Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.039
Filtrar
1.
Behav Brain Res ; 417: 113618, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34610370

RESUMO

Acute stress triggers a complex cascade of psychological, physiological, and neural responses, which show large and enduring individual differences. Although previous studies have examined the relationship between the stress response and dynamic features of the brain's resting state, no study has used the brain's dynamic activity in the resting state to predict individual differences in the psychosocial stress response. In the current study, resting-state scans of forty-eight healthy participants were collected, and then their individual acute stress responses during the Montreal Imaging Stress Test (MIST) paradigm were recorded. Results defined a connectivity state (CS) characterized by positive correlations across the whole brain during resting-state that could negatively predict participants' feelings of social evaluative threat during stress tasks. Another CS characterized by negative correlations between the frontal-parietal network (FPN) and almost all other networks, except the dorsal attentional network (DAN), could predict participants' subjective stress, feelings of uncontrollability, and feelings of social evaluative threat. However, no CS could predict participants' salivary cortisol stress response. Overall, these results suggested that the brain state characterized as attentional regulation, linking self-control, and top-down regulation ability, could predict the psychosocial stress response. This study also developed an objective indicator for predicting human stress responses.

3.
J Ethnopharmacol ; 283: 114707, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34619319

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Guizhi-Shaoyao-Zhimu decoction (GSZD), a classical traditional Chinese medicine (TCM) prescription, is used empirically to treat various types of arthritis in TCM clinical practice. However, the underlying mechanisms of GSZD on gouty inflammation are not totally elucidated. AIM OF STUDY: The purpose of this study is to investigate the effects of GSZD on peritoneal recruitment of neutrophils, production of proinflammatory mediators, activations of nuclear factor (NF)-κB and nucleotide oligomerization domain-like receptor protein-3 (NLRP3) inflammasome in mice with monosodium urate crystal (MSU)-induced peritonitis (MIP). MATERIALS AND METHODS: Mice were intragastrically administered with GSZD for 7 days. After the last administration, mice were intraperitoneally injected with MSU. Peritoneal exudates of mice were harvested, and total peritoneal cells were calculated. Levels of interleukin (IL)-1ß, IL-6 and monocyte chemotactic protein (MCP)-1 in peritoneal exudates were tested by enzyme-linked immunosorbent assay. Expressions of IL-1ß, NLRP3, cysteinyl aspartate specific proteinase (caspase)-1, apoptosis-associated speck-like protein containing the caspase activation and recruitment domain (ASC), phosphorylated (p)-p65, inhibitor of NF-κB (IκB)α, p-IκB kinase (IKK)ß, nuclear p65, p-mitogen-activated protein kinases (MAPKs) in peritoneal cells were analyzed by Western blot. Binding activity of NF-κB to DNA was measured by a Trans AM™ kit for p65. Interaction between ASC and pro-caspase-1 was assessed by co-immunoprecipitation assay. RESULTS: Total peritoneal cells, levels of IL-1ß, IL-6 and MCP-1 were significantly reduced by GSZD treatment in peritoneal exudates of MIP mice. As for the activation of NF-κB, GSZD treatment significantly reduced the levels of p-p65, p-IKKß, nuclear p65 and p-MAPKs, enhanced the level of IκBα and abated the binding ability of NF-κB to DNA in peritoneal cells of MIP mice. As for the activation of NLRP3 inflammasome, GSZD treatment significantly reduced the levels of IL-1ß, NLRP3 and caspase-1, and alleviated the interaction between ASC and pro-caspase-1 in peritoneal cells of MIP mice. Nevertheless, GSZD didn't remarkably change the level of ASC. CONCLUSIONS: These results suggest that GSZD attenuates the MSU-induced inflammation through inhibiting the activations of NF-κB and NLRP3 inflammasome.

4.
J Food Biochem ; : e14002, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850407

RESUMO

In recent years, the increasing obese and overweight population has become a worldwide public health problem, as there is no effective medication to control obesity. Auricularia heimuer is rich in active substances that have potential biologically active functions. The anti-obesity effect and mechanism of Auricularia heimuer fruiting body alcohol extraction (AHA, 150-600 mg/kg·bw) was investigated in obese mice by assessing changes in endogenous liver metabolites using a liquid chromatography-tandem mass spectrometry approach. The aim of this study was to identify an effective food to control human obesity. AHA of 600 mg/kg·bw (HC) significantly decreased body weight and improved serum biochemistry indices. Sixty-eight liver metabolites were identified and significantly separated among the normal, high-fat diet (HFD), and HC groups. Moreover, the metabolic analysis revealed that HC significantly regulated specific metabolites in mice including amino acids, lipids, and carbohydrate compounds. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that HC was significantly involved in different metabolite pathways including arachidonic acid metabolism, galactose metabolism, carbohydrate digestion and absorption, linoleic acid metabolism, and starch and sucrose metabolism. Eight weeks after supplementing with HC, major metabolites in related pathways that were disrupted by an HFD were restored to normal levels, suggesting that HC had anti-obesity activity.

5.
Cell Death Differ ; 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34743203

RESUMO

Glycoprotein prostaglandin D2 synthase (PTGDS) is a member of the lipocalin superfamily and plays dual roles in prostaglandins metabolism and lipid transport. PTGDS has been involved in various cellular processes including the tumorigenesis of solid tumors, yet its role in carcinogenesis is contradictory and the significance of PTGDS in hematological malignancies is ill-defined. Here, we aimed to explore the expression and function of PTGDS in diffuse large B-cell lymphoma (DLBCL), especially the potential role of PTGDS inhibitor, AT56, in lymphoma therapy. Remarkable high expression of PTGDS was found in DLBCL, which was significantly correlated with poor prognosis. PTGDS overexpression and rhPTGDS were found to promote cell proliferation. Besides, in vitro and in vivo studies indicated that PTGDS knockdown and AT56 treatment exerted an anti-tumor effect by regulating cell viability, proliferation, apoptosis, cell cycle, and invasion, and enhanced the drug sensitivity to adriamycin and bendamustine through promoting DNA damage. Moreover, the co-immunoprecipitation-based mass spectrum identified the interaction between PTGDS and MYH9, which was found to promote DLBCL progression. PTGDS inhibition led to reduced expression of MYH9, and then declined activation of the Wnt-ß-catenin-STAT3 pathway through influencing the ubiquitination and degradation of GSK3-ß in DLBCL. The rescue experiment demonstrated that PTGDS exerted an oncogenic role through regulating MYH9 and then the Wnt-ß-catenin-STAT3 pathway. Based on point mutation of glycosylation sites, we confirmed the N-glycosylation of PTGDS in Asn51 and Asn78 and found that abnormal glycosylation of PTGDS resulted in its nuclear translocation, prolonged half-life, and enhanced cell proliferation. Collectively, our findings identified for the first time that glycoprotein PTGDS promoted tumorigenesis of DLBCL through MYH9-mediated regulation of Wnt-ß-catenin-STAT3 signaling, and highlighted the potential role of AT56 as a novel therapeutic strategy for DLBCL treatment.

6.
ACS Nano ; 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34747172

RESUMO

The excessive lactate in the tumor microenvironment always leads to poor therapeutic outcomes of chemotherapy. In this study, a self-driven bioreactor (defined as SO@MDH, where SO is Shewanella oneidensis MR-1 and MDH is MIL-101 metal-organic framework nanoparticles/doxorubicin/hyaluronic acid) is rationally constructed via the integration of doxorubicin (DOX)-loaded metal-organic framework (MOF) MIL-101 nanoparticles with SO to sensitize chemotherapy. Owing to the intrinsic tumor tropism and electron-driven respiration of SO, the biohybrid SO@MDH could actively target and colonize hypoxic and eutrophic tumor regions and anaerobically metabolize lactate accompanied by the transfer of electrons to Fe3+, which is the key component of the MIL-101 nanoparticles. As a result, the intratumoral lactate would undergo continuous catabolism coupled with the reduction of Fe3+ to Fe2+ and the subsequent degradation of MIL-101 frameworks, leading to an expeditious drug release for effective chemotherapy. Meanwhile, the generated Fe2+ will be promptly oxidized by the abundant hydrogen peroxide in the tumor microenvironment to reproduce Fe3+, which is, in turn, beneficial to circularly catabolize lactate and boost chemotherapy. More importantly, the consumption of intratumoral lactic acid could significantly inhibit the expression of multidrug resistance-related ABCB1 protein (also named P-glycoprotein (P-gp)) for conquering drug-resistant tumors. SO@MDH demonstrated here holds high tumor specificity and promising chemotherapeutic efficacy for suppressing tumor growth and overcoming multidrug resistance, confirming its potential prospects in cancer therapy.

8.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770899

RESUMO

The extracellular secreted protein of Bifidobacterium longum (B. longum) plays an important role in maintaining the homeostasis of the human intestinal microenvironment. However, the mechanism(s) of interaction remain unclear. Lysozyme is a kind of antibacterial peptide. In this study, the amino acid sequence of a lysozyme-like protein of B. longum based on whole-genome data of an isolate from human gut feces was found. We further predicted functional domains from the amino acid sequence, purified the protein, and verified its bioactivity. The growth of some bacteria were significantly delayed by the 020402_LYZ M1 protein. In addition, the gut microbiota was analyzed via high-throughput sequencing of 16S rRNA genes and an in vitro fermentation model, and the fluctuations in the gut microbiota under the treatment of 020402_LYZ M1 protein were characterized. The 020402_LYZ M1 protein affected the composition of human gut microbiota significantly, implying that the protein is able to communicate with intestinal microbes as a regulatory factor.

9.
Brief Bioinform ; 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34791021

RESUMO

The innovation of biotechnologies has allowed the accumulation of omics data at an alarming rate, thus introducing the era of 'big data'. Extracting inherent valuable knowledge from various omics data remains a daunting problem in bioinformatics. Better solutions often need some kind of more innovative methods for efficient handlings and effective results. Recent advancements in integrated analysis and computational modeling of multi-omics data helped address such needs in an increasingly harmonious manner. The development and application of machine learning have largely advanced our insights into biology and biomedicine and greatly promoted the development of therapeutic strategies, especially for precision medicine. Here, we propose a comprehensive survey and discussion on what happened, is happening and will happen when machine learning meets omics. Specifically, we describe how artificial intelligence can be applied to omics studies and review recent advancements at the interface between machine learning and the ever-widest range of omics including genomics, transcriptomics, proteomics, metabolomics, radiomics, as well as those at the single-cell resolution. We also discuss and provide a synthesis of ideas, new insights, current challenges and perspectives of machine learning in omics.

10.
Cell Death Dis ; 12(11): 1083, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782617

RESUMO

Nucleolar and spindle-associated protein 1 (NUSAP1) is an essential regulator of mitotic progression, spindle assembly, and chromosome attachment. Although NUSAP1 acts as an oncogene involved in the progression of several cancers, the exact role of chronic lymphocytic leukemia (CLL) remains elusive. Herein, we first discovered obvious overexpression of NUSAP1 in CLL associated with poor prognosis. Next, the NUSAP1 level was modulated by transfecting CLL cells with lentivirus. Silencing NUSAP1 inhibited the cell proliferation, promoted cell apoptosis and G0/G1 phase arrest. Mechanistically, high expression of NUSAP1 strengthened DNA damage repairing with RAD51 engagement. Our results also indicated that NUSAP1 knockdown suppressed the growth CLL cells in vivo. We further confirmed that NUSAP1 reduction enhanced the sensitivity of CLL cells to fludarabine or ibrutinib. Overall, our research investigates the mechanism by which NUSAP1 enhances chemoresistance via DNA damage repair (DDR) signaling by stabilizing RAD51 in CLL cells. Hence, NUSAP1 may be expected to be a perspective target for the treatment of CLL with chemotherapy resistance.

11.
Invest Ophthalmol Vis Sci ; 62(14): 18, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787639

RESUMO

Purpose: Retinal pigment epithelium (RPE) cell proliferation is precisely regulated to maintain retinal homoeostasis. Microphthalmia-associated transcription factor (MITF), a critical transcription factor in RPE cells, has two alternatively spliced isoforms: (+)MITF and (-)MITF. Previous work has shown that (-)MITF but not (+)MITF inhibits RPE cell proliferation. This study aims to investigate the role of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in regulating MITF splicing and hence proliferation of RPE cells. Methods: Mouse RPE, primary cultured mouse RPE cells, and different proliferative human embryonic stem cell (hESC)-RPE cells were used to evaluate the expression of (+)MITF, (-)MITF, and NEAT1 by reverse-transcription PCR (RT-PCR) or quantitative RT-PCR. NEAT1 was knocked down using specific small interfering RNAs (siRNAs). Splicing factor proline- and glutamine-rich (SFPQ) was overexpressed with the use of lentivirus infection. Cell proliferation was analyzed by cell number counting and Ki67 immunostaining. RNA immunoprecipitation (RIP) was used to analyze the co-binding between the SFPQ and MITF or NEAT1. Results: NEAT1 was highly expressed in proliferative RPE cells, which had low expression of (-)MITF. Knockdown of NEAT1 in RPE cells switched the MITF splicing pattern to produce higher levels of (-)MITF and inhibited cell proliferation. Mechanistically, NEAT1 recruited SFPQ to bind directly with MITF mRNA to regulate its alternative splicing. Overexpression of SFPQ in ARPE-19 cells enhanced the binding enrichment of SFPQ to MITF and increased the splicing efficiency of (+)MITF. The binding affinity between SFPQ and MITF was decreased after NEAT1 knockdown. Conclusions: NEAT1 acts as a scaffold to recruit SFPQ to MITF mRNA and promote its binding affinity, which plays an important role in regulating the alternative splicing of MITF and RPE cell proliferation.

12.
Ecotoxicol Environ Saf ; 228: 113000, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34808506

RESUMO

Selenium (Se) is a beneficial trace element for certain animals including humans, while remaining controversial for plants. High Se concentration in soil is toxic to plants especially at seedling stage of the plants. Although, arbuscular mycorrhizal fungi (AMF) are important for plant stress resistance; but the mechanisms by which AMF alleviate Se stress in crop seedlings are unclear. Therefore, we investigated the potential strategies of AMF symbiosis to alleviate Se stress in maize (Zea mays) from plants and soil perspectives. Results showed that Se stress (Se application level > 5 mg kg-1) significantly inhibited leaf area, shoot dry weight, and root dry weight of maize (P < 0.05). In contrast, AM symbiosis significantly improved root morphology, increased nitrogen and phosphorus nutrition, promoted shoot growth, inhibited the transport of Se from soil/roots to shoots, and then diluted the concentration of Se in shoots (32.65-52.80%). In general, the response of maize growth to AMF was mainly observed in shoots rather than roots. In addition, AMF inoculation significantly increased the easily extractable glomalin-related soil protein and organic matter contents and decreased the availability of soil Se to the plant. Principal component analysis showed that AMF promoted growth and nutrition uptake of maize was the most dominant effect of Se stress alleviation, followed by the decrease of soil Se availability, limiting Se transport from soil/roots to shoots. Moreover, the expression of Se uptake-related ion transporter genes (ZmPht2, ZmNIP2;1, and ZmSultr1;3) in maize roots were down-regulated upon AM symbiosis which resultantly inhibited the uptake and transport of Se from soil to maize roots. Thus, AMF could impede Se stress in maize seedlings by improving plant and soil characteristics.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34823848

RESUMO

Decoration with alien atoms and increasing the edge content are two valid ways to activate the oxygen reduction reaction (ORR) property of nanocarbons. To further enhance their intrinsic activity and explore the underlying ORR mechanism, graphene nanoribbons (GNRs) were selected as an ideal catalyst model. Theoretical simulations have predicted that with the synergistic effect between heteroatom-doping and edge sites, the ORR activity can be significantly improved. Inspired by this, N-GNRs were synthesized via the oxidative unzipping of CNTs followed by nitrogen incorporation with urea. Ample edges and nitrogen doping sites were detected by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy, respectively. As a result, N-GNRs exhibited remarkably higher ORR properties in terms of onset and half-wave potentials, Tafel slopes, electron transfer number and methanol tolerance than either GNRs, the control sample without doping, or N-CNTs, the control sample without abundant edges, simply clarifying the significance of synergy between dopants and edges. Thus, this work provides a simple but efficient strategy to fabricate high-performance oxygen reduction catalysts.

14.
Psychol Health Med ; : 1-12, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34806499

RESUMO

High prevalence of emotional and behavioral problems among Chinese adolescence has been reported. This study seeks to investigate the mediating effect of alexithymia and dependency on anxiety and emotional-behavioral problems among adolescents. The study population included 519 adolescents. The assessments included the completion of standardized scales such as the Multidimensional Anxiety Scale (MASC), the Toronto Alexithymia Scale (TAS-20), the Depressive Experiences Questionnaire (DEQ), the Strengths and Difficulties Questionnaire (SDQ). Independent-sample t-tests, bivariate correlation, and serial mediation analyses were performed using SPSS23.0. Bivariate analyses revealed that anxiety, emotional-behavioral problem, alexithymia, and dependency were positively correlated. Alexithymia and dependency play a significant role in mediating the effect of multidimensional anxiety on emotional-behavioral problems. The effects of the two mediating paths were 69.86% and 7.81% for indirect effect through alexithymia, dependency, and specific indirect effect by alexithymia and dependency was 12.33%. Anxiety and emotional-behavioral problems mediate the relationship between alexithymia and dependency.

15.
ACS Appl Mater Interfaces ; 13(45): 54032-54042, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34739216

RESUMO

Looking for a high-efficiency, durabile, and low-cost dual-functional oxygen electrocatalyst as the air electrode catalyst in rechargeable zinc-air batteries (ZABs) is urgently desirable but faces many challenges. Herein, we propose the preparation strategy of effectively using a bifunctional electrocatalyst (Fe-Nx/C) based on the zeolite imidazole organic framework-8 (ZIF-8) as the template agent, with surface modification coated by ferrocene (Fc) molecules followed by pyrolysis at high temperature under inert atmosphere. Benefiting from the surface modification of ZIF-8 with Fc molecules, more abundant multiple catalytic Fe/Fe-Nx/FeCx sites with high intrinsic activity are derived, the resultant Fe-Nx/C exhibits excellent potential gap (ΔE = 0.63 V) and durability, which is obviously superior to the Pt/C + IrO2 benchmark (ΔE = 0.77 V) and other state-of-the-art electrocatalysts. Furthermore, the assembled rechargeable ZABs employing the Fe-Nx/C as an air-electrode show a reduced charging-discharging potential difference of 0.603 V, high power density of 214.8 mW cm-2, and long-term cycling stability of more than 290 h at 2.0 mA cm-2. Therefore, this work presents a feasible strategy to prepare a high-efficiency and durability ORR/OER bifunctional electrocatalyst toward high performance ZABs and next-generation energy storage devices.

16.
Hepatology ; 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767673

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is one of the main types of primary liver cancer with high morbidity and mortality, and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC have not been elucidated. APPROACH & RESULTS: Through clinical analysis, we found that the expression of TRIM11 was upregulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with PH domain leucine rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1, thus promoted activation of protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS: Our study confirmed that TRIM11 plays an oncogenic role in hepatocellular carcinoma through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of hepatocellular carcinoma.

17.
Chemosphere ; : 132987, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34838831

RESUMO

Employing a suitable cocatalyst is very important to improve photocatalytic H2 evolution activity. Herein, two plasmonic cocatalysts, Au nanoparticles and TiN nanoparticles were in-situ coupled over the g-C3N4 nanotube to form a ternary 0D/0D/1D Au/TiN/g-C3N4 composite via a successive thermal polycondensation and chemical reduction method. The g-C3N4 nanotube acted as a support for the growth of Au and TiN nanoparticles, leading to intimate contact between g-C3N4 nanotube with Au nanoparticles and TiN nanoparticles. As a result, multiple interfaces and dual-junctions of Au/g-C3N4 Schottky-junction and TiN/g-C3N4 ohmic-junction were constructed, which helped to promote the charged carriers' separation and enhanced the photocatalytic performance. Furthermore, loading plasmonic cocatalysts of Au nanoparticles and TiN nanoparticles can enhance the light absorption capacity. Consequently, the Au/TiN/g-C3N4 composite exhibited significantly enhanced photocatalytic H2 evolution activity (596 µmol g-1 h-1) compared to g-C3N4 or binary composites of Au/g-C3N4 and TiN/g-C3N4. This work highlights the significant role of cocatalysts in photocatalysis.

18.
Plant Physiol ; 187(2): 947-962, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608948

RESUMO

Strigolactones (SLs) are a recently identified class of phytohormones that regulate diverse developmental processes in land plants. However, the signaling mechanism of SLs in maize (Zea mays) remains largely unexplored. Here, we identified the maize gene DWARF 53 (ZmD53) and demonstrated that ZmD53 interacts with the SL receptors DWARF 14A/B (ZmD14A/B) in a rac-GR24-dependent manner. Transgenic maize plants expressing a gain-of-function mutant version of Zmd53 exhibited insensitivity to exogenous rac-GR24 treatment and a highly pleiotropic phenotype, including excess tillering and reduced tassel branching, indicating that ZmD53 functions as an authentic SL signaling repressor in maize. In addition, we showed that ZmD53 interacts with two homologous maize SPL transcription factors, UB3 and TSH4, and suppresses their transcriptional activation activity on TB1 to promote tillering. We also showed that UB2, UB3, and TSH4 can physically interact with each other and themselves, and that they can directly regulate the expression of TSH4, thus forming a positive feedback loop. Furthermore, we demonstrated that ZmD53 can repress the transcriptional activation activity of UB3 and TSH4 on their own promoters, thus decreasing tassel branch number. Our results reveal new insights into the integration of SL signaling and the miR156/SPL molecular module to coordinately regulate maize development.

19.
Res Sq ; 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34611660

RESUMO

Genomic surveillance has shaped our understanding of SARS-CoV-2 variants, which have proliferated globally in 2021.We collected country-specific data on SARS-CoV-2 genomic surveillance, sequencing capabilities, public genomic data from multiple public repositories, and aggregated publicly available variant data. Then, different proxies were used to estimate the sequencing coverage and public availability extent of genomic data, in addition to describing the global dissemination of variants. We found that the COVID-19 global epidemic clearly featured increasing circulation of Alpha since the start of 2021, which was rapidly replaced by the Delta variant starting around May 2021. SARS-CoV-2 genomic surveillance and sequencing availability varied markedly across countries, with 63 countries performing routine genomic surveillance and 79 countries with high availability of SARS-CoV-2 sequencing. We also observed a marked heterogeneity of sequenced coverage across regions and countries. Across different variants, 21-46% of countries with explicit reporting on variants shared less than half of their variant sequences in public repositories. Our findings indicated an urgent need to expand sequencing capacity of virus isolates, enhance the sharing of sequences, the standardization of metadata files, and supportive networks for countries with no sequencing capability.

20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(5): 747-753, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34622587

RESUMO

Specialty courses are an important carrier for driving forward the education reform of integrating ideological and political theories education in all courses and implementing the philosophy of fostering character through moral education. Medical Laboratory Pathways and Their Clinical Applicationis an undergraduate specialty course offered by the Department of Laboratory Medicine, West China Hospital, Sichuan University. The paper is based on the campaign of Integrating Ideological and Political Theories Education in All Courses and takes into consideration the features of the medical laboratory technology specialty. The paper proposes the organic unity of knowledge and skills teaching objectives and emotions and value-guided teaching objectives. In regard to the teaching content, horizontal integration was carried out, transforming the design of the course content from being laboratory test-centered to being disease-centered. Ideological and political theories education was organically incorporated in the content of the specialty course, assigning to the course the important task of values guidance. In addition, we made discussions on course design and instruction of Medical Laboratory Pathways and Their Clinical Application mainly in regard to the instruction, teaching methodology, and the form of classroom instruction of the course. We hope that the paper will provide useful information and reference for the ongoing education reform of the medical laboratory technology specialty under the new circumstances.


Assuntos
Laboratórios , Universidades , China , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...