Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31697823

RESUMO

To study the mechanisms of relapse in acute lymphoblastic leukemia (ALL), we performed whole-genome sequencing of 103 diagnosis-relapse-germline trios and ultra-deep sequencing of 208 serial samples in 16 patients. Relapse-specific somatic alterations were enriched in 12 genes (NR3C1, NR3C2, TP53, NT5C2, FPGS, CREBBP, MSH2, MSH6, PMS2, WHSC1, PRPS1, and PRPS2) involved in drug response. Their prevalence was 17% in very early relapse (<9 months from diagnosis), 65% in early relapse (9-36 months), and 32% in late relapse (>36 months) groups. Convergent evolution, where multiple subclones harbor mutations in the same drug resistance gene, was observed in six relapses and confirmed by single-cell sequencing in one case. Mathematical modeling and mutational signature analysis indicated that early relapse resistance acquisition was frequently two-step process where a persistent clone survived initial therapy, and later acquired bona fide resistance mutations during therapy. In contrast, very early relapses arose from pre-existing resistant clone(s). Two novel relapse-specific mutational signatures, one of which was caused by thiopurine treatment based on in vitro drug exposure experiments, were identified in early and late relapses but were absent from 2,540 pan-cancer diagnosis samples and 129 non-ALL relapses. The novel signatures were detected in 27% of relapsed ALLs and were responsible for 46% of acquired resistance mutations in NT5C2, PRPS1, NR3C1, and TP53. These results suggest that chemotherapy-induced drug resistance mutations facilitate a subset of pediatric ALL relapses.

2.
Nat Commun ; 10(1): 5348, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767839

RESUMO

There is increasing evidence for a strong inherited genetic basis of susceptibility to acute lymphoblastic leukaemia (ALL) in children. To identify new risk variants for B-cell ALL (B-ALL) we conducted a meta-analysis with four GWAS (genome-wide association studies), totalling 5321 cases and 16,666 controls of European descent. We herein describe novel risk loci for B-ALL at 9q21.31 (rs76925697, P = 2.11 × 10-8), for high-hyperdiploid ALL at 5q31.1 (rs886285, P = 1.56 × 10-8) and 6p21.31 (rs210143 in BAK1, P = 2.21 × 10-8), and ETV6-RUNX1 ALL at 17q21.32 (rs10853104 in IGF2BP1, P = 1.82 × 10-8). Particularly notable are the pleiotropic effects of the BAK1 variant on multiple haematological malignancies and specific effects of IGF2BP1 on ETV6-RUNX1 ALL evidenced by both germline and somatic genomic analyses. Integration of GWAS signals with transcriptomic/epigenomic profiling and 3D chromatin interaction data for these leukaemia risk loci suggests deregulation of B-cell development and the cell cycle as central mechanisms governing genetic susceptibility to ALL.

3.
J Clin Oncol ; : JCO1901692, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31657981

RESUMO

PURPOSE: Despite contemporary treatment, up to 10% of children with acute lymphoblastic leukemia still experience relapse. We evaluated whether a higher dosage of PEG-asparaginase and early intensification of triple intrathecal therapy would improve systemic and CNS control. PATIENTS AND METHODS: Between 2007 and 2017, 598 consecutive patients age 0 to 18 years received risk-directed chemotherapy without prophylactic cranial irradiation in the St Jude Total Therapy Study 16. Patients were randomly assigned to receive PEG-asparaginase 3,500 U/m2 versus the conventional 2,500 U/m2. Patients presenting features that were associated with increased risk of CNS relapse received two extra doses of intrathecal therapy during the first 2 weeks of remission induction. RESULTS: The 5-year event-free survival and overall survival rates for the 598 patients were 88.2% (95% CI, 84.9% to 91.5%) and 94.1% (95% CI, 91.7% to 96.5%), respectively. Cumulative risk of any-isolated or combined-CNS relapse was 1.5% (95% CI, 0.5% to 2.5%). Higher doses of PEG-asparaginase did not affect treatment outcome. T-cell phenotype was the only independent risk factor for any CNS relapse (hazard ratio, 5.15; 95% CI, 1.3 to 20.6; P = . 021). Among 359 patients with features that were associated with increased risk for CNS relapse, the 5-year rate of any CNS relapse was significantly lower than that among 248 patients with the same features treated in the previous Total Therapy Study 15 (1.8% [95% CI, 0.4% to 3.3%] v 5.7% [95% CI, 2.8% to 8.6%]; P = .008). There were no significant differences in the cumulative risk of seizure or infection during induction between patients who did or did not receive the two extra doses of intrathecal treatment. CONCLUSION: Higher doses of PEG-asparaginase failed to improve outcome, but additional intrathecal therapy during early induction seemed to contribute to improved CNS control without excessive toxicity for high-risk patients.

4.
Clin Cancer Res ; 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573954

RESUMO

PURPOSE: Treatment outcomes for childhood acute lymphoblastic leukemia (ALL) have improved steadily, but a significant proportion of patients still experience relapse due to drug resistance, which is partly explained by inherited and/or somatic genetic alternations. Recently, we and others have identified genetic variants in the ARID5B gene associated with susceptibility to ALL and also with relapse. In this study, we sought to characterize the molecular pathway by which ARID5B affects antileukemic drug response in patients with ALL. EXPERIMENTAL DESIGN: We analyzed association of ARID5B expression in primary human ALL blasts with molecular subtypes and treatment outcome. Subsequent mechanistic studies were performed in ALL cell lines by manipulating ARID5B expression isogenically, in which we evaluated drug sensitivity, metabolism, and molecular signaling events. RESULTS: ARID5B expression varied substantially by ALL subtype, with the highest level being observed in hyperdiploid ALL. Lower ARID5B expression at diagnosis was associated with the risk of ALL relapse, and further reduction was noted at ALL relapse. In isogenic ALL cell models in vitro, ARID5B knockdown led to resistance specific to antimetabolite drugs (i.e., 6-mercaptopurine and methotrexate), without significantly affecting sensitivity to other antileukemic agents. ARID5B downregulation significantly inhibited ALL cell proliferation and caused partial cell-cycle arrest. At the molecular level, the cell-cycle checkpoint regulator p21 (encoded by CDKN1A) was most consistently modulated by ARID5B, plausibly as its direct transcription regulation target. CONCLUSIONS: Our data indicate that ARID5B is an important molecular determinant of antimetabolite drug sensitivity in ALL, in part, through p21-mediated effects on cell-cycle progression.

5.
Clin Pharmacol Ther ; 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31563145

RESUMO

Much has been written about the promise of "precision medicine," especially in oncology, where somatic mutations can influence the response of cancer cells to "targeted therapy." There have been successful examples of targeted therapy improving the outcome of some childhood cancers, such as the addition of an ABL class tyrosine kinase inhibitor to conventional chemotherapy substantially improving the cure rate for patients with BCR-ABL1 positive acute lymphoblastic leukemia. Although there are other mutations serving as putative targets in various childhood leukemias and solid tumors, effective targeted therapy has yet to be established for them in prospective clinical trials. There are also uncertainties about which "targeted therapy" to use when patients have multiple targetable genomic lesions in their cancer cells, given the paucity of data upon which to develop evidence-based guidelines for selecting and integrating targeted agents for individual patients. There are also multiple examples of inherited germline variants for which evidence-based guidelines have been developed by the Clinical Pharmacogenetics Implementation Consortium to guide the selection and dosing of medications in children with cancer. Clinical pharmacology is poised to play a critical role in both the discovery and development of new targeted anticancer agents and their evidence-based translation into better treatment for children with cancer. To embrace these challenges and opportunities of "precision medicine," clinical and basic pharmacologists must expand the depth of our science and the bandwidth of our translational capacity if we are to optimize precision medicine and advance the treatment of cancer in children and adults.

6.
Mol Cancer Ther ; 18(10): 1887-1895, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31358663

RESUMO

Relapse remains a formidable challenge for acute lymphoblastic leukemia (ALL). Recently, recurrent mutations in NT5C2 were identified as a common genomic lesion unique in relapsed ALL and were linked to acquired thiopurine resistance. However, molecular mechanisms by which NT5C2 regulates thiopurine cytotoxicity were incompletely understood. To this end, we sought to comprehensively characterize the biochemical and cellular effects of NT5C2 mutations. Compared with wild-type NT5C2, mutant proteins showed elevated 5'-nucleotidase activity with a stark preference of thiopurine metabolites over endogenous purine nucleotides, suggesting neomorphic effects specific to thiopurine metabolism. Expression of mutant NT5C2 mutations also significantly reduced thiopurine uptake in vitro with concomitant increase in efflux of 6-mercaptopurine (MP) metabolites, plausibly via indirect effects on drug transporter pathways. Finally, intracellular metabolomic profiling revealed significant shifts in nucleotide homeostasis induced by mutant NT5C2 at baseline; MP treatment also resulted in global changes in metabolomic profiles with completely divergent effects in cells with mutant versus wild-type NT5C2. Collectively, our data indicated that NT5C2 mutations alter thiopurine metabolism and cellular disposition, but also influence endogenous nucleotide homeostasis and thiopurine-induced metabolomic response. These complex mechanisms contributed to NT5C2-mediated drug resistance in ALL and pointed to potential opportunities for therapeutic targeting in relapsed ALL.

7.
Blood ; 134(15): 1227-1237, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31350265

RESUMO

Children with Down syndrome (DS) have a 20-fold increased risk of acute lymphoblastic leukemia (ALL) and distinct somatic features, including CRLF2 rearrangement in ∼50% of cases; however, the role of inherited genetic variation in DS-ALL susceptibility is unknown. We report the first genome-wide association study of DS-ALL, comprising a meta-analysis of 4 independent studies, with 542 DS-ALL cases and 1192 DS controls. We identified 4 susceptibility loci at genome-wide significance: rs58923657 near IKZF1 (odds ratio [OR], 2.02; Pmeta = 5.32 × 10-15), rs3731249 in CDKN2A (OR, 3.63; Pmeta = 3.91 × 10-10), rs7090445 in ARID5B (OR, 1.60; Pmeta = 8.44 × 10-9), and rs3781093 in GATA3 (OR, 1.73; Pmeta = 2.89 × 10-8). We performed DS-ALL vs non-DS ALL case-case analyses, comparing risk allele frequencies at these and other established susceptibility loci (BMI1, PIP4K2A, and CEBPE) and found significant association with DS status for CDKN2A (OR, 1.58; Pmeta = 4.1 × 10-4). This association was maintained in separate regression models, both adjusting for and stratifying on CRLF2 overexpression and other molecular subgroups, indicating an increased penetrance of CDKN2A risk alleles in children with DS. Finally, we investigated functional significance of the IKZF1 risk locus, and demonstrated mapping to a B-cell super-enhancer, and risk allele association with decreased enhancer activity and differential protein binding. IKZF1 knockdown resulted in significantly higher proliferation in DS than non-DS lymphoblastoid cell lines. Our findings demonstrate a higher penetrance of the CDKN2A risk locus in DS and serve as a basis for further biological insights into DS-ALL etiology.

8.
Blood ; 134(10): 793-797, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31311817

RESUMO

Recent genome-wide studies have revealed a plethora of germline variants that significantly influence the susceptibility to acute lymphoblastic leukemia (ALL), thus providing compelling evidence for genetic inheritance of this blood cancer. In particular, hematopoietic transcription factors (eg, ETV6, PAX5, IKZF1) are most frequently implicated in familial ALL, and germline variants in these genes confer strong predisposition (albeit with incomplete penetrance). Studies of germline risk factors for ALL provide unique insights into the molecular etiology of this leukemia.

10.
Clin Breast Cancer ; 19(4): 225-235.e2, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30928413

RESUMO

INTRODUCTION: GATA3 is a critical transcription factor in maintaining the differentiated state of luminal mammary epithelial cells. We sought to determine the prognostic and predictive roles of GATA3 genotypes for breast cancer. PATIENTS AND METHODS: Twelve single nucleotide polymorphisms (SNPs) were genotyped in 2 breast cancer cohorts, including the SWOG S8897 trial where patients were treated with adjuvant chemotherapy (CAF [cyclophosphamide, doxorubicin, 5-fluorouracil] vs. CMF [cyclophosphamide, methotrexate, 5-fluorouracil]) or untreated, and the observational Pathways Study. RESULTS: In the S8897 trial, rs3802604 and rs568727 were associated with disease-free survival and overall survival in the treated group, regardless of chemotherapy regimen. The GG genotype of rs3802604 conferred poorer overall survival (adjusted hazard ratio, 2.45; 95% confidence interval, 1.48-4.05) and disease-free survival (adjusted hazard ratio, 1.95; 95% confidence interval, 1.27-2.99) compared with the AA genotype. Similar associations were found for rs568727. In contrast, no association with either SNP was found in the untreated group. Subgroup analyses indicated that these 2 SNPs more strongly influenced outcomes in the patients who also received tamoxifen. However, the associations in the subgroup with tamoxifen treatment were not replicated in the Pathways Study, possibly owing to substantial differences between the 2 patient cohorts, such as chemotherapy regimen and length of follow-up. Results from joint analyses across these 2 cohorts were marginally significant, driven by the results in S8897. Bioinformatic analyses support potential functional disruption of the GATA3 SNPs in breast tissue. CONCLUSIONS: The present study provides some evidence for the predictive value of GATA3 genotypes for breast cancer adjuvant therapies. Future replication studies in appropriate patient populations are warranted.

11.
J Natl Cancer Inst ; 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30938820

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common cancer in children and can arise in B or T lymphoid lineages. Although risk loci have been identified for B-ALL, the inherited basis of T-ALL is mostly unknown, with a particular paucity of genome-wide investigation of susceptibility variants in large patient cohorts. METHODS: We performed a genome-wide association study (GWAS) in 1,191 children with T-ALL and 12,178 control subjects, with independent replication using 117 cases and 5,518 controls. The associations were tested using an additive logistic regression model. Top risk variants were tested for effects on enhancer activity using luciferase assay. All statistical tests were two-sided. RESULTS: A novel risk locus in the USP7 gene (rs74010351, odds ratio = 1.44, 95% CI = 1.27-1.65, P = 4.51 x 10-8) reached genome-wide significance in the discovery cohort, with independent validation (odds ratio = 1.51, 95% CI: 1.03-2.22, P = .04). The USP7 risk allele was over-represented in individuals of African descent, thus contributing to the higher incidence of T-ALL in this race/ethnic group. Genetic changes in USP7 (germline variants or somatic mutations) were observed in 56.4% of T-ALL with TAL1 overexpression, statistically significantly higher than in any other subtypes. Functional analyses suggested this T-ALL risk allele is located in a putative cis-regulatory DNA element with negative effects on USP7 transcription. Finally, comprehensive comparison of 14 susceptibility loci in T- vs. B-ALL pointed to distinctive etiology of these leukemias. CONCLUSIONS: These findings indicate strong associations between inherited genetic variation and T-ALL susceptibility in children and shed new light on the molecular etiology of ALL, particularly commonalities and differences in the biology of the two major subtypes (B- vs. T-ALL).

13.
Cancer Epidemiol Biomarkers Prev ; 28(5): 846-856, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30770347

RESUMO

Although substantial advances in the identification of cytogenomic subtypes of childhood acute lymphoblastic leukemia (ALL) have been made in recent decades, epidemiologic research characterizing the etiologic heterogeneity of ALL by subtype has not kept pace. The purpose of this review is to summarize the current literature concerning subtype-specific epidemiologic risk factor associations with ALL subtype defined by immunophenotype (e.g., B-cell vs. T-cell) and cytogenomics (including gross chromosomal events characterized by recurring numerical and structural abnormalities, along with cryptic balanced rearrangements, and focal gene deletions). In case-control analyses investigating nongenetic risk factors, home paint exposure is associated with hyperdiploid, MLL-rearranged, and ETV6-RUNX1 subtypes, yet there are few differences in risk factor associations between T- and B-ALL. Although the association between maternal smoking and ALL overall has been null, maternal smoking is associated with an increasing number of gene deletions among cases. GWAS-identified variants in ARID5B have been the most extensively studied and are strongly associated with hyperdiploid B-ALL. GATA3 single nucleotide variant rs3824662 shows a strong association with Ph-like ALL (OR = 3.14). However, there have been relatively few population-based studies of adequate sample size to uncover risk factors that may define etiologic heterogeneity between and within the currently defined cytogenomic ALL subtypes.

14.
Genet Med ; 21(9): 2145-2150, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30728528

RESUMO

PURPOSE: Severe hematotoxicity in patients with thiopurine therapy has been associated with genetic polymorphisms in the thiopurine S-methyltransferase (TPMT). While TPMT genetic testing is clinically implemented for dose individualization, alterations in the nudix hydrolase 15 (NUDT15) emerged as independent determinant of thiopurine-related hematotoxicity. Because data for European patients are limited, we investigated the relevance of NUDT15 in Europeans. METHODS: Additionally to TPMT phenotyping/genotyping, we performed in-depth Sanger sequencing analyses of NUDT15 coding region in 107 European patients who developed severe thiopurine-related hematotoxicity as extreme phenotype. Moreover, genotyping for NUDT15 variants in 689 acute lymphoblastic leukemia (ALL) patients was performed. RESULTS: As expected TPMT was the main cause of severe hematotoxicity in 31% of patients, who were either TPMT deficient (10%) or heterozygous carriers of TPMT variants (21%). By comparison, NUDT15 genetic polymorphism was identified in 14 (13%) patients including one novel variant (p.Met1Ile). Six percent of patients with severe toxicity carried variants in both TPMT and NUDT15. Among patients who developed toxicity within 3 months of treatment, 13% were found to be carriers of NUDT15 variants. CONCLUSION: Taken together, NUDT15 and TPMT genetics explain ~50% of severe thiopurine-related hematotoxicity, providing a compelling rationale for additional preemptive testing of NUDT15 genetics not only in Asians, but also in Europeans.

15.
Nat Rev Clin Oncol ; 16(4): 227-240, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30546053

RESUMO

Advances in genomic research and risk-directed therapy have led to improvements in the long-term survival and quality of life outcomes of patients with childhood acute lymphoblastic leukaemia (ALL). The application of next-generation sequencing technologies, especially transcriptome sequencing, has resulted in the identification of novel molecular subtypes of ALL with prognostic and therapeutic implications, as well as cooperative mutations that account for much of the heterogeneity in clinical responses observed among patients with specific ALL subtypes. In addition, germline genetic variants have been shown to influence the risk of developing ALL and/or the responses of non-malignant and leukaemia cells to therapy; shared pathways for drug activation and metabolism are implicated in treatment-related toxicity and drug sensitivity or resistance, depending on whether the genetic changes are germline, somatic or both. Indeed, although once considered a non-hereditary disease, genomic investigations of familial and sporadic ALL have revealed a growing number of genetic alterations or conditions that predispose individuals to the development of ALL and treatment-related second cancers. The identification of these genetic alterations holds the potential to direct genetic counselling, testing and possibly monitoring for the early detection of ALL and other cancers. Herein, we review these advances in our understanding of the genomic landscape of childhood ALL and their clinical implications.


Assuntos
Biomarcadores Tumorais/genética , Genômica/métodos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Criança , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Variantes Farmacogenômicos , Medicina de Precisão , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prognóstico , Sequenciamento Completo do Exoma
17.
Blood ; 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510082

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. Characterized by high levels of Native American ancestry, Hispanics are disproportionally affected by this cancer with high incidence and inferior survival, but the genetic basis for this disparity remains poorly understood because of a paucity of genome-wide investigation of ALL in Hispanics. Performing a genome-wide association study in 940 Hispanic children with ALL and 681 ancestry-matched non-ALL controls, we identified a novel susceptibility locus in the ERG gene (rs2836365; P = 3.76 × 10-8, odds ratio [OR] = 1.56), with independent validation (P = 0.01, OR = 1.43). Imputation analyses pointed to a single causal variant driving the association signal at this locus overlapping with putative regulatory DNA elements. The effect size of the ERG risk variant rose sharply with increasing Native American genetic ancestry. The ERG risk genotype was under-represented in ALL with the ETV6-RUNX1 fusion (P < 0.0005) but enriched in the TCF3-PBX1 subtype (P < 0.05). Interestingly, ALL cases with germline ERG risk alleles were significantly less likely to have somatic ERG deletion (P < 0.05). Our results provide novel insights to genetic predisposition to ALL and its contribution to racial disparity in this cancer.

18.
Clin Pharmacol Ther ; 2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30447069

RESUMO

TPMT activity exhibits a monogenic co-dominant inheritance and catabolizes thiopurines. TPMT variant alleles are associated with low enzyme activity and pronounced pharmalogic effecs of thiopurines. Loss-of-function alleles in the NUDT15 gene are common in Asians and Hispanics and reduces the degradation of active thiopurine nucleotide metabolites, also predisposing to myelosuppression. We provide recommendations for adjusting starting dosesof azathioprine, mercaptopurine, and thioguanine based on TPMT and NUDT15 genotypes. This article is protected by copyright. All rights reserved.

19.
Artigo em Inglês | MEDLINE | ID: mdl-30487223

RESUMO

Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified. Apart from extending eight previously described subgroups (G1 to G8 associated with MEF2D fusions, TCF3-PBX1 fusions, ETV6-RUNX1-positive/ETV6-RUNX1-like, DUX4 fusions, ZNF384 fusions, BCR-ABL1/Ph-like, high hyperdiploidy, and KMT2A fusions), we defined six additional gene expression subgroups: G9 was associated with both PAX5 and CRLF2 fusions; G10 and G11 with mutations in PAX5 (p.P80R) and IKZF1 (p.N159Y), respectively; G12 with IGH-CEBPE fusion and mutations in ZEB2 (p.H1038R); and G13 and G14 with TCF3/4-HLF and NUTM1 fusions, respectively. In pediatric BCP ALL, subgroups G2 to G5 and G7 (51 to 65/67 chromosomes) were associated with low-risk, G7 (with ≤50 chromosomes) and G9 were intermediate-risk, whereas G1, G6, and G8 were defined as high-risk subgroups. In adult BCP ALL, G1, G2, G6, and G8 were associated with high risk, while G4, G5, and G7 had relatively favorable outcomes. This large-scale transcriptome sequence analysis of BCP ALL revealed distinct molecular subgroups that reflect discrete pathways of BCP ALL, informing disease classification and prognostic stratification. The combined results strongly advocate that RNA sequencing be introduced into the clinical diagnostic workup of BCP ALL.

20.
Lancet Child Adolesc Health ; 2(6): 440-454, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30169285

RESUMO

Improvements in risk-directed treatment and supportive care, together with increased reliance on both national and international collaborative studies, have made childhood acute lymphoblastic leukaemia (ALL) one of the most curable human cancers. Next-generation sequencing studies of leukaemia cells and the host germline provide new opportunities for precision medicine and thus potential improvements in the cure rate and quality of life of patients. Efforts are underway to assess the global impact of childhood ALL and develop initiatives that can meet the long-term challenge of providing quality care to children with this disease worldwide and improving cure rates globally. This ambitious task will rely on increased collaborative research and international networking so that the therapeutic gains in high-income countries can be translated to patients in low-income and middle-income countries. Ultimately, the greatest obstacle to overcome will be to fully understand leukaemogenesis, enabling measures to decrease the risk of leukaemia development and thus close the last major gap in offering a cure to any child who might have the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA