Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.221
Filtrar
2.
Pest Manag Sci ; 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31960570

RESUMO

BACKGROUND: Pteromalus puparum (Hymenoptera: Pteromalidae) is an endoparasitoid wasp that parasitizes many butterfly species, including a Brassicaceae pest, Pieris rapae (Lepidoptera: Pieridae), the small white cabbage butterfly. P. puparum females inject venom along with their eggs into hosts to ensure successful parasitism. The venom regulates host development and behavior, suppresses host immunity, and influences host metabolism. It has been shown that venom contains α-amylases, a group of hydrolytic enzymes that act in insect sugar metabolism. So far, three α-amylases have been identified in P. puparum (Pteromalus puparum α-amylases, PpAmys) and the function of PpAmy1 has been reported. However, the functions of PpAmy2 and PpAmy3 remain unknown. RESULTS: We studied the functions of an α-amylase highly expressed in muscle-rich tissues (PpAmy2) and an α-amylase highly expressed in venom apparatus (PpAmy3) using RNAi and GC-TOF-MS techniques. Knockdown of PpAmy3 by RNAi reduced the body length and weight of 1-day old larval offspring while there was no significant effect when PpAmy2 was knocked down. Compared to the control injected with siGFP, many metabolites in P. puparum changed when PpAmy2 was knocked down, while the injection of PpAmy3 recombinant protein into host induced the metabolite changes in the P. rapae hemolymph. CONCLUSION: Our study demonstrated that PpAmy2 acts in metabolism in muscles of the parasitoid while PpAmy3 could influence the host metabolism and may support the development of parasitic wasp offspring. This article is protected by copyright. All rights reserved.

3.
Sensors (Basel) ; 20(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947570

RESUMO

For signal processing of a Micro-Electro-Mechanical System (MEMS) Inertial Measurement Unit (IMU), a digital-analog hybrid system-on-chip (SoC) with small area and low power consumption was designed and implemented in this paper. To increase the flexibility of the processing circuit, the designed SoC integrates a low-power processor and supports three startup or debugging modes for different application scenarios. An application-specific computing module and communication interface are designed in the circuit to meet the requirements of IMU signal processing. The configurable clock allows users to dynamically balance computing speed and power consumption in their applications. The chip was taped out under SMIC 180 nm CMOS technology and tested for performance. The results show that the chip's maximum running frequency is 105 MHz. The total area is 33.94 mm2. The dynamic and static power consumption are 0.65 mW/MHz and 0.30 mW/MHz, respectively. When the system clock is 25 MHz, the dynamic and static power consumption of the chip is 76 mW and 66 mW, and the dynamic and static power consumption of the FPGA level are 634 mW and 520 mW. The results verify the superiority of the application specific integrated circuit (ASIC) solution in terms of integration and low power consumption.

4.
Sci Rep ; 10(1): 744, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31937843

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31964651

RESUMO

Influenza is a global challenge, and future pandemics of influenza are inevitable. One of the lessons learned from past pandemics is that all pandemic influenza viruses characterized to date possess viral genes originating from avian influenza viruses (AIVs). During the past decades, a wide range of AIVs have overcome the species barrier and infected humans with different clinical manifestations ranging from mild illness to severe disease and even death. Understanding the mechanisms of infection in the context of clinical outcomes, the mechanism of interspecies transmission, and the molecular determinants that confer interspecies transmission is important for pandemic preparedness. Here, we summarize the epidemiology, virology, and pathogenicity of human infections with AIVs to further our understanding of interspecies transmission.

6.
J Bioenerg Biomembr ; 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965456

RESUMO

Although mitochondrial metabolism has recently gained attention as a promising therapeutic strategy in cancer, little is known on the impact of mitochondrial respiration inhibition on oral tongue squamous cell carcinoma (OTSCC). Using in vitro and in vivo OTSCC models, our work demonstrates that inducing mitochondrial dysfunction by anti-malarial drug artesunate is effective in targeting OTSCC stem-cell like and bulk cells. Artesunate inhibits anchorage-independent colony formation, proliferation and survival in all tested OTSCC cell lines although with varying efficacy. Artesunate displays preferential anti-OTSCC activity by sparing normal cells. Mechanism analysis indicates that artesunate inhibits mitochondrial respiration via suppressing mitochondrial complex I and II but not IV or V, resulting in oxidative stress and damage. Interestingly, OTSCC cells that are more sensitive to artesunate have higher level of basal mitochondrial respiration and reversed respiratory capacity compared to those with less sensitivity to artesunate, suggesting the varying dependence on mitochondrial respiration among OTSCC cell lines. In addition, artesunate induces oxidative stress and damage in cells with low sensitivity to a less extent than in those with high sensitivity. We confirm that mitochondrial respiration inhibition is required for the action of artesunate in OTSCC. Mitochondrial dysfunction by artesunate further activates AMPK and suppresses Akt/mTOR. Importantly, the in vitro observations are reproducible in vivo OTSCC xenograft mouse model. Our findings provide pre-clinical evidence on the efficacy of artesunate and emphasize the therapeutic value of targeting mitochondrial respiration in OTSCC.

7.
J Med Chem ; 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31965799

RESUMO

The human cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5 metabolize most drugs and have high similarities in their structure and substrate preference. Whereas CYP3A4 is predominantly expressed in the liver, CYP3A5 is upregulated in cancer, contributing to drug resistance. Selective inhibitors of CYP3A5 are, therefore, critical to validating it as a therapeutic target. Here we report clobetasol propionate (clobetasol) as a potent and selective CYP3A5 inhibitor identified by high-throughput screening using enzymatic and cell-based assays. Molecular dynamics simulations suggest a close proximity of clobetasol to the heme in CYP3A5 but not in CYP3A4. UV-visible spectroscopy and electron paramagnetic resonance analyses confirmed the formation of an inhibitory type I heme-clobetasol complex in CYP3A5 but not in CYP3A4, thus explaining the CYP3A5 selectivity of clobetasol. Our results provide a structural basis for selective CYP3A5 inhibition, along with mechanistic insights, and highlight clobetasol as an important chemical tool for target validation.

8.
Adv Mater ; : e1905703, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31944453

RESUMO

Due to the nature of their liquid-like behavior and high dimensionless figure of merit, Cu2 X (X = Te, Se, and S)-based thermoelectric materials have attracted extensive attention. The superionicity and Cu disorder at the high temperature can dramatically affect the electronic structure of Cu2 X and in turn result in temperature-dependent carrier-transport properties. Here, the effective strategies in enhancing the thermoelectric performance of Cu2 X-based thermoelectric materials are summarized, in which the proper optimization of carrier concentration and minimization of the lattice thermal conductivity are the main focus. Then, the stabilities, mechanical properties, and module assembly of Cu2 X-based thermoelectric materials are investigated. Finally, the future directions for further improving the energy conversion efficiency of Cu2 X-based thermoelectric materials are highlighted.

9.
J Biomater Sci Polym Ed ; : 1-21, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31903857

RESUMO

Previous studies have proved that fibrin is an excellent scaffold material for tissue engineered blood vessel. However, the mechanical properties of fibrin are not enough. One way to solve the problem is to combine polymer materials with fibrin to enhance its biomechanical properties. In this study, a novel polycaprolactone (PCL)/fibrin composite scaffold was prepared by electrospinning technology. The morphological, physicochemical analysis, blood compatibility, biomechanical properties, biocompatibility and biodegradability of this vascular scaffold were evaluated. The results showed that electrospun PCL/fibrin scaffold possessed smaller aperture and larger fiber diameter than that of fibrin scaffold. The swelling ratio of the vascular PCL/fibrin scaffold at (0:100), (10:90), (20:80) and (30:70) was 112 ± 5.3, 103 ± 6.9, 94 ± 5.9 and 89 ± 3.4%, respectively. Mechanical properties of fibrin scaffolds were enhanced significantly by the addition of PCL. Furthermore, the time of plasma re-calcification, activated partial thromboplastin time and thromboplastin time in four different proportions of PCL/fibrin scaffolds were similar to that of the control group. Degradation experiments in vitro demonstrated that the degradation rate of PCL/fibrin scaffold was closely related to the content of PCL. MTT assays and immunofluorescence staining indicated that the stem cells cocultured with the PCL/fibrin scaffold had good proliferation behavior. Live/dead assay confirmed that the number of MSCs in the PCL/fibrin (10:90) group was significantly increased as compared to other groups. The tests in vivo results showed PCL/fibrin scaffold could promote cell infiltration and tissue regeneration and its degradation in vivo was faster than that of PCL scaffold. In summary, PCL/fibrin (20:80) scaffold exhibited balanced mechanical properties and degradability, as well as good cell compatibility properties; therefore, it was a promising tissue engineering material for vascular graft.

10.
Virology ; 542: 8-19, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31957664

RESUMO

The H3 subtype avian influenza virus (AIV) poses a threat to both animal and human health. In this study, phylogenetic analysis showed that the H3 AIVs had various genomic constellations and extensive reassortments, increasing genetic diversity and the emergence of new pathogenic viruses that might infect human beings. Molecular analysis demonstrated that the major molecular markers linked to drug resistance were identified in M genes of three studied viruses, and there might be wide range of resistant virus infections in poultry in the future. Although all the H3 viruses preferentially bound to the avian-type receptor, the growth kinetics experiments showed that the selected H3 viruses were capable of efficient replication in mammalian cells, suggesting a potential cross-species transmission of H3 viruses. Overall, our results emphasize the need for continued surveillance of H3 outbreaks and may also help us improve knowledge on H3 AIVs prevention and control.

11.
Biomed Pharmacother ; 124: 109787, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31958763

RESUMO

BACKGROUND: Adverse stress in early life negatively influences psychiatric health by increasing the risk of developing depression and suicide in adulthood. Clinical antidepressants, such as fluoxetine, exhibit unsatisfactory results due to their low efficacy or intolerable side effects. SiNiSan (SNS), a traditional Chinese herbal formula, has been proven to have affirmatory antidepressive effects. However, the underlying mechanism remains poorly understood. Therefore, this study aimed to explore the impact and molecular mechanism of SNS treatment in rats exposed to neonatal maternal separation (MS)-combined young-adult chronic unpredictable mild stress (CUMS). METHOD: Seventy-two neonatal male Sprague-Dawley rats were randomly divided into six groups of 12 rats each: control + ddH2O, model + ddH2O, positive (fluoxetine: 5 mg/kg), SNS-low dose (2.5 g/kg), SNS-medium dose (5 g/kg), and SNS-high dose (10 g/kg). Behavioral tests included sucrose preference test, open-field test, and forced swimming test. Calcium sensitive receptor (CaSR), protein kinase C (PKC), ERK1/2, and synapse-associated proteins (PSD-95, GAP-43, and synaptophysin [Syn]) in the hippocampus (HIP) and prefrontal cortex (PFC) were assayed using Western blot. CaSR and Syn protein expression was measured by immunohistochemistry. RESULTS: MS-combined CUMS rats exhibited depression-like behavior. SNS exerted antidepressant effects on stress-induced depression-like behavior. The levels of CaSR, PKC, and p-ERK1/2 in the HIP and PFC decreased in stressed rats. SNS treatment significantly upregulated the expression of CaSR, PKC, and p-ERK1/2 in the HIP and PFC of adult stressed rats. CONCLUSION: MS-combined CUMS could develop depression-like behavior in adult. SNS exhibited antidepressive effects accompanied by improving synaptic plasticity by activation of the CaSR-PKC-ERK signaling pathway.

12.
Talanta ; 209: 120517, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892092

RESUMO

Sulfide plays an important role in many important life processes, and abnormal levels of sulfide that may cause diseases. Sulfide is also essential in industrial production and food processing, and it is well concerned for environmental issues and food safety. In order to study the physiological and pathological effects of sulfide and the impact on the environment, it is still urgent to develop a convenient and effective sulfide detection technology. Here, we developed a ratiometric fluorescent probe 7-Nitro-1,2,3-benzoxoxadiazole-Acridoneacetylpiperazine (NBD-AAP) which is based on the fluorescence resonance energy transfer (FRET) between acridone and NBD fluorophores. The NBD-AAP probe could produce a ratiometric response to micromolar sulfide in buffer (pH = 7.4), exhibiting a significant enhancement in fluorescent emission ratio (F427/F552) and obvious visual phenomenon (orange to pink under visible light and yellow to blue under UV light). At the same time, this NBD-AAP probe also has excellent properties including high selectivity and low detection limit (0.19 µM). In addition, this probe has been successfully used for detecting the sulfide in actual samples (monosodium glutamate, beer, environmental water) and imaging in Daphnia magna. These results indicate that NBD-AAP has broad application prospects in sulfide detection and in vivo imaging studies.

13.
Aging (Albany NY) ; 12(1): 462-480, 2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901898

RESUMO

Lnc-BMP1-1 is a lncRNA transcribed from SFTPC (surfactant associated protein C), a lung tissue specific gene encoding pulmonary-associated surfactant protein C (SPC) that is solely secreted by alveolar typeⅡ epithelial cells, among which the ones with SFTPC+ might be transformed into lung adenocarcinoma cells. Caveolin-1 (Cav-1) is a candidate tumor suppressor gene and is vital for coping with oxidative stress induced by cigarette smoke. When comparing lung cancer tissues with their adjacent normal tissues, the expression of lnc-BMP1-1 were decreased, especially in patients with cigarette smoking history (P=0.027), and positively associated with the expression of Cav-1 (P<0.001). When comparing to A549 cells transfected with empty vector (A549-NC cells), the expression level of Cav-1 in A549 cells with over-expressed lnc-BMP1-1 (A549-BMP cells) was increased along with the decreased level of HDAC2 protein. The drug sensitivity of A549-BMP cells to Doxorubicin hydrochloride (DOX) was increased; the growth and migration capability of A549-BMP cells were inhibited along with the decreased protein level of Bcl-2 and DNMT3a; the growth of tumor in nude mice injected with A549-BMP cells were inhibited, too. Furthermore, the lnc-BMP1-1 and Cav-1 expression was also down-regulated in the human bronchial epithelial (16HBE) cells treated with cigarette smoke extract (CSE).

14.
J Mater Chem B ; 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31976515

RESUMO

In this paper, an antioxidant self-healing hydrogel has been prepared. The Biginelli reaction was used to prepare a monomer containing phenylboronic acid (PBA) and 3,4-dihydropyrimidin-2(1H)-one (DHPM) groups. This PBA-DHPM monomer was copolymerized with poly(ethylene glycol methyl ether) methacrylate (PEGMA) to produce a water-soluble copolymer via radical polymerization. The resulting copolymer quickly crosslinked poly(vinyl alcohol) (PVA) through borate ester bonds to generate a self-healing hydrogel under mild conditions (pH ∼ 7.4, 25 °C). The prepared hydrogel showed an inherent antioxidant ability because of the DHPM moieties in the hydrogel structure. It also showed no cytotoxicity, and in an in vivo mouse model the hydrogel injected under the skin of a mouse hardly caused any adverse reactions, suggesting that this hydrogel could be used as an implantable biomaterial. This first report of an antioxidant self-healing hydrogel demonstrates a new application of the Biginelli reaction in materials science, which might prompt a broad study of multicomponent reactions in interdisciplinary fields.

15.
Am J Clin Pathol ; 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31977029

RESUMO

OBJECTIVES: Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and interferon-induced transmembrane protein 3 (IFITM3) are commonly induced by type I interferon. The study aims to investigate the expression and clinical significance of IFIT1 and IFITM3 in head and neck squamous cell carcinoma (HNSCC). METHODS: Immunohistochemistry was applied on tissue microarray to reveal IFIT1 and IFITM3 expression in 275 HNSCC, 69 dysplasia, and 42 normal mucosa samples. The clinicopathologic features associated with IFIT1 and IFITM3 expression in HNSCC patients were analyzed. RESULTS: IFIT1 and IFITM3 were highly expressed in HNSCC tissues. High expression of IFIT1 and IFITM3 predicts a negative prognosis for patients (P < .01). IFIT1 and IFITM3 expression was associated with programmed cell death ligand 1, B7-H4, V-domain Ig suppressor of T-cell activation, indoleamine 2,3-dioxygenase, and macrophage marker immunoreactivity. CONCLUSIONS: IFIT1 and IFITM3 were overexpressed in HNSCC and indicated poor prognoses for patients with HNSCC. IFIT1 and IFITM3 expression was correlated with several immune checkpoint molecules and tumor-associated macrophage markers.

16.
Sci Total Environ ; 707: 136093, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31863979

RESUMO

Peri-urban ecosystems are among the most intensive areas in terms of competition between different ecosystem components. Dissolved organic matter (DOM) plays a significant role in aquatic carbon cycling. The chemical composition of DOM and associated potential ecological risks in peri-urban aquatic ecosystems are poorly understood. Herein, we used fluorescence excitation-emission matrix and parallel factor analysis (EEM-PARAFAC) to characterize DOM in a peri-urban critical zone observatory watershed in Eastern China. According to the theory of natural disaster risk formation, we calculated the ecological risk of DOM in the peri-urban watershed. Seasonal variation in DOM concentrations was observed, whereas fluorescent DOM concentrations were site-specific across four sub-watersheds. The analysis of DOM absorption properties revealed the presence of DOM components with high aromatic content and large molecular weight in the watershed. Four fluorescent components (two humic-like and two protein-like substances) were identified using the PARAFAC model. Spatial distribution analysis showed that DOM quality was mainly influenced by human activities, and the proportion of protein-like substance (C3) was strongly correlated with anthropogenic parameters. The distribution of optical indices indicated diverse sources of DOM in the watershed. Ecological risk related to DOM was greater in the dry season than the wet season. There was a slight risk in most areas, with an extreme risk in areas experiencing the most intensive human disturbance, which were also extremely or heavily vulnerable. The results emphasize the strong influence of human disturbance on the ecological risk of DOM in peri-urban aquatic ecosystems. Our study provides useful information for ecological risk assessment of DOM that is difficult to obtain using traditional chemical analysis.

17.
Neuroscience ; 426: 189-200, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866556

RESUMO

Neuroinflammation has been implicated in the mechanism underlying the progression of neurodegeneration and infectious neuropathology. Growing evidence suggest that hydroxytyrosol (3,4-dihydroxyphenil-ethanol, HT), one of the main polyphenols presented in extra virgin olive oil (EVOO), has shown potential anti-inflammatory and neuroprotective effects. However, the potential anti-neuroinflammation activity and underlying mechanism of HT remain poorly understood. The present study aimed to investigate the effects of HT on lipopolysaccharide (LPS)-induced inflammation in both in vitro and in vivo models and the associated molecular mechanism. Our results revealed that HT significantly reduced the production of pro-inflammatory mediators in BV2 microglia and primary microglia cells. Phenotypic analysis showed that HT significantly reduced M1 marker CD86 expression and increased M2 marker CD206 expression. In addition, HT significantly decreased the levels of phospho-NF-κB p65 and phospho-extracellular signal-regulated kinase (ERK) in a dose-dependent manner. Moreover, HT suppressed the LPS-induced Toll like receptor 4 (TLR4) in BV2 microglia. In vivo administration of HT following LPS injection significantly reduced some proinflammatory mediator levels and microglia/astrocyte activation in the brain. Together, these results suggest that HT suppressed the LPS-induced neuroinflammatory responses via modulation of microglia M1/M2 polarization and downregulation of TLR-4 mediated NF-κB activation and ERK signaling pathway.

18.
Neuroreport ; 31(2): 139-147, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31876682

RESUMO

Hyperglycemia is considered to induce neuronal apoptosis via activating microglia inflammatory responses, thus involving in the development and progression of diabetic encephalopathy and neurodegenerative disorders. Increasing evidences suggest that androgen exerts neuroprotective functions including antiapoptosis, anti-inflammation and antioxidative stress. In this study, we investigate the anti-inflammatory role of dihydrotestosterone (DHT) in high glucose (HG)-induced neuroinflammatory response in BV-2 microglia. Our results revealed that DHT significantly inhibited HG-induced production of nitric oxide and prostaglandin E2 through suppressing the expression of corresponding regulatory enzymes - inducible NO synthase and cyclooxygenase-2. Also, DHT inhibited HG-induced expression of TNF-α and IL-1ß. Moreover, DHT suppressed the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, when SH-SY5Y neurons were cultured in HG-treated BV-2 microglial supernatant, DHT pretreatment significantly increased neuronal survival, indicating the neuroprotective role of DHT. Collectively, these results suggest that DHT could protect SH-SY5Y neurons from HG-mediated BV-2 microglia inflammatory damage through inhibiting TLR4/NF-κB signaling, suggesting that maintenance of androgen level in brain might have potential benefit in neurodegenerative diseases, especially in diabetes patients combined with cognitive disorders.

19.
J Biomed Mater Res B Appl Biomater ; 108(1): 104-116, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30916468

RESUMO

Cells encapsulation by biomaterials has been widely studied as a strategy of building tissue construct in tissue engineering. Conventional encapsulation of cells using hydrogels often needs the polymerization process or relatively complex molding process. In this study, we developed a facile strategy for the in situ fabrication of biodegradable cell-laden starch foams. By utilizing the unique gelatinization property of starch, cell-laden starch foams with tunable architecture were rapidly prepared in a green and biological-friendly process. The bubble size and stiffness of starch foams could be tuned by controlling the content of premixed starch in the cell culture medium. Cells were encapsulated in situ during the foaming process, and the resultant starch foams could be used as building blocks to fabricate three-dimensional tissue construct. The potential application of the cell-laden starch foams in neural tissue engineering was also validated. RSC96 Schwann cells were encapsulated in the starch foams and revealed good viability. Due to the serum-induced degradation of the starch, RSC96 Schwann cells could be released from the starch foams in a controlled manner while remaining high viability. Dorsal root ganglion (DRG) neurons co-cultured with the cell-laden starch foams extended significantly longer neurites compared with neurons cultured in minimum Eagle's medium (664.88 ± 190.39 µm vs. 311.19 ± 105.25 µm). DRG neurons retained high viability even after encapsulation in the starch foams for 3 days. This facile strategy of rapidly fabricating cell-laden starch foams can be further extended to construct centimeter-scale micro-tissue for tissue engineering applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:104-116, 2020.

20.
J Cell Biochem ; 121(1): 111-124, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31190349

RESUMO

Chronic idiopathic urticaria (CIU) is a polyetiological dermatologic disease. Reports have stated that some microRNAs (miRNAs) have their roles to play in inflammatory response. In this present study, we aim to investigate whether miR-194 has an effect on attenuating inflammatory response and human dermal microvascular endothelial cells (HDMECs) permeability of CIU mast cells through TGF-ß/SMAD pathway by binding to thrombospondin 1 (THBS1). The Gene Expression Omnibus database was used to obtain the CIU-related microarray data, and then the analysis of differentially expressed genes was conducted and the miRNA regulated by THBS1 was predicted. After transfection of different mimic, inhibitor, or small interfering RNA, the effect of miR-194 on inflammatory reaction, mast cell degranulation, histamine release rate, HDMECs permeability, and the expression of THBS1, interferon γ (IFN-γ), TGF-ß, Smad3, and interleukin 4 (IL-4) were detected. THBS1 was verified to be the miR-194 target. After transfected with overexpressed miR-194 and si-THBS1, the degranulation rate, histamine release rate, and HDMECs permeability were significantly reduced, while the expression of IFN-γ was higher, and the expression of THBS1, TGF-ß, Smad3, IL-4 was significantly lower, accompanied with alleviated inflammatory reaction. Our study provides evidence that miR-194 negatively modulates THBS1 and inhibits the activation of TGF-ß/SMAD pathway, thereby alleviating the inflammatory response and HDMECs permeability of mast cells in CIU.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA