Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Phys Rev Lett ; 123(4): 047203, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491273


The recent discovery of intrinsic ferromagnetic order in the atomically thin van der Waals crystal CrXTe_{3} (X=Si, Ge) stimulates intensive studies on the nature of low-dimensional magnetism because the presence of long-range magnetic order in two-dimensional systems with continuous symmetry is strictly prohibited by thermal fluctuations. By combining advanced many-body calculations with angle-resolved photoemission spectroscopy we investigate CrSiTe_{3} single crystals and unveil the pivotal role played by the strong electronic correlations at both high- and low-temperature regimes. Above the Curie temperature (T_{c}), Coulomb repulsion (U) drives the system into a charge transfer insulating phase. In contrast, below T_{c} the crystal field arranges the Cr-3d orbitals such that the ferromagnetic superexchange profits, giving rise to the bulk ferromagnetic ground state with which the electronic correlations compete. The excellent agreement between theory and experiment establishes CrSiTe_{3} as a prototype low-dimensional crystal with the cooperation and interplay of electronic correlation and ferromagnetism.

Adv Mater ; 31(39): e1901964, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31389096


Atomically thin oxychalcogenides have been attracting intensive attention for their fascinating fundamental properties and application prospects. Bi2 O2 Se, a representative of layered oxychalcogenides, has emerged as an air-stable high-mobility 2D semiconductor that holds great promise for next-generation electronics. The preparation and device fabrication of high-quality Bi2 O2 Se crystals down to a few atomic layers remains a great challenge at present. Here, molecular beam epitaxy (MBE) of atomically thin Bi2 O2 Se films down to monolayer on SrTiO3 (001) substrate is achieved by co-evaporating Bi and Se precursors in oxygen atmosphere. The interfacial atomic arrangements of MBE-grown Bi2 O2 Se/SrTiO3 are unambiguously revealed, showing an atomically sharp interface and atom-to-atom alignment. Importantly, the electronic band structures of one-unit-cell (1-UC) thick Bi2 O2 Se films are observed by angle-resolved photoemission spectroscopy (ARPES), showing low effective mass of ≈0.15 m0 and bandgap of ≈0.8 eV. These results may be constructive to the synthesis of other 2D oxychalcogenides and investigation of novel physical properties.

Adv Mater ; 29(27)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28481053


Graphene has demonstrated great potential in new-generation electronic applications due to its unique electronic properties such as large carrier Fermi velocity, ultrahigh carrier mobility, and high material stability. Interestingly, the electronic structures can be further engineered in multilayer graphene by the introduction of a twist angle between different layers to create van Hove singularities (vHSs) at adjustable binding energy. In this work, using angle-resolved photoemission spectroscopy with sub-micrometer spatial resolution, the band structures and their evolution are systematically studied with twist angle in bilayer and trilayer graphene sheets. A doping effect is directly observed in graphene multilayer system as well as vHSs in bilayer graphene over a wide range of twist angles (from 5° to 31°) with wide tunable energy range over 2 eV. In addition, the formation of multiple vHSs (at different binding energies) is also observed in trilayer graphene. The large tuning range of vHS binding energy in twisted multilayer graphene provides a promising material base for optoelectrical applications with broadband wavelength selectivity from the infrared to the ultraviolet regime, as demonstrated by an example application of wavelength selective photodetector.