenesis. Expression level of endothelial-mesenchymal transition (EndMT) markers (VE-cadherin, FSP1, and α-SMA) was detected by western blotting assay. Interaction among Malat1, miR-205-5p, and VEGF-A was confirmed by dual-luciferase reporter assay. Furthermore, in vivo DR mouse model was induced, and the effect of Malat1 on DR and EndMT markers was confirmed through hematoxylin-eosin (HE) staining and western blotting. As a result, Malat1 and VEGF-A was upregulated while miR-205-5p was suppressed under HG conditions. Malat1 could sponge miR-205-5p to regulate VEGF-A expression. Malat1 knockdown inhibited hRMEC proliferation, migration, and tube formation by targeting miR-205-5p under HG conditions. Furthermore, inhibition of Malat1 prevented the HG-induced EndMT process. In summary, Malat1 knockdown diminished hRMEC dysfunctions by regulating miR-205-5p/VEGF-A, providing a useful insight for exploring new therapeutic target for DR.

2.
PLoS Genet ; 17(4): e1009482, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33798195

RESUMO

Transcriptome-wide association studies (TWAS) have been widely used to integrate transcriptomic and genetic data to study complex human diseases. Within a test dataset lacking transcriptomic data, traditional two-stage TWAS methods first impute gene expression by creating a weighted sum that aggregates SNPs with their corresponding cis-eQTL effects on reference transcriptome. Traditional TWAS methods then employ a linear regression model to assess the association between imputed gene expression and test phenotype, thereby assuming the effect of a cis-eQTL SNP on test phenotype is a linear function of the eQTL's estimated effect on reference transcriptome. To increase TWAS robustness to this assumption, we propose a novel Variance-Component TWAS procedure (VC-TWAS) that assumes the effects of cis-eQTL SNPs on phenotype are random (with variance proportional to corresponding reference cis-eQTL effects) rather than fixed. VC-TWAS is applicable to both continuous and dichotomous phenotypes, as well as individual-level and summary-level GWAS data. Using simulated data, we show VC-TWAS is more powerful than traditional TWAS methods based on a two-stage Burden test, especially when eQTL genetic effects on test phenotype are no longer a linear function of their eQTL genetic effects on reference transcriptome. We further applied VC-TWAS to both individual-level (N = ~3.4K) and summary-level (N = ~54K) GWAS data to study Alzheimer's dementia (AD). With the individual-level data, we detected 13 significant risk genes including 6 known GWAS risk genes such as TOMM40 that were missed by traditional TWAS methods. With the summary-level data, we detected 57 significant risk genes considering only cis-SNPs and 71 significant genes considering both cis- and trans- SNPs, which also validated our findings with the individual-level GWAS data. Our VC-TWAS method is implemented in the TIGAR tool for public use.

3.
J Reprod Immunol ; 145: 103315, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33845396

RESUMO

Antiphospholipid syndrome (APS) increases the risk of obstetric complications, but risk factors for pregnancy morbidity in women with APS remain incompletely characterized. This retrospective study included pregnant women with APS and a control group without APS admitted to Peking University People's Hospital between January 2013 and September 2019. Clinical data were extracted from medical records. Univariate and multivariate logistic regression analyses were used to identify factors associated with adverse pregnancy outcomes (fetal loss, premature birth, fetal growth restriction [FGR], preeclampsia and neonatal death). We included 64 pregnancies in 59 patients with APS (age, 32.3 ± 4.3 years) and 256 pregnancies in 256 women without APS (age, 30.4 ± 3.3 years). Compared with the control group, the APS group had higher incidence rates of preeclampsia (10.9 % vs. 2.3 %, P = 0.002), premature rupture of membranes (17.2 % vs. 3.9 %, P < 0.001), postpartum hemorrhage (23.4 % vs. 4.3 %, P < 0.001), fetal loss (4.7 % vs. 0.8 %, P = 0.024) and premature delivery at ≤34 weeks (7.8 % vs. 2.3 %, P = 0.047). The incidence rates of hypertension during pregnancy, HELLP syndrome, gestational diabetes, oligohydramnios and FGR were similar in both groups. Multivariate logistic regression revealed that three or more prior spontaneous miscarriages (odds ratio [OR], 6.162; 95 % confidence interval [CI], 1.271-29.882; P = 0.024) and double-positivity for antiphospholipid antibodies (OR, 4.024; 95 %CI, 1.025-15.794; P = 0.046) were independently associated with adverse pregnancy outcomes. APS increases the risks of adverse maternal and fetal outcomes during pregnancy. Three or more spontaneous miscarriages and double-positivity for antiphospholipid antibodies are risk factors for adverse pregnancy outcomes in women with APS.

4.
Zhongguo Zhen Jiu ; 41(3): 283-7, 2021 Mar 12.
Artigo em Chinês | MEDLINE | ID: mdl-33798311

RESUMO

OBJECTIVE: To compare the clinical efficacy of cupping treatment combined with antibiotics and antibiotics alone for bacterial pneumonia in children. METHODS: A total of 72 children with bacterial pneumonia were randomly divided into an observation group (36 cases, 1 case dropped off) and a control group (36 cases). The children in the control group were treated with intravenous drip of cefodizine sodium [80 mg/(kg•d)] for 7 days. Based on the treatment of the control group, the children in the observation group were treated with cupping treatment on the bladder meridian of the back on the first day and the fourth day of antibiotic treatment; each cupping treatment was given for 5-10 min; the treatment of observation group was given for 7 days. The days for complete fever reduction, TCM syndrome scores and Canadian acute respiratory illness flu scale (CARIFS) scores before and after treatment were observed, and the clinical efficacy was evaluated. RESULTS: The days for complete fever reduction in the observation group were shorter than that in the control group (P<0.05). After treatment, the TCM syndrome scores and CARIFS scores in the two groups were reduced (P<0.05), and the cough score, expectoration score, lung auscultation score of TCM syndrome and cough score, runny nose score and sore throat score of CARIFS in the observation group were lower than those in the control group (P<0.05). The cured rate in the observation group was 97.1% (34/35), which had no significant difference with 91.7% (33/36) in the control group (P>0.05). CONCLUSION: Cupping treatment combined with antibiotics has similar efficacy with antibiotics alone for bacterial pneumonia in children, but shows better effect in shortening the duration of fever and improving pulmonary symptoms.


Assuntos
Ventosaterapia , Pneumonia Bacteriana , Antibacterianos , Canadá , Criança , Tosse , Humanos , Resultado do Tratamento
5.
Nat Chem ; 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903737

RESUMO

In atomic solids, substitutional doping of atoms into the lattice of a material to form solid solutions is one of the most powerful approaches to modulating its properties and has led to the discovery of various metal alloys and semiconductors. Herein we have prepared solid solutions in hierarchical solids that are built from atomically precise clusters. Two geometrically similar metal chalcogenide clusters, Co6Se8(PEt3)6 and Cr6Te8(PEt3)6, were combined as random substitutional mixture, in three different ratios, in a crystal lattice together with fullerenes. This does not alter the underlying crystalline structure of the [cluster][C60]2 material, but it influences its electronic and magnetic properties. All three solid solutions showed increased electrical conductivities compared with either the Co- or Cr-based parent material, substantially so for two of the Co:Cr ratios (up to 100-fold), and lowered activation barriers for electron transport. We attribute this to the existence of additional energy states arising from the materials' structural heterogeneity, which effectively narrow transport gaps.

6.
J Ethnopharmacol ; 275: 114098, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831468

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: With the spread of Coronavirus Disease (2019) (COVID-19), combination with traditional Chinese medicine (TCM) has been widely used as a prevention and therapy strategy in China. Xin guan No.1 (XG-1) prescription is a preventive formula recommended by the Hunan Provincial Administration of TCM to prevent the pandemic of COVID-19. AIM OF THE STUDY: To explore the potential preventive mechanisms of XG-1 against COVID-19 in the combination of network pharmacology approach, single-cell RNA expression profiling analysis, molecular docking and retrospective study. MATERIALS AND METHODS: Encyclopedia of Traditional Chinese Medicine (ETCM) database was used to determine the meridian tropism, active components and target genes of XG-1. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were conducted by R Cluster Profiler package (3.14.3). Single cell RNA sequencing (scRNA-seq) data of human lung (GSE122960) was downloaded from Gene Expression Omnibus (GEO) database and analyzed by R Seurat package (3.1.2). Cytoscape (3.7.2) was used to construct the interaction network. The main ingredients in XG-1 were identified by HPLC- Q-TOF- MS and used for molecular docking with COVID-19 3CL hydrolytic enzyme and angiotensin converting enzyme II (ACE2). A retrospective study of 47 close contact participants from Dongtang Community of Hunan Province was conducted to evaluated the preventive effect of XG-1. RESULTS: According to the network pharmacology analysis, XG-1 formula was closely related to lung-, spleen- and stomach-meridians and include a total of 206 active components and 853 target genes. GO and KEGG pathway enrichment revealed that XG-1 mainly regulated cellular amino acid metabolism process and neuroactive ligand-receptors interaction. The scRNA-seq profiling showed that angiotensin converting enzyme 2 (ACE2) was principally expressed in alveolar type 2 epithelial cells (AT2). 153 genes were up-regulated in AT2 cells expressing ACE2 and 12 genes were obtained by intersecting with XG-1 target genes, of which 3 were related to immunity. Five main chemical ingredients were detected in XG-1 sample by HPLC-Q-TOF-MS. The molecular docking showed that Rutin, Liquiritin and Astragaloside Ⅳ had a good affinity with COVID-19 3CL hydrolytic enzyme and ACE2. Compared with participants who didn't take XG-1, preventive treatment with XG-1gradules resulted in a significant lower rate of testing positive for SARS-CoV-2 nucleic acid (P < 0.0001). CONCLUSION: The present study showed that XG-1 exerts a preventive effect in close contacts against COVID-19. The underlying mechanism may be related to modulate immunity response through multiple components, pathways, and several target genes co-expressed with ACE2. These findings provide preliminary evidences and methodological reference for the potential preventive mechanism of XG-1 against COVID-19.

7.
Genomics ; 113(4): 1761-1777, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33862182

RESUMO

WRKY is one of the largest transcription factor families across higher plant species and is involved in important biological processes and plant responses to various biotic/abiotic stresses. However, only a few investigations on WRKYs have been conducted in aquatic plants. This study first systematically analyzed the gene structure, protein properties, and phylogenetic relationship of 693 WRKYs in nine aquatic and two wetland plants at the genome-wide level. The pattern of WRKY groups in two aquatic ferns provided new evidence for the origin and evolution of WRKY genes. ARE cis-regulatory elements show an unusual high frequency in the promoter region of WRKY genes, indicating the adaptation to the aquatic habitat in aquatic plants. The WRKY gene family experienced a series of gene loss events in aquatic plants, especially group III. Further studies were conducted on the interaction network of SpWRKYs, their target genes, and non-coding RNAs. The expression profile of SpWRKYs under phosphate starvation, cold, and submergence conditions revealed that most SpWRKYs are involved in the response to abiotic stresses. Our investigations lay the foundation for further study on the mechanism of WRKYs responding to abiotic stresses in aquatic plants.

8.
Cell Rep ; 35(4): 109042, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910000

RESUMO

5-hydroxymethylcytosine (5hmC) undergoes dynamic changes during mammalian brain development, and its dysregulation is associated with Alzheimer's disease (AD). The dynamics of 5hmC during early human brain development and how they contribute to AD pathologies remain largely unexplored. We generate 5hmC and transcriptome profiles encompassing several developmental time points of healthy forebrain organoids and organoids derived from several familial AD patients. Stage-specific differentially hydroxymethylated regions demonstrate an acquisition or depletion of 5hmC modifications across developmental stages. Additionally, genes concomitantly increasing or decreasing in 5hmC and gene expression are enriched in neurobiological or early developmental processes, respectively. Importantly, our AD organoids corroborate cellular and molecular phenotypes previously observed in human AD brains. 5hmC is significantly altered in developmentally programmed 5hmC intragenic regions in defined fetal histone marks and enhancers in AD organoids. These data suggest a highly coordinated molecular system that may be dysregulated in these early developing AD organoids.

9.
Nat Commun ; 12(1): 1946, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782401

RESUMO

Numerous substrates have been identified for Type I and II arginine methyltransferases (PRMTs). However, the full substrate spectrum of the only type III PRMT, PRMT7, and its connection to type I and II PRMT substrates remains unknown. Here, we use mass spectrometry to reveal features of PRMT7-regulated methylation. We find that PRMT7 predominantly methylates a glycine and arginine motif; multiple PRMT7-regulated arginine methylation sites are close to phosphorylations sites; methylation sites and proximal sequences are vulnerable to cancer mutations; and methylation is enriched in proteins associated with spliceosome and RNA-related pathways. We show that PRMT4/5/7-mediated arginine methylation regulates hnRNPA1 binding to RNA and several alternative splicing events. In breast, colorectal and prostate cancer cells, PRMT4/5/7 are upregulated and associated with high levels of hnRNPA1 arginine methylation and aberrant alternative splicing. Pharmacological inhibition of PRMT4/5/7 suppresses cancer cell growth and their co-inhibition shows synergistic effects, suggesting them as targets for cancer therapy.


Assuntos
Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Neoplasias da Próstata/genética , Proteína-Arginina N-Metiltransferases/genética , Processamento Alternativo , Sequência de Aminoácidos , Arginina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Inibidores Enzimáticos/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Ribonucleoproteína Nuclear Heterogênea A1/antagonistas & inibidores , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Masculino , Metilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Spliceossomos/efeitos dos fármacos , Spliceossomos/genética , Spliceossomos/metabolismo , Especificidade por Substrato
10.
Biomed Res Int ; 2021: 5543520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33778065

RESUMO

To improve the performance of the ultrasonic device during the endovascular operation, a scissor-type ultrasonic catheter device with compound vibration was developed. The heat generated by friction between the target and the device affects its coagulation mechanism while the actuator contacts the tissue. The scissor-type ultrasonic catheter device proposed in this study is expected to improve heat generation performance because it has the action of rubbing the object when it is pushed by combined vibration. In addition, since it is constructed by simple notch processing, it can be miniaturized and can be expected to be introduced into catheters. However, the observation of ultrasonic vibration during frictional heating is difficult, which is an issue for device design. In this paper, a thermal-structure coupling analysis was done using the finite element method to calculate the heat generation efficiency and evaluate its coagulation performance.

11.
Ecotoxicol Environ Saf ; 213: 112034, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581486

RESUMO

BACKGROUND: Nickel, as one of the most abundant elements in the earth's crust, plays many roles in human reproduction and life. It is an essential trace element for the human body, but can be harmful in excess amounts. Nickel has a significant impact on endocrine hormones in humans and animals, potentially causing abnormal secretions and changing the structure and function of endocrine organs. This article systematically reviews the effects of nickel on hormone secretion and target organs in the endocrine system and identifies areas of insufficient research. METHODS: All data in this article were extracted from peer-reviewed articles. The PubMed, SciFinder, Google Scholar, Web of Science, and China National Knowledge Infrastructure databases were searched for relevant articles. Data on nickel's effect on endocrine system hormones and target organs were retrieved, and manually sorted prior to inclusion in this review. RESULTS: Nickel acts on the endocrine system and affects the release and regulation of endocrine hormones. Disorders of endocrine hormones may lead to retardation of human growth and mental development, disturbance of water and salt regulation, and even a decline in reproductive ability. Nickel affects the hypothalamus and pituitary gland by regulating organs upstream of the endocrine axis; it can cause abnormal secretion of pituitary hormones, which affects target organs of the endocrine axis, resulting in dysfunction therein and abnormal secretion of related hormones. Nickel also damages target organs, mainly by inducing apoptosis, which triggers oxidative stress, cell autophagy, free radical release, and DNA damage. However, there are few studies on the endocrine axis, and some of the data are contradictory. Nevertheless, it is clear that nickel affects the endocrine system. CONCLUSIONS: Nickel can damage organs in the endocrine system, such as the hypothalamus and pituitary. It also affects the secretion of hormones and damages the target organs of these hormones; this can result in endocrine system dysfunction. However, the results have been equivocal and further research is needed.


Assuntos
Sistema Endócrino/metabolismo , Hormônios/metabolismo , Níquel/toxicidade , Animais , China , Humanos , Hipotálamo , Hipófise , Reprodução
12.
J Healthc Eng ; 2021: 6635947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613927

RESUMO

In this paper, we investigate the classification of microscopic tumours using full digital mammography images. Firstly, to address the shortcomings of traditional image segmentation methods, two different deep learning methods are designed to achieve the segmentation of uterine fibroids. The deep lab model is used to optimize the lesion edge detailed information by using the void convolution algorithm and fully connected CRF, and the two semantic segmentation networks are compared to obtain the best results. The Mask RCNN case segmentation model is used to effectively extract features through the ResNet structure, combined with the RPN network to achieve effective use and fusion of features, and continuously optimize the network training to achieve a fine segmentation of the lesion area, and demonstrate the accuracy and feasibility of the two models in medical image segmentation. Histopathology was used to obtain ER, PR, HER scores, and Ki-67 percentage values for all patients. The Kaplan-Meier method was used for survival estimation, the Log-rank test was used for single-factor analysis, and Cox proportional risk regression was used for multifactor analysis. The prognostic value of each factor was calculated, as well as the factors affecting progression-free survival. This study was done to compare the imaging characteristics and diagnostic value of mammography and colour Doppler ultrasonography in nonspecific mastitis, improve the understanding of the imaging characteristics of nonspecific mastitis in these two examinations, improve the accuracy of the diagnosis of this type of disease, improve the ability of distinguishing it from breast cancer, and reduce the rate of misdiagnosis.

13.
Nano Lett ; 21(5): 2001-2009, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33591201

RESUMO

Small extracellular vesicles (sEVs) are increasingly recognized as noninvasive diagnostic markers for many diseases. Hence, it is highly desirable to isolate sEVs rapidly for downstream molecular analyses. However, conventional methods for sEV isolation (such as ultracentrifugation and immune-based isolation) are time-consuming and expensive and require large sample volumes. Herein, we developed artificial magnetic colloid antibodies (MCAs) via surface imprinting technology for rapid isolation and analysis of sEVs. This approach enabled the rapid, purification-free, and low-cost isolation of sEVs based on size and shape recognition. The MCAs presented a higher capture yield in 20 min with more than 3-fold enrichment of sEVs compared with the ultracentrifugation method in 4 h. Moreover, the MCAs also proposed a reusability benefiting from the high stability of the organosilica recognition layer. By combining with volumetric bar-chart chip technology, this work provides a sensitive, rapid, and easy-to-use sEV detection platform for point-of-care (POC) diagnostics.

14.
Clin Cancer Res ; 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627493

RESUMO

PURPOSE: Autologous chimeric antigen receptor T (CAR-T) cell therapy is an effective treatment for relapsed/refractory acute lymphoblastic leukemia (r/r ALL). However, certain characteristics of autologous CAR-T cells can delay treatment availability. Relapse caused by antigen escape after single-targeted CAR-T therapy is another issue. Therefore, we aim to develop CRISPR-edited universal off-the-shelf CD19/CD22 dual-targeted CAR-T cells as a novel therapy for r/r ALL. PATIENTS AND METHODS: In this open-label dose-escalation phase I study, universal CD19/CD22-targeting CAR-T cells (CTA101) with a CRISPR/Cas9-disrupted TRAC region and CD52 gene to avoid host immune-mediated rejection were infused in patients with r/r ALL. Safety, efficacy, and CTA101 cellular kinetics were evaluated. RESULTS: CRISPR/Cas9 technology mediated highly efficient, high-fidelity gene editing and production of universal CAR-T cells. No gene editing-associated genotoxicity or chromosomal translocation was observed. Six patients received CTA101 infusions at doses of 1 (3 patients) and 3 (3 patients) × 106 CAR+ T cells/kg body weight. Cytokine release syndrome occurred in all patients. No dose-limiting toxicity, GvHD, neurotoxicity, or genome editing-associated adverse events have occurred to date. The complete remission (CR) rate was 83.3% on day 28 after CTA101 infusion. With a median follow-up of 4.3 months, 3 of the 5 patients who achieved CR or CR with incomplete hematologic recovery (CR/CRi) remained minimal residual disease (MRD) negative. CONCLUSIONS: CRISPR/Cas9-engineered universal CD19/CD22 CAR-T cells exhibited a manageable safety profile and prominent antileukemia activity. Universal dual-targeted CAR-T cell therapy may offer an alternative therapy for patients with r/r ALL.

15.
J Mol Med (Berl) ; 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33611659

RESUMO

Tamoxifen resistance remains the major obstacle to the estrogen receptor positive breast cancer endocrine therapy. Placenta-specific 8 (PLAC8) has been implicated in epithelial-mesenchymal transition and tumorigenesis. However, the molecular mechanisms underlying PLAC8 function in the context of tamoxifen resistance are unclear. Curcumin has attracted considerable attention in the last decades. It is isolated from Curcuma longa and has beneficial effects in cancer therapy. We studied this property by using MCF-7 and tamoxifen-resistant breast cancer cells (MCF-7/TAM) cell lines. PLAC8 can regulate MCF-7/TAM cell drug sensitivity through the MAPK/ERK pathway and shows the potential effects of curcumin or as a possible druggable target against tamoxifen failure.

16.
Transl Psychiatry ; 11(1): 98, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542196

RESUMO

Cross-species translational approaches to human genomic analyses are lacking. The present study uses an integrative framework to investigate how genes associated with nicotine use in model organisms contribute to the genetic architecture of human tobacco consumption. First, we created a model organism geneset by collecting results from five animal models of nicotine exposure (RNA expression changes in brain) and then tested the relevance of these genes and flanking genetic variation using genetic data from human cigarettes per day (UK BioBank N = 123,844; all European Ancestry). We tested three hypotheses: (1) DNA variation in, or around, the 'model organism geneset' will contribute to the heritability to human tobacco consumption, (2) that the model organism genes will be enriched for genes associated with human tobacco consumption, and (3) that a polygenic score based off our model organism geneset will predict tobacco consumption in the AddHealth sample (N = 1667; all European Ancestry). Our results suggested that: (1) model organism genes accounted for ~5-36% of the observed SNP-heritability in human tobacco consumption (enrichment: 1.60-31.45), (2) model organism genes, but not negative control genes, were enriched for the gene-based associations (MAGMA, H-MAGMA, SMultiXcan) for human cigarettes per day, and (3) polygenic scores based on our model organism geneset predicted cigarettes per day in an independent sample. Altogether, these findings highlight the advantages of using multiple species evidence to isolate genetic factors to better understand the etiological complexity of tobacco and other nicotine consumption.

17.
Biochem Genet ; 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544299

RESUMO

Several fish species are known to possess mechanisms that allow them to adapt to environments with different salinities. The aim of this study was to investigate the effects of salinity on the expression of aquaporins (aqp1a, aqp3a, aqp8a, and aqp9a) in the gills and intestines of Chinese black sleeper. After 30 days of acclimation, the expression of aqp1a, aqp3a, and aqp9a in the gills was significantly higher in fish transferred to 5 ppt than in those transferred to 40 ppt seawater, whereas aqp8 expression was lower. In contrast, aqp1a, aqp3a, and aqp8a expression in the intestines was higher in fish acclimated in 40 ppt than in those acclimated in 5 ppt. During abrupt salinity acclimation, the levels of aqp1a and aqp9a in the gills varied over time in fish acclimated in 5 ppt, but not in 40 ppt. The aqp3a levels in gills were higher in the 5 ppt group after 24 h than in the 40 ppt. The expression level of aqp8a in gills was higher in 40 ppt than in 5 ppt, except for that at 12 h. In the intestines, expression level of aqp1a and aqp8a were significantly upregulated from 12 to 48 h following acclimation in 40 ppt and aqp3a was higher in 40 ppt group than in 5 ppt, while aqp9a expression exhibited an opposite trend. These findings suggest that aqp1a, aqp3a, aqp8a and aqp9a may play a major osmoregulatory role in water transport in the gills and intestines during acclimation to different salinity environment.

18.
Nano Res ; : 1-23, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33500771

RESUMO

Globally, millions of people die of microbial infection-related diseases every year. The more terrible situation is that due to the overuse of antibiotics, especially in developing countries, people are struggling to fight with the bacteria variation. The emergence of super-bacteria will be an intractable environmental and health hazard in the future unless novel bactericidal weapons are mounted. Consequently, it is critical to develop viable antibacterial approaches to sustain the prosperous development of human society. Recent researches indicate that transition metal sulfides (TMSs) represent prominent bactericidal application potential owing to the meritorious antibacterial performance, acceptable biocompatibility, high solar energy utilization efficiency, and excellent photo-to-thermal conversion characteristics, and thus, a comprehensive review on the recent advances in this area would be beneficial for the future development. In this review article, we start with the antibacterial mechanisms of TMSs to provide a preliminary understanding. Thereafter, the state-of-the-art research progresses on the strategies for TMSs materials engineering so as to promote their antibacterial properties are systematically surveyed and summarized, followed by a summary of the practical application scenarios of TMSs-based antibacterial platforms. Finally, based on the thorough survey and analysis, we emphasize the challenges and future development trends in this area.

19.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466729

RESUMO

Plants adapt to environmental changes by regulating their development and growth. As an important interface between plants and their environment, leaf morphogenesis varies between species, populations, or even shows plasticity within individuals. Leaf growth is dependent on many environmental factors, such as light, temperature, and submergence. Phytohormones play key functions in leaf development and can act as molecular regulatory elements in response to environmental signals. In this review, we discuss the current knowledge on the effects of different environmental factors and phytohormone pathways on morphological plasticity and intend to summarize the advances in leaf development. In addition, we detail the molecular mechanisms of heterophylly, the representative of leaf plasticity, providing novel insights into phytohormones and the environmental adaptation in plants.

20.
Environ Sci Technol ; 55(3): 1594-1603, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33412847

RESUMO

Biomass chars are a major component of the soil environmental black carbon pool and prepared forms are a potentially useful tool in remediation. A function critical to the roles of both environmental and prepared chars is sorption of organic compounds. Char properties known to control sorption include surface area, porosity, functional group composition, and percent aromatic carbon. Here, we show that sorption affinity (but not maximum capacity) of organic compounds is directly related to the degree of condensation of the aromatic fraction. The Dubinin-Ashtakov characteristic sorption energy (EDA, kJ mol-1) of 22 compounds on a thermoseries of bamboo chars correlates strongly with the DP/MAS-13C NMR-determined bridgehead aromatic carbon fraction (χb), which relates to the mean ring cluster size. Density functional theory-computed binding energy (Ebd) for five of the compounds on a representative series of polybenzenoid hydrocarbon open-face sheets also correlates positively with χb, leveling off for rings larger than ∼C55. The Ebd, in turn, correlates strongly with EDA. An increase in Ebd with cluster size is also found for sorption, both monolayer and bilayer, between parallel sheets representing slit micropores. The increasing sorption energy with cluster size is shown to be due to increasing cluster polarizability, which strengthens dispersion forces with the sorbate. The findings underscore a previously overlooked explicit role of aromatic condensation in sorption energy, and illustrate the utility of EDA-Ebd comparison for predicting sorption.


Assuntos
Modelos Teóricos , Compostos Orgânicos , Adsorção , Biomassa , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...