Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Anal Chim Acta ; 1140: 60-68, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33218490

RESUMO

A powerful and fast glycopeptide/glycan enrichment method is critical for the efficiency and throughput of mass spectrometry (MS)-based glycoproteomic and glycomic analyses, especially for large-scale sample analysis. Here, we report an ultrafast and effective method for both intact N-glycopeptide and N-glycan enrichment and apply it to human serum samples. In this method, a natural hydrophilic material, bacterial cellulose (BC), was adopted and fully optimized for enrichment. This method offers the following advantages: (i) The enrichment material has natural hydrophilicity and is low-cost, biocompatible, biodegradable and easily accessible; (ii) the whole enrichment procedure is remarkably simple and fast. It takes only 10 min for intact glycopeptides/glycans to be easily purified from mixtures; (iii) the specificity of this method is over 94% for both glycan and glycopeptide enrichment; and (iv) the outstanding specificity of this technique enables high isolation efficiency for the enrichment of both intact glycopeptides and glycans. A total of 36 N-glycans and 31 N-glycopeptides were identified from human immunoglobulin G (IgG). The glycan and glycopeptide absorption capacity of BC was as high as 333 µg/mg and 250 µg/mg (IgG/BC) respectively. The selectivity for glycan and glycopeptide enrichment reached 1:100 (IgG/bovine serum albumin (BSA), molar ratio) and 1:200 (maltoheptaose (DP7)/BSA, molar ratio), respectively. Furthermore, a total of 159 N-glycans and 523 N-glycopeptides were identified in human serum by using this method. Overall, the BC-based enrichment method we present here provides an ultrafast and highly efficient method for the enrichment of both N-glycopeptides and N-glycans in complex samples and shows great potential in large-scale glycoproteomic and glycomic analyses.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32920739

RESUMO

BACKGROUNDS: Triple negative breast cancer (TNBC) is a heterogeneous disease with more aggressive clinical courses than other subtypes of breast cancer. In this study, we performed high-resolution mass spectrometry-based quantitative proteomics with TNBC clinical tissue specimens to explore the early and sensitive diagnostic signatures and potential therapeutic targets for TNBC patients. METHODS: We performed an iTRAQ labeling coupled LC-MS/MS approach to explore the global proteome in tumor tissues and corresponding para-tumor tissues from 24 patients with grade I-II and grade III primary TNBC. Relative peptide quantification and protein identification were performed by Proteome Discoverer™ software with Mascot search engine. Differentially expressed proteins were analyzed by bioinformatic analyses, including GO function classification annotation and KEGG enrichment analysis. Pathway analyses for protein-protein interactions and upstream regulations of differentially expressed candidates were performed by Ingenuity Pathway Analysis (IPA) software. RESULTS: Totally, 5401 unique proteins were identified and quantified in different stage of TNBCs. 845 proteins were changed in patients with grade I or II TNBC, among which 304 were up-regulated and 541 were down-regulated. Meanwhile, for patients with grade III TNBC, 358 proteins were increased and 651 proteins were decreased. Comparing to para-cancerous tissues, various signaling pathways and metabolic processes, including PPAR pathways, PI3K-Akt pathway, one-carbon metabolism, amino acid synthesis, and lipid metabolism were activated in TNBC cancer tissues. Death receptor signaling was significantly activated in grade I-II TNBCs, however, remarkably inhibited in grade III TNBCs. Western blot experiments were conducted to validate expression levels of CYCS, HMGA1 and XIAP with samples from individual patients. CONCLUSIONS: Overall, our proteomic data presented precise quantification of potential signatures, signaling pathways, regulatory networks, and characteristic differences in each clinicopathological subgroup. The proteome provides complementary information for TNBC accurate subtype classification and therapeutic targets research.

3.
J Immunol Res ; 2020: 3792409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953892

RESUMO

Over the past several years, SIRT5 has attracted considerable attention in metabolic regulation. However, the function of SIRT5 in tumorigenesis by regulating tumor microenvironment is poorly understood. In this work, we found that Sirt5 knockout mice were resistant to AOM and DSS-induced colitis-associated colorectal tumorigenesis and the level of IFN-γ in their tumor microenvironment was higher. Additionally, proteome and network analysis revealed that SIRT5 was important in the T cell receptor signaling pathway. Furthermore, we determined that a deficiency of Sirt5 induced stronger T cell activation and demonstrated that SIRT5 played a pivotal role in regulating the differentiation of CD4+ regulatory T (Treg) cells and T helper 1 (Th1) cells. An imbalance in the lineages of immunosuppressive Treg cells and the inflammatory Th1 subsets of helper T cells leads to the development of colon cancer. Our results revealed a regulatory role of SIRT5 in T cell activation and colorectal tumorigenesis.

4.
Br J Cancer ; 123(6): 1012-1023, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32601462

RESUMO

BACKGROUND: The molecular signature underlying pancreatic ductal adenocarcinoma (PDAC) progression may include key proteins affecting the malignant phenotypes. Here, we aimed to identify the proteins implicated in PDAC with different tumour-node-metastasis (TNM) stages. METHODS: Eight-plex isobaric tags coupled with two-dimensional liquid chromatography-tandem mass spectrometry were used to analyse the proteome of PDAC tissues with different TNM stages. A loss-of-function study was performed to evaluate the oncogenic roles of WD repeat-containing protein 1 (WDR1) in PDAC. The molecular mechanism by which WDR1 promotes PDAC progression was studied by real-time qPCR, Western blotting, proximity ligation assay and co-immunoprecipitation. RESULTS: A total of 5036 proteins were identified, and 4708 proteins were quantified with high confidence. Compared with normal pancreatic tissues, 37 proteins were changed significantly in PDAC tissues of different stages. Moreover, 64 proteins were upregulated or downregulated in a stepwise manner as the TNM stages of PDAC increased, and 10 proteins were related to tumorigenesis. The functionally uncharacterised protein, WDR1, was highly expressed in PDAC and predicted a poor prognosis. WDR1 knockdown suppressed PDAC tumour growth and metastasis in vitro and in vivo. Moreover, WDR1 knockdown repressed the activity of the Wnt/ß-Catenin pathway; ectopic expression of a stabilised form of ß-Catenin restored the suppressive effects of WDR1 knockdown. Mechanistically, WDR1 interacted with USP7 to prevent ubiquitination-mediated degradation of ß-Catenin. CONCLUSION: Our study identifies several previous functional unknown proteins implicated in the progression of PDAC, and provides new insight into the oncogenic roles of WDR1 in PDAC development.

5.
Analyst ; 145(15): 5299-5306, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32677633

RESUMO

Serum/plasma holds promise as an important source of disease-related proteins and even biomarkers in clinical practice. However, the discovery of biomarker candidates in serum/plasma remains challenging. In this study, we constructed an MS strategy that enables the fast and precise quantification of serum biomarkers through coupling a high-throughput scheduled MRM strategy with a stable isotope-labelled (SIL) peptide panel from more than 500 plasma proteins as internal standards. With this strategy, we discovered relevant serum proteins of atherosclerosis (AS), lung cancer (LC) and breast cancer (BC), which can simultaneously recognize these diseases. The results indicate that the powerful strategy we constructed has the potential for serum biomarker screening and disease detection.

6.
Mol Cell Proteomics ; 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611611

RESUMO

Intact glycopeptide identification has long been known as a key and challenging barrier to the comprehensive and accurate understanding the role of glycosylation in an organism. Intact glycopeptide analysis is a blossoming field that has received increasing attention in recent years. Mass spectrometry (MS)-based strategies and relative software tools are major drivers that have greatly facilitated the analysis of intact glycopeptides, particularly intact N-glycopeptides. This manuscript provides a systematic review of the intact glycopeptide identification process using mass spectrometry data generated in shotgun proteomic experiments, which typically focus on N-glycopeptide analysis. Particular attention is paid to the software tools that have been recently developed in the last decade for the interpretation and quality control of glycopeptide spectra acquired using different MS strategies. The review also provides information about the characteristics and applications of these software tools, discusses their advantages and disadvantages, and concludes with a discussion of outstanding tools.

7.
Analyst ; 145(15): 5252-5259, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32617538

RESUMO

Glycosylation is an important mechanism of secondary protein processing. Large-scale profiling of glycopeptides released by proteolytic digestion of glycoproteins from biologic samples with complex compositions is limited due to their low abundance. Herein, we present a multimodal material based on boronic acid-modified mesoporous magnetic particles with a hydrophilic surface and enlarged pores around 10 nm. Multimodal enrichment successfully improved the enrichment specificity and efficiency of BMMP by synergistic interaction of hydrophilicity and boronic acid functional groups. The 10 nm pore size allows glycopeptides to enter the channel. Hydrophilic glycopeptides could be selectively enriched with an extremely low limit of detection (0.33 fmol per µL) and a high selectivity (1 : 100). From 2 µL of human serum, 328 unique glycopeptides from 101 glycoproteins were identified. A total of 33% of those glycoproteins overlapped with FDA-cleared blood serum biomarkers. It is expected that BMMP in the future can be used for large-scale biomedical glycoproteomics studies.

8.
Pharmacol Res ; 159: 104992, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505833

RESUMO

Chronic infection of Hepatitis B virus (HBV) has long been recognized as a major risk factor in the initiation and development of hepatocellular carcinoma (HCC), contributing to over half the cases of HCC worldwide. Transformation of the liver with HBV infection to HCC mainly results from long-term interaction between HBV and the host hepatocytes via a variety of mechanisms, including HBV DNA integration, prolonged expression of the viral HBx regulatory protein and/or aberrant preS/S envelope proteins, and epigenetic dysregulation of tumor suppressor genes. While there have been several failures in the development of drugs for HCC, the immune-tolerant microenvironment of this malignancy suggests that immunotherapeutic agents could provide benefits for these patients. This is supported by recent data showing that immunotherapy has promising activity in patients with advanced HCC. In this review, we provide an overview of HBV-induced HCC and recent immune based approaches for the treatment of HCC patients.

10.
Anal Chim Acta ; 1119: 25-34, 2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32439051

RESUMO

In this study, we constructed a high specific and efficient serum biomarker discovery pipeline. We utilized dysregulated proteins identified in primary tissue and potentially secreted into the blood as biomarker candidates. The scheduled multiple reaction monitoring method was performed to accurately quantify and verify these candidates directly in serum, thus circumventing the effects of high-abundance proteins. We then generated new variables through assigning values to protein-protein correlations to extend the dimensionality of the dataset (PPC-VDE), and the specificity of disease classification. We successfully applied this pipeline for biomarker discovery of dilated cardiomyopathy and achieved 88.6% accurate classification of dilated cardiomyopathy, ischemic cardiomyopathy and healthy controls with machine learning. This pipeline is straightforward for biomarker discovery in broad clinical field.

11.
Anal Chem ; 92(9): 6777-6784, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275135

RESUMO

Precise and automated analysis of site-specific O-glycosylation on single proteins is crucial for comprehensive characterization of some important glycoproteins, such as tumor biomarkers and recombinant drug proteins. Mass spectrometry has been proven to be a powerful technique for protein sequencing and N-glycosylation analysis. However, challenges remain in developing computational tools for intact O-glycopeptide analysis, which has greatly hindered the development of mass-spectrometry-based O-glycosylation analysis. Herein, an integrated strategy together with a dedicated automated computational tool termed AOGP was developed for intact O-glycopeptide analysis on single proteins. AOGP utilized de novo sequencing for O-glycans and a database search strategy for peptide backbones. The false discovery rate (FDR) of the identification results was controlled and validated by a mixed Gaussian distribution estimation method. AOGP exhibited superior performance in identifying intact O-glycopeptides of the human erythropoietin with a total of 188 O-glycopeptide spectra reported under 1% FDR. AOGP is developed in Python, is fully open-sourced, and is equipped with a user-friendly interface. Such an easy-operating and robust tool would greatly facilitate O-glycosylation analysis on single proteins in tumor biomarker and recombinant drug protein development.

12.
Pharmacol Res ; 157: 104800, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32278046

RESUMO

The HBV-initiated hepatocellular carcinoma (HCC) frequently develops from or accompanies long-term chronic hepatitis, inflammation, and cirrhosis, and has a poor prognosis. Sorafenib, an orally active multi-kinase inhibitor, currently the most common approved drug for first-line systemic treatment of advanced HCC, only improves overall survival of three months, suggesting the need for new therapeutic strategies. In this study, we identified that sorafenib selectively resisted in immune competent C57BL/6 mice but not nude mice. The chemokines CCL22 and CCL17 were upregulated by sorafenib, which elevated dramatically higher in HBV-associated HCC. Mechanically, sorafenib accelerates CCL22 expression via TNF-α-RIP1-NF-κB signaling pathway. Blocking CCL22 signaling with antagonist C-021 and sorafenib treated in combination can inhibit tumor growth and enhance the antitumor response, whereas no significant differences in tumor burden were observed in nude mice upon addition of C-021. These findings strongly suggest that CCL22 signaling pathway strongly contributes to sorafenib resistance in HBV-associated HCC, indicating a potential therapeutic strategy for immunological chemotherapy complementing first-line agents against HBV-associated HCC.

13.
Clin Chim Acta ; 506: 214-221, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32243985

RESUMO

BACKGROUND: Pancreatic cancer (PC) is the fourth leading cause of cancer death because of its subtle clinical symptoms in the early stage. To discover particular serum metabolites as potential biomarkers to differentiate pancreatic carcinoma from benign disease (BD) is on urgent demand. METHOD: To comprehensively analyze serum metabolites obtained from 14 patients with PC, 10 patients with BD and 10 healthy individuals (normal control, NC), we separated the metabolites using both reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC). The data were acquired on a high-resolution quadrupole time-of-flight mass spectrometer operated in negative (ESI-) and positive (ESI+) ionization modes, respectively. Differential metabolites were selected by univariate (Student's t test) and multivariate (orthogonal partial least squares-discriminant analysis (OPLS-DA)) statistics. Sequential window acquisition of all theoretical spectra (SWATH) analysis was further utilized to validate the metabolites found in discovery stage. The receiver operator characteristics (ROC) curve analysis was performed to evaluate predictive clinical usefulness of 8 metabolites. RESULTS: A total of 8 metabolites including taurocholic acid, glycochenodexycholic acid, glycocholic acid, L-glutamine, glutamic acid, L-phenylalanine, L-tryptophan, and L-arginine were identified and relatively quantified as differential metabolites for discriminating PC, BD and NC. The 8 metabolites and their combination discriminated PC from BD and NC with well-performed area under the curve (AUC) values, sensitivity and specificity. CONCLUSION: Bile acids (especially taurocholic acid) performed to be potential biomarkers in PC diagnosis. Other amino acids (such as L-glutamine, glutamic acid, L-phenylalanine, L-tryptophan, and L-arginine) in serum samples from PC patients might provide a sensitive, blood-borne diagnostic signature for the presence of PC or its precursor lesions.

14.
Analyst ; 145(11): 3967-3976, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319474

RESUMO

Lipid mediators (LMs) play a pivotal role in the induction and resolution of inflammation. To identify and elucidate their involvement during virus infection, multiple reaction monitoring (MRM) based liquid chromatography-tandem mass spectrometry lipidomic profiling of 62 lipid species was performed in this study. Results show that RAW264.7 macrophages differentially produce specific LMs signals depending on difference in virus pathogenicity. Integration of large-scale lipidomics with targeted gene expression data revealed mediators, such as RVD3, 18-HEPE, 11(12)-EET etc. correlated with the pathogenic phase of the infection. The herpes simplex virus (HSV)-induced keratitis model demonstrates that 11(12)-EET treatment represents a novel alternative for treating viral infection.

15.
Expert Rev Proteomics ; 17(1): 11-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914820

RESUMO

Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.

16.
Nat Commun ; 11(1): 146, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919359

RESUMO

Data-independent acquisition (DIA) is an emerging technology for quantitative proteomic analysis of large cohorts of samples. However, sample-specific spectral libraries built by data-dependent acquisition (DDA) experiments are required prior to DIA analysis, which is time-consuming and limits the identification/quantification by DIA to the peptides identified by DDA. Herein, we propose DeepDIA, a deep learning-based approach to generate in silico spectral libraries for DIA analysis. We demonstrate that the quality of in silico libraries predicted by instrument-specific models using DeepDIA is comparable to that of experimental libraries, and outperforms libraries generated by global models. With peptide detectability prediction, in silico libraries can be built directly from protein sequence databases. We further illustrate that DeepDIA can break through the limitation of DDA on peptide/protein detection, and enhance DIA analysis on human serum samples compared to the state-of-the-art protocol using a DDA library. We expect this work expanding the toolbox for DIA proteomics.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Biblioteca de Peptídeos , Proteoma/análise , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Simulação por Computador , Ciência de Dados/métodos , Bases de Dados de Proteínas , Células HeLa , Humanos , Espectrometria de Massas/métodos , Camundongos , Peptídeos/análise , Soro/química
17.
Anal Chem ; 92(1): 867-874, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31751117

RESUMO

Protein N-glycosylation is ubiquitous in the brain and is closely related to cognition and memory. Alzheimer's disease (AD) is a multifactorial disorder that lacks a clear pathogenesis and treatment. Aberrant N-glycosylation has been suggested to be involved in AD pathology. However, the systematic variations in protein N-glycosylation and their roles in AD have not been thoroughly investigated due to technical challenges. Here, we applied multilayered N-glycoproteomics to quantify the global protein expression levels, N-glycosylation sites, N-glycans, and site-specific N-glycopeptides in AD (APP/PS1 transgenic) and wild-type mouse brains. The N-glycoproteomic landscape exhibited highly complex site-specific heterogeneity in AD mouse brains. The generally dysregulated N-glycosylation in AD, which involved proteins such as glutamate receptors as well as fucosylated and oligomannose glycans, were explored by quantitative analyses. Furthermore, functional studies revealed the crucial effects of N-glycosylation on proteins and neurons. Our work provides a systematic multilayered N-glycoproteomic strategy for AD and can be applied to diverse biological systems.

18.
Anal Chem ; 92(1): 732-739, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31775502

RESUMO

Histone modifications play an important role in regulating transcriptional gene expression and chromatin processes in eukaryotes. Increasing researches proved that aberrant post-translational modifications (PTMs) of histones is associated with many diseases. However, MS-based identification and quantification of histone PTMs are still challenging. Although classic chemical derivatization in conjunction with trypsin digestion is widely used for histone PTMs analysis in a bottom-up strategy, several side reactions have been observed in practice. In this work, outer membrane protease T (OmpT) was utilized as a protease for direct histone proteolysis and generated appropriate lengths of histone peptides for retention on reversed-phase chromatography. The powerful and unique tolerance of OmpT for modified lysines and arginines was demonstrated and can be quantitatively described for the first time, making it useful for detecting natural modifications. Using the optimized digestion conditions, we succeeded in identifying 121 histone marks from HEK293T cells, 42 of which were previously unreported. Additionally, histone H3 PTMs were quantitatively profiled in the KMS11 multiple myeloma cells and NSD2 selective knockout KMS11cells, revealing that NSD2 was of high specificity on H3K36 dimethylation. Histone chemical derivatizations are not required in our strategy, showing a remarkable strength over the conventional trypsin-based workflow.

19.
Talanta ; 207: 120340, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594582

RESUMO

The emitter clogging is the most common hardware failure of nano-electrospray ionization, to improve the durability and electrospray stability of fused silica emitters, we demonstrate a means of fabricating nano-electrospray emitters with controllable aperture size and gradually-narrowed channel on the tip. We simulated the fluid morphologies in the emitter channels by computational fluid dynamics and found more stable flow on aperture-controllable nano-electrospray emitter. Besides, we found the unstable flow sections of commercial emitters match the actual clogging sections very well, indicating the main cause of emitter clogging is unstable flow. We further tested the emitters by nano-LC-MS based proteome analysis. Compared with the commercial emitter, aperture-controllable nano-electrospray emitters promoted the total ion chromatogram intensity by 25%, the number of identified proteins by 6.58%, and the number of identified peptides by 7.87%. In total, 989 proteins were identified from 1 µg of extracted mouse cardiac proteins. After the optimization by using mouse samples, we analyzed clinical auricular dextral tissues from patients undergoing cardiac surgery and found 16 proteins related to atrial fibrillation. Overall, aperture-controllable nano-electrospray emitter exhibits better sensitivity and reproducibility in the application of nano-LC-MS cardiac proteome analysis.


Assuntos
Miocárdio/metabolismo , Nanotecnologia/instrumentação , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Fibrilação Atrial/metabolismo , Simulação por Computador , Desenho de Equipamento , Humanos , Hidrodinâmica
20.
FASEB J ; 33(11): 13040-13050, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31487196

RESUMO

Embryonic stem cells (ESCs) are pluripotent stem cells with the ability to self-renew and to differentiate into any cell types of the 3 germ layers. Recent studies have demonstrated that there is a strong connection between mitochondrial function and pluripotency. Here, we report that methyltransferase like (Mettl) 17, identified from the clustered regularly interspaced short palindromic repeats knockout screen, is required for proper differentiation of mouse embryonic stem cells (mESCs). Mettl17 is located in mitochondria through its N-terminal targeting sequence and specifically interacts with 12S mitochondrial ribosomal RNA (mt-rRNA) as well as small subunits of mitochondrial ribosome (MSSUs). Loss of Mettl17 affects the stability of both 12S mt-rRNA and its associated proteins of MSSUs. We further showed that Mettl17 is an S-adenosyl methionine (SAM)-binding protein and regulates mitochondrial ribosome function in a SAM-binding-dependent manner. Loss of Mettl17 leads to around 70% reduction of m4C840 and 50% reduction of m5C842 of 12S mt-rRNA, revealing the first regulator of the m4C840 and indicating a crosstalk between the 2 nearby modifications. The defects of mitochondrial ribosome caused by deletion of Mettl17 lead to the impaired translation of mitochondrial protein-coding genes, resulting in significant changes in mitochondrial oxidative phosphorylation and cellular metabolome, which are important for mESC pluripotency.-Shi, Z., Xu, S., Xing, S., Yao, K., Zhang, L., Xue, L., Zhou, P., Wang, M., Yan, G., Yang, P., Liu, J., Hu, Z., Lan, F. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA