Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Opt Express ; 29(17): 27041-27047, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615126

RESUMO

With current trends to progressively miniaturize optical systems, it is now essential to look for alternative methods to control light at extremely small dimensions. Metalenses are composed of subwavelength nanostructures and have an excellent ability to manipulate the polarization, phase, and amplitude of incident light. Although great progress of metalenses has been made, the compact metalens-integrated devices have not been researched adequately. In the study, we present compact imaging devices for near-infrared microscopy, in which a metalens is exploited. The indicators including resolution, magnification, and image quality are investigated via imaging several specimens of intestinal cells to verify the overall performance of the imaging system. The further compact devices, where the metalens is integrated directly on the CMOS imaging sensor, are also researched to detect biomedical issues. This study provides an approach to constructing compact imaging devices based on metalenses for near-infrared microscopy, micro-telecopy, etc., which can promote the miniaturization tending of futural optical systems.

2.
Environ Sci Technol ; 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633787

RESUMO

Graphitized nanodiamonds (ND) exhibit outstanding capability in activating peroxymonosulfate (PMS) for the removal of aqueous organic micropollutants (OMPs). However, controversial observation and interpretation regarding the effect of graphitization degree on ND's activity and the role of singlet oxygen (1O2) in OMP degradation need to be clarified. Herein, we investigated graphitized ND-mediated PMS activation. Experiments show that the activity of ND increases first and then decreases with the monotonically increased graphitization degree. Further experimental and theoretical studies unveil that the intensified surface graphitization alters the degradation mechanism from singlet oxygenation to an electron-transfer pathway. Moreover, for the first time, we applied a self-constructed, time-resolved phosphorescence detection system to provide direct evidence for 1O2 production in the PMS-based system. This work not only elucidates the graphitization degree-dependent activation mechanism of PMS but also provides a reliable detection system for in situ analysis of 1O2 in future studies.

3.
Blood Purif ; : 1-8, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34638121

RESUMO

INTRODUCTION: The impact of early-onset peritonitis (EOP) on patients with diabetes undergoing peritoneal dialysis (PD) has not been adequately addressed. We therefore sought to investigate the effects of EOP on the therapeutic response to management and long-term prognostic outcomes in patients with diabetes undergoing PD. METHODS: For this retrospective cohort study, we analyzed the data for patients with end-stage renal disease, who were also suffering from diabetes mellitus and had undergone PD between January 1, 2013, and December 31, 2018. EOP was defined as the first episode of peritoneal dialysis-related peritonitis (PDAP) occurring within 12 months of PD initiation. All patients were divided into an EOP group and a later-onset peritonitis (LOP) group. Clinical data, treatment results, and outcomes were compared between groups. RESULTS: Ultimately, 202 patients were enrolled for the analysis. Compared to the EOP group, the LOP group had more Streptococcus (p = 0.033) and Pseudomonas (p = 0.048). Patients with diabetes in the EOP group were less likely to have PDAP-related death (OR 0.13, CI: 0.02-0.82, p = 0.030). Patients with diabetes in the EOP group were more likely to have multiple episodes of PDAP and had higher rates of technical failure and poorer patient survival than those in the LOP group, as indicated by Kaplan-Meier analysis (p = 0.019, p = 0.004, and p < 0.001). In the multivariate Cox proportional hazards model, EOP was a significant predictor for multiple PDAP (HR 4.20, CI: 1.48-11.96, p = 0.007), technical failure (HR 6.37, CI: 2.21-18.38, p = 0.001), and poorer patient survival (HR 3.09, CI: 1.45-6.58, p = 0.003). CONCLUSIONS: The occurrence of EOP is significantly associated with lower rates of PDAP-related death and poorer clinical outcomes in patients with diabetes undergoing PD.

4.
Medicine (Baltimore) ; 100(37): e27208, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34664855

RESUMO

RATIONALE: Mutations of the MORC2 gene have most commonly been associated with autosomal-dominant Charcot-Marie-Tooth disease type 2Z (CMT 2Z), while the impact of MORC2 mutations in CMT 2Z on neuronal biology and their phenotypic consequences in patients remain to be clarified. PATIENT CONCERNS: We reported a 27-month-old child with a developmental lag of more than 1 year. He had progressive fatigue for 4 months, accompanied by dysphagia, choking while eating, and progressive aggravation. A genetic study revealed a de novo variant of MORC2, which has not yet been reported. DIAGNOSIS: According to the child's clinical manifestations, genetic pattern, and American College of Medical Genetics and Genomics pathogenicity analysis, the patient was diagnosed with CMT 2Z caused by MORC2 gene mutation. INTERVENTIONS: Mitochondrial cocktail therapy (arginine, vitamin B1 tablets, vitamin B2 tablets, coenzyme Q10 capsules, L-carnitine oral liquid, idebenone tablets, etc) was given. OUTCOMES: Mitochondrial cocktail therapy did not significantly improve the child's condition, head magnetic resonance imaging lesions were not significantly improved at outpatient follow-up more than 1 month later, and the lesions were basically unchanged. LESSONS: The clinical manifestations of the disease were similar to those of Leigh syndrome, and they were not significantly improved by cocktail therapy. This site has not been reported in the literature domestically or abroad, and the pathogenesis of CMT 2Z caused by this site mutation is indeed not related to mitochondrial dysfunction. Our study is helpful for clinicians with regard to the differential diagnosis of Leigh syndrome and CMT 2Z and improvement of clinicians' understanding of CMT 2Z disease.

5.
Theranostics ; 11(19): 9358-9375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646375

RESUMO

Rationale: Atherosclerosis plaque rupture (PR) is the pathological basis and chief culprit of most acute cardiovascular events and death. Given the complex and important role of macrophage apoptosis and autophagy in affecting plaque stability, an important unanswered question include is whether, and how, immunity-related GTPase family M protein (IRGM) and its mouse orthologue IRGM1 affect macrophage survival and atherosclerotic plaque stability. Methods: To investigate whether serum IRGM of ST-segment elevation myocardial infarction (STEMI) patients is related to plaque morphology, we divided 85 STEMI patients into those with and without plaque rupture (PR and non-PR, respectively) based on OCT image analysis, and quantified the patients' serum IRGM levels. Next, we engineered Irgm1 deficient mice (Irgm1 +/-) and chimera mice with Irgm1 deficiency in the bone marrow on an ApoE -/- background, which were then fed a high-fat diet for 16 weeks. Pathological staining was used to detect necrotic plaque cores, ratios of neutral lipids and cholesterol crystal, as well as collagen fiber contents in these mice to characterize plaque stability. In addition, immunofluorescence, immunohistochemical staining and western blot were used to detect the apoptosis of macrophages in the plaques. In vitro, THP-1 and RAW264.7 cells were stimulated with ox-LDL to mimic the in vivo environment, and IRGM/IRGM1 expression were modified by specific siRNA (knockdown) or IRGM plasmid (knocked-in). The effect of IRGM/Irgm1 on autophagy and apoptosis of macrophages induced by ox-LDL was then evaluated. In addition, we introduced inhibitors of the JNK/p38/ERK signaling pathway to verify the specific mechanism by which Irgm1 regulates RAW264.7 cell apoptosis. Results: The serum IRGM levels of PR patients is significantly higher than that of non-PR patients and healthy volunteers, which may be an effective predictor of PR. On a high-fat diet, Irgm1-deficient mice exhibit reduced necrotic plaque cores, as well as neutral lipid and cholesterol crystal ratios, with increased collagen fiber content. Additionally, macrophage apoptosis is inhibited in the plaques of Irgm1-deficient mice. In vitro, IRGM/Irgm1 deficiency rapidly inhibits ox-LDL-induced macrophage autophagy while inhibiting ox-LDL-induced macrophage apoptosis in late stages. Additionally, IRGM/Irgm1 deficiency suppresses reactive oxygen species (ROS) production in macrophages, while removal of ROS effectively inhibits macrophage apoptosis induced by IRGM overexpression. We further show that Irgm1 can affect macrophage apoptosis by regulating JNK/p38/ERK phosphorylation in the MAPK signaling pathway. Conclusions: Serum IRGM may be related to the process of PR in STEMI patients, and IRGM/Irgm1 deficiency increases plaque stability. In addition, IRGM/Irgm1 deficiency suppresses macrophage apoptosis by inhibiting ROS generation and MAPK signaling transduction. Cumulatively, these results suggest that targeting IRGM may represent a new treatment strategy for the prevention and treatment of acute cardiovascular deaths caused by PR.

6.
Carbohydr Polym ; 273: 118570, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560981

RESUMO

Nitrogen fertilizer is a crucial factor affecting the growth and grain quality of Tartary buckwheat. This study was to investigate the synthesis, accumulation, and physicochemical properties of Tartary buckwheat starches under four nitrogen levels (0, 90, 180, 270 kg N ha-1). The results showed that activities of four key enzymes, starch contents all first increased and then decreased with increasing nitrogen levels, and peaked at 180 kg N ha-1. All the starches showed typical A-type, while higher nitrogen levels significantly increased the relative crystallinity. The viscosities significantly decreased, onset, peak, and conclusion first decreased and then increased, while pasting temperature and gelatinization enthalpy increased with increasing nitrogen levels. Nitrogen fertilizer and year had significant effects on the synthesis, accumulation and physicochemical properties of Tartary buckwheat starch, and the nitrogen level of 180 kg N ha-1 was more suitable for planting in the northern area of the Loess Plateau.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34558786

RESUMO

White-light emitting polymers (WLEPs) based on aggregation microenvironment-sensitive aggregation-induced emission (AIE) and Förster resonance energy transfer (FRET) have aroused great interest in lighting and optoelectronic devices. Herein, we developed a novel strategy to construct WLEP particles via a stepwise self-stabilized precipitation polymerization of two emission-complementary AIEgens under core-shell engineering, where the AIE characteristics and FRET process of core-shell fluorescent polymeric particles (CS-FPPs) could be modulated by altering aggregation microenvironment under swelling and shrinking of polymers, facilitating the tunable white light emission of CS-FPPs. Furthermore, such tuning could be fast realized in the solid state, thus demonstrating the potential in anti-counterfeiting. This work proved the significance of aggregation microenvironment on emission of luminogens, guiding the development of high-efficiency emission-tunable materials.

8.
J Hazard Mater ; 416: 125829, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492790

RESUMO

Enhancing the performance of adsorbents to the utmost extent is an objective but challenging in applying adsorption technology to wastewater treatment. In this work, novel quaternary ammonium polymers (QAPs) with high density adsorption site (i.e., quaternized N, confirmed by FT-IR results) were designed and prepared for rapid selective removal of Cr(VI) from water. The results of EDS analysis indicated the maximum exposure rate of N on the surface of QAPs was as high as 86.1%, which almost doubled comparing to that of Cr(VI) ions imprinted polymers (Cr(VI)-IIP) (46.2%). Interestingly, the maximum adsorption capacity (211.8 mg/g) and initial adsorption rate (h0, 66.6 mg/ (g·min)) of QAPs (i.e., 5:1(TRIM)) for Cr(VI) are about 3.6 times and 4.9 times those of Cr(VI)-IIP (63.0 mg/g and 13.5 mg/(g·min)), respectively. Impressively, flow-through adsorption experiments demonstrated 5:1(TRIM) can completely remove 5 mg/L of Cr(VI) within five seconds. Additionally, 5:1(TRIM) exhibited a remarkable selectivity for Cr(VI) adsorption, and high purity (100%) of chromium can be readily obtained. The proposed idea of high exposure effect of the adsorption site can provide a valuable guidance for designing rapid selective adsorbents to remove and reclaim Cr(VI) from wastewater.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
9.
Comput Methods Programs Biomed ; 211: 106406, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34536634

RESUMO

BACKGROUND AND OBJECTIVE: Given that the novel coronavirus disease 2019 (COVID-19) has become a pandemic, a method to accurately distinguish COVID-19 from community-acquired pneumonia (CAP) is urgently needed. However, the spatial uncertainty and morphological diversity of COVID-19 lesions in the lungs, and subtle differences with respect to CAP, make differential diagnosis non-trivial. METHODS: We propose a deep represented multiple instance learning (DR-MIL) method to fulfill this task. A 3D volumetric CT scan of one patient is treated as one bag and ten CT slices are selected as the initial instances. For each instance, deep features are extracted from the pre-trained ResNet-50 with fine-tuning and represented as one deep represented instance score (DRIS). Each bag with a DRIS for each initial instance is then input into a citation k-nearest neighbor search to generate the final prediction. A total of 141 COVID-19 and 100 CAP CT scans were used. The performance of DR-MIL is compared with other potential strategies and state-of-the-art models. RESULTS: DR-MIL displayed an accuracy of 95% and an area under curve of 0.943, which were superior to those observed for comparable methods. COVID-19 and CAP exhibited significant differences in both the DRIS and the spatial pattern of lesions (p<0.001). As a means of content-based image retrieval, DR-MIL can identify images used as key instances, references, and citers for visual interpretation. CONCLUSIONS: DR-MIL can effectively represent the deep characteristics of COVID-19 lesions in CT images and accurately distinguish COVID-19 from CAP in a weakly supervised manner. The resulting DRIS is a useful supplement to visual interpretation of the spatial pattern of lesions when screening for COVID-19.

10.
Brief Bioinform ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410360

RESUMO

The global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to a dramatic loss of human life worldwide. Despite many efforts, the development of effective drugs and vaccines for this novel virus will take considerable time. Artificial intelligence (AI) and machine learning (ML) offer promising solutions that could accelerate the discovery and optimization of new antivirals. Motivated by this, in this paper, we present an extensive survey on the application of AI and ML for combating COVID-19 based on the rapidly emerging literature. Particularly, we point out the challenges and future directions associated with state-of-the-art solutions to effectively control the COVID-19 pandemic. We hope that this review provides researchers with new insights into the ways AI and ML fight and have fought the COVID-19 outbreak.

11.
J Hazard Mater ; 423(Pt A): 127000, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34461547

RESUMO

The discharge of rare earth element (REE) tailings wastewater results in serious ecological deterioration and health risk, due to high ammonia nitrogen, and strong acidity. The low C/N ratio makes it recalcitrant to biodegradation. Recently it has been shown that microalgal technology has a promising potential for the simultaneous harsh wastewater treatment and resource recovery. However, the low nitrogen removal rate and less biomass of microalgae restricted its development. In this work, Chlorococcum sp. was successfully isolated from the rare earth mine effluent. The microalgae was capable of enhancing nitrogen contaminants removal from REEs wastewater due to the carbonate addition, which simulated the activity increase of carbonic anhydrase (CA). The total inorganic nitrogen (TIN) removal rate reached 4.45 mg/L h-1, which compared to other microalgal species, the nitrogen removal rate and biomass yield were 7.8- and 4.9-fold higher, respectively. Notably, high lipid contents (mainly triglycerides, 43.85% of dry weight) and a high biomass yield were obtained. Meanwhile, the microalgae had an excellent settleability attributed to higher extracellular polymeric substance (EPS) formation, leading to easier resource harvest. These results were further confirmed in a continuous-flow photobioreactor with a stable operation for more than 30 days, indicating its potential for application.

12.
Neurogenetics ; 22(4): 323-332, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34370157

RESUMO

Mutations in CSNK2B lead to Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), a rare neurodevelopmental disorder. Only 14 cases of POBINDS have been reported worldwide. The main manifestations are seizures, often tonic-clonic, with or without intellectual disability, growth retardation, and developmental language retardation. We conducted a comprehensive phenotypic mining and trio-whole exome sequencing on six children with POBINDS for gene diagnosis and analyzed the different variants using bioinformatics analysis software and related experiments. This paper reviews previous literature and discusses two common missense variants that lead to structural changes. Among the six patients, four, one, and one had tonic-clonic, myoclonic, and febrile seizures, respectively. Language development disorder, motor development disorder, and developmental delay/intellectual disability (DD/ID) are the main clinical features. All children had de novo mutations in CSNK2B, including three missense variants (c.410G > T/p.(Cys137Phe), c.494A > G/p.(His165Arg), and c.3G > A/p.(Met1Ile)), two splice variants (c.292-2A > T, c.558-3 T > G), and one frameshift variant (c.499delC/p.(Leu167Serfs*60)). Three missense variants were predicted to be harmful by various software programs, and two splicing variants were found to produce new exonic splicing enhancers by the minigene assay. Western blot analysis showed that the frameshift variant resulted in decreased protein expression. According to a literature review, c.3G > A/p.(Met1Ile), c.292-2A > T, c.558-3 T > G, and c.499delC/p.(Leu167Serfs*60) are novel variants of CSNK2B. The decrease or loss of protein function caused by CSNK2B mutations may be a pathogenic factor in this cohort. The severity of the POBINDS phenotype differs, and refractory epilepsy may be accompanied by a more serious DD/ID, language disorder, and motor retardation. At present, there is no specific treatment, and antiepileptic therapy usually requires the combination of two or more anti-epileptic drugs.

13.
Angew Chem Int Ed Engl ; 60(42): 22722-22728, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34402159

RESUMO

Designing and modulating the local structure of metal sites is the key to gain the unique selectivity and high activity of single metal site catalysts. Herein, we report strain engineering of curved single atomic iron-nitrogen sites to boost electrocatalytic activity. First, a helical carbon structure with abundant high-curvature surface is realized by carbonization of helical polypyrrole that is templated from self-assembled chiral surfactants. The high-curvature surface introduces compressive strain on the supported Fe-N4 sites. Consequently, the curved Fe-N4 sites with 1.5 % compressed Fe-N bonds exhibit downshifted d-band center than the planar sites. Such a change can weaken the bonding strength between the oxygenated intermediates and metal sites, resulting a much smaller energy barrier for oxygen reduction. Catalytic tests further demonstrate that a kinetic current density of 7.922 mA cm-2 at 0.9 V vs. RHE is obtained in alkaline media for curved Fe-N4 sites, which is 31 times higher than that for planar ones. Our findings shed light on modulating the local three-dimensional structure of single metal sites and boosting the catalytic activity via strain engineering.

14.
Cell Rep ; 36(1): 109338, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34233182

RESUMO

NMDA receptor (NMDAR)-dependent Ca2+ influx underpins multiple forms of synaptic plasticity. Most synaptic NMDAR currents in the adult forebrain are mediated by GluN2A-containing receptors, which are rapidly inserted into synapses during long-term potentiation (LTP); however, the underlying molecular mechanisms remain poorly understood. In this study, we show that GluN2A is phosphorylated at Ser-1459 by Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) in response to glycine stimulation that mimics LTP in primary neurons. Phosphorylation of Ser-1459 promotes GluN2A interaction with the sorting nexin 27 (SNX27)-retromer complex, thereby enhancing the endosomal recycling of NMDARs. Loss of SNX27 or CaMKIIα function blocks the glycine-induced increase in GluN2A-NMDARs on the neuronal membrane. Interestingly, mutations of Ser-1459, including the rare S1459G human epilepsy variant, prolong the decay times of NMDAR-mediated synaptic currents in heterosynapses by increasing the duration of channel opening. These findings not only identify a critical role of Ser-1459 phosphorylation in regulating the function of NMDARs, but they also explain how the S1459G variant dysregulates NMDAR function.

15.
Neural Netw ; 142: 457-478, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273616

RESUMO

Least squares twin support vector machine (LSTSVM) is an effective and efficient learning algorithm for pattern classification. However, the distance in LSTSVM is measured by squared L2-norm metric that may magnify the influence of outliers. In this paper, a novel robust least squares twin support vector machine framework is proposed for binary classification, termed as CL2,p-LSTSVM, which utilizes capped L2,p-norm distance metric to reduce the influence of noise and outliers. The goal of CL2,p-LSTSVM is to minimize the capped L2,p-norm intra-class distance dispersion, and eliminate the influence of outliers during training process, where the value of the metric is controlled by the capped parameter, which can ensure better robustness. The proposed metric includes and extends the traditional metrics by setting appropriate values of p and capped parameter. This strategy not only retains the advantages of LSTSVM, but also improves the robustness in solving a binary classification problem with outliers. However, the nonconvexity of metric makes it difficult to optimize. We design an effective iterative algorithm to solve the CL2,p-LSTSVM. In each iteration, two systems of linear equations are solved. Simultaneously, we present some insightful analyses on the computational complexity and convergence of algorithm. Moreover, we extend the CL2,p-LSTSVM to nonlinear classifier and semi-supervised classification. Experiments are conducted on artificial datasets, UCI benchmark datasets, and image datasets to evaluate our method. Under different noise settings and different evaluation criteria, the experiment results show that the CL2,p-LSTSVM has better robustness than state-of-the-art approaches in most cases, which demonstrates the feasibility and effectiveness of the proposed method.

16.
Genes (Basel) ; 12(6)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071650

RESUMO

Nitraria tangutorum Bobrov is a halophyte that is resistant to salt and alkali and is widely distributed in northwestern China. However, its genome has not been sequenced, thereby limiting studies on this particular species. For species without a reference genome, the full-length transcriptome is a convenient and rapid way to obtain reference gene information. To better study N. tangutorum, we used PacBio single-molecule real-time technology to perform full-length transcriptome analysis of this halophyte. In this study, a total of 21.83 Gb of data were obtained, and 198,300 transcripts, 51,875 SSRs (simple sequence repeats), 55,574 CDS (coding sequence), and 74,913 lncRNAs (long non-coding RNA) were identified. In addition, using this full-length transcriptome, we identified the key Na+/H+ antiporter (NHX) genes that maintain ion balance in plants and found that these are induced to express under salt stress. The results indicate that the full-length transcriptome of N. tangutorum can be used as a database and be utilized in elucidating the salt tolerance mechanism of N. tangutorum.

17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(1): 97-105, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-34117849

RESUMO

:To explore the value of quantitative perfusion histogram parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in pathological classification of uterine leiomyoma and its correlation with Ki-67 protein expression. Thirty five patients with uterine leiomyoma confirmed by operation and pathology at Shaoxing People's Hospital from October 2015 to September 2017 were analyzed retrospectively,including 15 cases of ordinary type,8 cases of cellular type and 12 cases of degenerative type. All patients were examined by pelvic DCE-MRI before operation,and the histogram parameters (median,mean,skewness,kurtosis,energy,entropy) of various quantitative perfusion parameters,including volume transport constant (K),rate constant (K),extravascular extracellular space distribute volume per unit tissue volume (V),blood plasma volume per unit volume of tissue (V) were calculated,and the efficacy of different parameters in pathological classification of uterine leiomyoma was evaluated by ROC curve. The expression of Ki-67 protein in uterine leiomyoma was detected by immunohistochemical method,and the correlation between histogram parameters and Ki-67 protein expression was analyzed by Pearson and Spearman correlation analysis. The median and mean values of K,K,V and V in the cellular group were higher than those in the degenerative group and the ordinary group(<0.05 or <0.01),while the skewness of V,the skewness and kurtosis of K in the cellular group were lower than those in the ordinary group (all <0.05). The entropy of K in the cellular group was higher than that in the degenerative group and the ordinary group (all < 0.05). The entropy of V in the cellular group was higher than that in the ordinary group (<0.01). The median,mean,skewness of K,median and mean of K,median and mean of V,median,mean,energy and entropy of V were correlated with Ki-67 expression(all <0.05). The results of ROC curve analysis showed that the median threshold of K was 0.994/min,the sensitivity and specificity for the diagnosis of cellular uterine leiomyoma were 100.0% and 77.8% respectively,and the area under the ROC curve was 0.949. When the mean threshold of K was 1.170/min,the sensitivity and specificity for diagnosing cellular uterine leiomyoma were 100.0% and 77.8% respectively,and the area under the ROC curve was 0.958. The area under the ROC curve of K (entropy),K (median,mean),V (median,mean,entropy) in the diagnosis of cellular uterine leiomyoma were 0.755-0.907. :DCE-MRI quantitative perfusion histogram parameters have high diagnostic value in differentiating pathological types of uterine leiomyoma,especially for cellular uterine leiomyoma.


Assuntos
Meios de Contraste , Leiomioma , Humanos , Leiomioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Perfusão , Estudos Retrospectivos
18.
Biopharm Drug Dispos ; 42(7): 338-347, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34138477

RESUMO

This study was intended to delineate the profile of double-negative T cells (DNTs) in NOD.Cg-Prkdcscid Il2rgtm1wj /SzJ mice and cytokines released from DNTs in vivo and in vitro. Total 4 × 107 cells of RC1012 injection per mice were intravenously infused. IFN-γ, TNF-α, IL-1ß, IL-2, IL-4, IL-6, IL-10 were measured in vivo and in vitro. A quantitative polymerase chain reaction (PCR) was employed to determine the gene copies of Notch2-NLA per DNT cell from collected organs. Cytokines were significantly increased in vitro (4 h) and in vivo (3 h). DNT cells were distributed into the lung, liver, heart, and kidney earlier, and redistributed to lymphocyte homing spleen and bone marrow, which seemed to frame a two-compartment pharmacokinetics (PK) model but more data are needed to confirm this, and the clearance of DNT cells fell into first-order kinetics.

19.
BMC Pediatr ; 21(1): 256, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074259

RESUMO

BACKGROUND: Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of chronic encephalopathies characterized by epilepsy with comorbid intellectual disability that are frequently associated with de novo nonsynonymous coding variants in ion channels, cell-surface receptors, and other neuronally expressed genes. Mutations in TRPM3 were identified as the cause of DEE. We report a novel patient with DEE carrying a de novo missense mutation in TRPM3, p.(S1202T); this missense mutation has never been reported. CASE PRESENTATION: A 7-year and 2-month-old Chinese patient who had recurrent polymorphic seizures was clinically diagnosed with DEE. A de novo missense mutation in TRPM3, which has not yet been reported, was identified in this case. The patient had a clinical phenotype consistent with previous reports. CONCLUSIONS: These findings could expand the spectrum of TRPM3 mutations and might also support that de novo substitutions of TRPM3 are a cause of DEE.


Assuntos
Epilepsia , Deficiência Intelectual , Canais de Cátion TRPM , Criança , China , Epilepsia/genética , Humanos , Lactente , Deficiência Intelectual/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , Canais de Cátion TRPM/genética
20.
ACS Appl Mater Interfaces ; 13(25): 29641-29653, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34143610

RESUMO

Herein, the catalytic properties and reaction mechanisms of the 3d, 4d, and 5d transition metals embedded in 2D rectangular tetracyanoquinodimethane (TM-rTCNQ) monolayers as single-atom catalysts (SACs) for the electrocatalytic N2 reduction reaction (NRR) were systematically investigated, using first-principles calculations. A series of high-throughput screenings were carried out on 30 TM-rTCNQ monolayers, and all possible NRR pathways were explored. Three TM-rTCNQ (TM = Mo, Tc, and W) SACs were selected as promising new NRR catalyst candidates because of their high structural stability and good catalytic performance (low onset potential and high selectivity). Our results show that the Mo-rTCNQ monolayer can catalyze NRR through a distal mechanism with an onset potential of -0.48 V. Surprisingly, the NH3 desorption energy on the Mo-rTCNQ monolayer is only 0.29 eV, the lowest one reported in the literature so far, which makes the Mo-rTCNQ monolayer a good NRR catalyst candidate. In-depth research studies on the structures of N2-TM-rTCNQ (TM = Mo, Tc, and W) found that strong adsorption and activation performance of TM-rTCNQ for N2 may be due to the strong charge transfer and orbital hybridization between the TM-rTCNQ catalyst and the N2 molecules. Our work provides new ideas for achieving N2 fixation under environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...