RESUMO
Fat deposition is one of the key factors affecting the economic development of pig husbandry. The aim of this study was to investigate the expression characteristics of caveolae-associated protein 3 (CAVIN3) and to elucidate its effect and mechanism on adipogenic differentiation of porcine preadipocytes. Cell transfection, quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot, and oil red O staining were used to detect the effect of CAVIN3 on the differentiation of porcine preadipocytes. The results showed that CAVIN3 was expressed in various tissues, with higher expression in adipose tissue, differentially expressed during cell adipogenic differentiation, and mainly distributed in the cytoplasm. Functional studies showed that, after CAVIN3 interference in preadipocytes, the expression of adipogenic factors and the content of lipid droplets were significantly decreased (p < 0.05). The results were reversed after CAVIN3 was overexpressed. The mechanism research showed that LY3214996 inhibited the extracellular signal-regulated kinase (ERK) phosphorylation and further inhibited lipogenic factors expression. Overexpression of CAVIN3 attenuates the inhibitory effect of LY3214996 on ERK phosphorylation and attenuates its inhibitory effect on adipogenic differentiation. Therefore, this study demonstrated that CAVIN3 promotes the differentiation of porcine preadipocytes by promoting ERK phosphorylation. The present study can lay a theoretical foundation for further studying the molecular mechanism of porcine fat deposition.
Assuntos
Cavéolas , MAP Quinases Reguladas por Sinal Extracelular , Suínos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Fosforilação , Cavéolas/metabolismo , Adipócitos/metabolismo , Diferenciação Celular/genética , Adipogenia/genéticaRESUMO
BACKGROUND: To compare the surgical status in idiopathic epiretinal membrane (IERM) patients with or without disorganization of retinal inner layers (DRIL) and to correlate with optical coherence tomography angiography (OCTA) and clinical data. METHODS: In 74 eyes from 74 patients with IERM treated by surgery with 12-month follow-up. According to the superficial hemorrhage, the patients were divided into group A (no macular bleeding), group B (macular parafoveal bleeding) and group C (macular foveal bleeding). Optical coherence tomography (OCT) were evaluated for presence of DRIL,central retina thickness and integrity of the inner/outer segment layer recorded at baseline and at 1, 3, 6, and 12 months postoperatively and best-corrected visual acuity (BCVA) was recorded simultaneously. OCTA was conducted at 12 months postoperatively. Main outcome measures is correlation between DRIL and superficial hemorrhage in membrane peeling,and BCVA and OCTA outcomes postoperatively. RESULTS: The rate of DRIL and BCVA had statistically significant differences between the three groups at the time points(baseline and 1, 3, 6, and 12 months after surgery), respectively (P < 0.001 for all). FD-300 value (P = 0.001)and DCP in all parafoveal regions (superior: P = 0.001; inferior: P = 0.002;Nasal: P = 0.014;Tempo: P = 0.004) in eyes with DRIL were lower than those without DRIL.There was a linear regression relationship between FD-300 and postoperative BCVA (P = 0.011). CONCLUSION: IERM Patients with DRIL have more intraoperative adverse events and limited benefits from surgery which should be considered in the decision whether to perform mebrane peeling.OCT-A provides more detailed vascular information that extends our understanding of persistent DRIL.
Assuntos
Membrana Epirretiniana , Humanos , Membrana Epirretiniana/diagnóstico , Membrana Epirretiniana/cirurgia , Estudos Retrospectivos , Angiofluoresceinografia/métodos , Retina/cirurgia , Prognóstico , Hemorragia/cirurgia , Tomografia de Coerência Óptica/métodos , VitrectomiaRESUMO
Introduction: Recent research has focused on the local control of articular inflammation through neuronal stimulation to avoid the systemic side effects of conventional pharmacological therapies. Electroacupuncture (EA) has been proven to be useful for inflammation suppressing and pain reduction in knee osteoarthritis (KOA) patients, yet its mechanism remains unclear. Methods: In the present study, the KOA model was established using the intra-articular injection of sodium monoiodoacetate (MIA) (1 mg/50 µL) into the knee cavity. EA was delivered at the ipsilateral ST36-GB34 acupoints. Hind paw weight-bearing and withdrawl thresholds were measured. On day 9, the histology, dep enrichment proteins, cytokines contents, immune cell population of the synovial membrane of the affected limbs were measured using HE staining, Masson staining, DIA quantitative proteomic analysis, flow cytometry, immunofluorescence staining, ELISA, and Western Blot. The ultrastructure of the saphenous nerve of the affected limb was observed using transmission electron microscopy on the 14th day after modeling. Results: The result demonstrated that EA intervention during the midterm phase of the articular inflammation alleviated inflammatory pain behaviors and cartilage damage, but not during the early phase. Mid-term EA suppressed the levels of proinflammatory cytokines TNF-α, IL-1ß, and IL-6 in the synovium on day 9 after MIA by elevating the level of sympathetic neurotransmitters Norepinephrine (NE) in the synovium but not systemic NE or systemic adrenaline. Selective blocking of the sympathetic function (6-OHDA) and ß2-adrenergic receptor (ICI 118,551) prevented the anti-inflammatory effects of EA. EA-induced increment of the NE in the synovium inhibited the CXCL1-CXCR2 dependent overexpression of IL-6 in the synovial macrophages in a ß2-adrenergic receptor (AR)-mediated manner. Discussion: These results revealed that EA activated sympathetic noradrenergic signaling to control local inflammation in KOA rats and contributed to the development of novel therapeutic neurostimulation strategies for inflammatory diseases.
RESUMO
The fabrication of dense conductive patterns was achieved by low-temperature sintering of 1-3 µm micron silver flakes. A small amount of 20-50 nm nanosilver particles were added in the gaps of the micron silver flakes. The effects of sintering temperature, holding time and heating rate on the morphological evolution and formation mechanism of the sintered silver pattern were investigated in detail. Interestingly, rapid sintering (RS) can be achieved by removing the heating process from 70 °C up to the sintering temperature. The electrical resistivity of the sintered silver patterns was 10.8 × 10-6 Ω cm at 140 °C for 30 min under a pressure of 10 MPa. Moreover, the electrical resistivity of the sintered silver pattern for RS for 20 min does not change significantly after 6000 bending cycles. This work provides a new method to fabricate conductive patterns using micron silver flakes with the purpose of promoting the application of silver inks.
RESUMO
BACKGROUND: To explore and compare the clinical outcomes in patients undergoing primary repair versus augmented repair with a gastrocnemius turn-down flap for acute Achilles tendon rupture. METHODS: From 2012 to 2018, the clinical data of 113 patients with acute Achilles tendon rupture who were treated with primary repair or augmented repair with a gastrocnemius turn-down flap by the same surgeon were retrospectively reviewed. The patients' preoperative and postoperative scores on the visual analog scale (VAS), American Orthopaedic Foot and Ankle Society AnkleâHindfoot (AOFAS) score, the Victorian Institute of Sport AssessmentâAchilles (VISA-A), the Achilles tendon total rupture score (ATRS), and the Tegner Activity Scale were examined and compared. The postoperative calf circumference was measured. A Biodex isokinetic dynamometer was used to evaluate the plantarflexion strength on both sides. The time to return to life and exercise as well as the strength deficits in both groups were recorded. Finally, the correlation analyses between patient characteristics and treatment details with clinical outcomes were conducted. RESULTS: In total, 68 patients were included and completed the follow-up. The 42 and 26 patients who were treated with primary repair and augmented repair were assigned to group A and B, respectively. No serious postoperative complications were reported. No significant between-group differences in any outcomes were observed. It was found that female sex was correlated with poorer VISA-A score (P = 0.009), complete seal of paratenon was correlated with higher AOFAS score (P = 0.031), and short leg cast was correlated with higher ATRS score (P = 0.006). CONCLUSIONS: Augmented repair with a gastrocnemius turn-down flap provided no advantage over primary repair for the treatment of acute Achilles tendon rupture. After surgical treatment, females tended to had poorer outcomes, while complete seal of paratenon and short leg cast contributed to better results. LEVEL OF EVIDENCE: Cohort study; Level of evidence, 3.
Assuntos
Tendão do Calcâneo , Traumatismos do Tornozelo , Traumatismos dos Tendões , Humanos , Feminino , Estudos Retrospectivos , Estudos de Coortes , SeguimentosRESUMO
Purpose: The emerging epitranscriptomics offers insights into the physiopathological roles of various RNA modifications. The RNA methylase NOP2/Sun domain family member 2 (NSUN2) catalyzes 5-methylcytosine (m5C) modification of mRNAs. However, the role of NSUN2 in corneal epithelial wound healing (CEWH) remains unknown. Here we describe the functional mechanisms of NSUN2 in mediating CEWH. Methods: RT-qPCR, Western blot, dot blot, and ELISA were used to determine the NSUN2 expression and overall RNA m5C level during CEWH. NSUN2 silencing or overexpression was performed to explore its involvement in CEWH both in vivo and in vitro. Multi-omics was integrated to reveal the downstream target of NSUN2. MeRIP-qPCR, RIP-qPCR, and luciferase assay, as well as in vivo and in vitro functional assays, clarified the molecular mechanism of NSUN2 in CEWH. Results: The NSUN2 expression and RNA m5C level increased significantly during CEWH. NSUN2 knockdown significantly delayed CEWH in vivo and inhibited human corneal epithelial cells (HCEC) proliferation and migration in vitro, whereas NSUN2 overexpression prominently enhanced HCEC proliferation and migration. Mechanistically, we found that NSUN2 increased ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) translation through the binding of RNA m5C reader Aly/REF export factor. Accordingly, UHRF1 knockdown significantly delayed CEWH in vivo and inhibited HCEC proliferation and migration in vitro. Furthermore, UHRF1 overexpression effectively rescued the inhibitory effect of NSUN2 silencing on HCEC proliferation and migration. Conclusions: NSUN2-mediated m5C modification of UHRF1 mRNA modulates CEWH. This finding highlights the critical importance of this novel epitranscriptomic mechanism in control of CEWH.
Assuntos
Lesões da Córnea , RNA , Humanos , RNA/genética , Córnea , RNA Mensageiro/genética , 5-Metilcitosina , Proteínas Estimuladoras de Ligação a CCAAT , Ubiquitina-Proteína Ligases/genética , MetiltransferasesRESUMO
Gas explosions are the biggest threat to coal mine safety, which often result in sudden massive destruction. When a gas explosion occurs in a mine, it often causes a large number of casualties and property losses, which significantly restricts the development of the coal industry. In this study, a numerical model was established for the excavation and main roadways under the condition of a forward blasting chamber and a blasting wall, and the law of overpressure propagation and the flame temperature were studied. The results show that the overpressure curve first increases and then decreases with time, exhibiting a fluctuating state, and finally tends to stabilize. The overpressure curve with an explosion venting chamber and explosion venting wall oscillates many times; compared with the roadway overpressure reduced by 10% and explosive impulse reduced by 8.5%, the explosion venting chamber and explosion venting wall have a certain explosion venting effect. The flame temperature exhibits a gradual increase in the early stage, a sharp increase in the temperature at the measuring point, a fluctuation in the temperature curve in the later stage, and a significant decrease after the roadway turns. The explosion venting chamber and explosion venting wall with different explosion venting pressures have a slight effect on the temperature of each measuring point in the roadway after a gas explosion.
RESUMO
Microplastics (MPs) are ubiquitous in agricultural soils, but to what extent and how environmental factors determine the source and fate of MPs in agricultural soils is not clear. In this study, Hainan Island, which has different climatic conditions, altitudes, and land uses across the island, was selected to investigate the MPs abundance and the shape, size, color, and polymer type of the MPs in agricultural soils. The main focus was on the role of land use type and the identification of environmental influencing factors. The results showed that MPs were detected in all the soil samples across the island, with an abundance range of 20 to 6790 items kg-1 and an average of 417 items kg-1. Fragments (46.8â¯%), MPs smaller than 0.5â¯mm (37.8â¯%), black MPs (48.3â¯%), and polypropylene MPs (56.8â¯%) were observed as the dominant MPs species. Significantly higher MPs abundance was found in mulched arable land, and higher contents of fibers and fragments were observed in woodland and paddy lands, respectively. With correlation and redundancy analyses, soil pH, soil organic matter content, and average annual temperature were found to be the main factors influencing the biotic/abiotic fragmentation of MPs. The regional population density, including tourism represented by the night light index, affects the input process of MPs. MPs transport and deposition were found to be affected by altitude, annual precipitation, and soil moisture content. This study represents the first large-scale study of MPs contamination in island agricultural soils and provides important data on the distribution, transport, and fate of MPs.
RESUMO
Quasi-one-dimensional (Q1D) semiconductor antimony selenide (Sb2Se3) shows great potential in the photovoltaic field, but the photoelectric conversion efficiency (PCE) of Sb2Se3-based solar cells has shown no obvious breakthrough during the past several years, of which the intrinsic reasons are pending experimentally. Here, we prepare high-quality Q1D Sb2Se3 thin films via the vapor transport deposition technique. By investigating the bandedge electronic level structure and carrier relaxation/recombination dynamics, we find that (i) the optimized Se-rich growth conditions can highly improve the crystal quality of the Q1D Sb2Se3 thin films, the carrier lifetime of which is substantially increased up to â¼8.3 µs; (ii) the Se-rich growth conditions have advantages to annihilate the deep selenium vacancies VSei (i = 1 and 3 for non-equivalent Se atomic sites) but is not effective for the deep donor VSe2, which locates at â¼0.3 eV (300 K) below the conduction band and intrinsically limits the PCE value of devices below â¼7.63%. This work suggests that further optimizing the Se-rich conditions to technically eliminate this kind of deep defect is still essential for preparing high-performance Sb2Se3 film solar cells.
RESUMO
For more than half a centuryï¼the modern bioresearch in acupuncture has made remarkable advancements, proving scientific basis underlying the traditional, intuitive treatment, as well as leading to some new discoveries with the potential to enhance the effectiveness of acupuncture as we know it. Meanwhile, the clinical researches have started to shift its paradigm from traditional individual observation to modern evidence-based medicine. However, there is little interaction between basic and clinic researches, which are like two separate worlds, not benefiting each other. Also the education and training of acupuncture are still traditional style, little combining with modern studies. To bridging the large gap, we need translational science involving in. In this article, with a critical reviews of the limitations of the traditional methods of acupuncture, the challenges faced by clinic practices and placebo-control studies, and the advantages and disadvantages of basic research, we propose a methodological paradigm of the translational research, Translational Acupuncture Research Spectrum, that meets the current situation of acupuncture researches, hoping to give insights into this field and to promote modern acupuncture to move towards a new stage.
Assuntos
Terapia por Acupuntura , Acupuntura , Pesquisa Translacional Biomédica , Ciência Translacional Biomédica , Acupuntura/educação , Medicina Tradicional ChinesaRESUMO
AIMS: Our purpose is to assess the role of cerebral small vessel disease (SVD) in prediction models in patients with different subtypes of acute ischemic stroke (AIS). METHODS: We enrolled 398 small-vessel occlusion (SVO) and 175 large artery atherosclerosis (LAA) AIS patients. Functional outcomes were assessed using the modified Rankin Scale (mRS) at 90 days. MRI was performed to assess white matter hyperintensity (WMH), perivascular space (PVS), lacune, and cerebral microbleed (CMB). Logistic regression (LR) and machine learning (ML) were used to develop predictive models to assess the influences of SVD on the prognosis. RESULTS: In the feature evaluation of SVO-AIS for different outcomes, the modified total SVD score (Gain: 0.38, 0.28) has the maximum weight, and periventricular WMH (Gain: 0.07, 0.09) was more important than deep WMH (Gain: 0.01, 0.01) in prognosis. In SVO-AIS, SVD performed better than regular clinical data, which is the opposite of LAA-AIS. Among all models, eXtreme gradient boosting (XGBoost) method with optimal index (OI) has the best performance to predict excellent outcome in SVO-AIS. [0.91 (0.84-0.97)]. CONCLUSIONS: Our results revealed that different SVD markers had distinct prognostic weights in AIS patients, and SVD burden alone may accurately predict the SVO-AIS patients' prognosis.
Assuntos
Aterosclerose , Doenças de Pequenos Vasos Cerebrais , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/terapia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Efeitos Psicossociais da Doença , Aprendizado de Máquina , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapiaRESUMO
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051â s-1 at 0.2â V, than a 2D COF (72.9 % and 0.032â s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
RESUMO
Post-translational modifications (PTMs) of proteins are crucial to guarantee the proper biological functions in immune responses. Although protein phosphorylation has been extensively studied, our current knowledge of protein pyrophosphorylation, which occurs based on phosphorylation, is very limited. Protein pyrophosphorylation is originally considered to be a non-enzymatic process, and its function in immune signaling is unknown. Here, we identify a metabolic enzyme, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), as a pyrophosphorylase for protein serine pyrophosphorylation, by catalyzing the pyrophosphorylation of interferon regulatory factor 3 (IRF3) at serine (Ser) 386 to promote robust type I interferon (IFN) responses. Uap1 deficiency significantly impairs the activation of both DNA- and RNA-viruse-induced type I IFN pathways, and the Uap1-deficient mice are highly susceptible to lethal viral infection. Our findings demonstrate the function of protein pyrophosphorylation in the regulation of antiviral responses and provide insights into the crosstalk between metabolism and innate immunity.
Assuntos
Fator Regulador 3 de Interferon , Interferon Tipo I , Animais , Camundongos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Fosforilação , Transdução de Sinais , Galactosiltransferases/metabolismoRESUMO
Objective: Heme oxygenase (HO) has been shown to have important antioxidant and anti-inflammatory properties, resulting in a vascular antitherogenic effect. This study was undertaken to evaluate the role of HO-2 in atherosclerosis. Method and results: The expression levels of HO-2 were evaluated in M1 and M2 bone marrow macrophage induced by LPS and IL4. The expression of HO-2 was significantly higher in M2 macrophage than in M1 macrophage. Western diet (WD) caused a significant increase in HO-2 expression in ApoE-/- mice. The adeno-associated viral (AAV) vectors expressing HO-2 was constructed, and the mice were received saline (ApoE-/-), AAV (ApoE-/-), AAV-HO-2 (ApoE-/-) on WD at 12 weeks and their plasma lipids, inï¬ammatory cytokines, atherosclerosis were evaluated for 16 weeks. The results showed AAV-HO-2 was robust, with a significant decrease in the en face aortas, lipids levels, inï¬ammatory cytokines and M1 macrophage content in AAV-HO-2 ApoE-/- compared to control AAV-ApoE-/-. Conclusion: HO-2 expression in macrophages plays an important role of the antiatherogenic effect, decreasing the inflammatory component of atherosclerotic lesions. These results suggest that HO-2 may be a novel therapeutic target for cardiovascular diseases.
RESUMO
Pancreatic cancer (PaCa) is one of the most fatal malignancies of the digestive system, and most patients are diagnosed at advanced stages due to the lack of specific and effective tumor-related biomarkers for the early detection of PaCa. miR-492 has been found to be upregulated in PaCa tumor tissue and may serve as a potential therapeutic target. However, the molecular mechanisms by which miR-492 promotes PaCa tumor growth and progression are unclear. In this study, we first found that miR-492 in enhancer loci activated neighboring genes (NR2C1/NDUFA12/TMCC3) and promoted PaCa cell proliferation, migration, and invasion in vitro. We also observed that miR-492-activating genes significantly enriched the TGF-ß/Smad3 signaling pathway in PaCa to promote epithelial-mesenchymal transition (EMT) during tumorigenesis and development. Using CRISPR-Cas9 and ChIP assays, we further observed that miR-492 acted as an enhancer trigger, and that antagomiR-492 repressed PaCa tumorigenesis in vivo, decreased the expression levels of serum TGF-ß, and suppressed the EMT process by downregulating the expression of NR2C1. Our results demonstrate that miR-492, as an enhancer trigger, facilitates PaCa progression via the NR2C1-TGF-ß/Smad3 pathway.
RESUMO
The incidence of androgen alopecia (AGA), also known as seborrheic alopecia, has surged in recent years, and onset is occurring at younger ages. Dermal papilla cells (DPCs) are key to maintaining hair cycling, and apoptosis-driven processes in DPCs are closely related to hair follicle regeneration. Circular RNAs (circRNAs) are widely present in the human body and are closely related to the occurrence and development of many diseases. Currently, the biological functions of circRNAs in AGA are largely unknown. Whole-transcriptome sequencing was used to screen differential circRNA expression profiles between AGA patients and non-AGA patients. We found that hsa_circ_0002980 (circAGK) was significantly highly expressed in the AGA group. CircAGK promoted DPC apoptosis in the presence of high dihydrotestosterone (DHT) (15 nmol/L). By regulating the miR-3180-5p/BAX axis, circAGK promotes DPC apoptosis in a high DHT environment in vitro and inhibits hair growth in AGA mice in vivo, indicating that circAGK is a potential target for the clinical treatment of AGA.
Assuntos
Di-Hidrotestosterona , MicroRNAs , Humanos , Camundongos , Animais , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Proteína X Associada a bcl-2/metabolismo , Células Cultivadas , RNA Circular/genética , RNA Circular/metabolismo , Folículo Piloso/metabolismo , Alopecia/genética , Alopecia/metabolismo , Apoptose , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
To date, poly(vinyl alcohol) (PVA) gels attract tremendous attention because of their potential applications in a wide variety of fields. Here, a novel monocarboxylic acid induction strategy was developed to fabricate tough and thermo-reversible PVA physical gels by introducing monocarboxylic acids into the PVA/dimethyl sulfoxide (DMSO) system. The obtained PVA gels exhibited appropriate crystalline architectures, leading to superior mechanical properties and high transparency. Furthermore, the role of monocarboxylic acids in the formation of PVA physical gels and the effects of alkyl chain length, concentration, and the induction time of monocarboxylic acids on the properties of PVA physical gels were also investigated.
RESUMO
Single-atom alloys (SAAs) display excellent electrocatalytic performance by overcoming the scaling relationships in alloys. However, due to the lack of a unique structure engineering design, it is difficult to obtain SAAs with a high specific surface area to expose more active sites. Herein, single Co atoms are immobilized on Pd metallene (Pdm) support to obtain Co/Pdm through the design of the engineered morphology of Pd, realizing the preparation of ultra-thin 2D SAA. The unsaturated coordination environments combined with the unique geometric and electronic structures realize the modulation of the d-band center and the redistribution of charges, generating highly active electronic states on the surface of Co/Pdm. Benefiting from the synergistic interaction and spillover effect, the Co/Pdm electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in both acid and alkaline solutions, especially with a Tafel slope of 8.2 mV dec-1 and a low overpotential of 24.7 mV at 10 mA cm-2 in the acidic medium, which outperforms commercial Pt/C and Pd/C. This work highlights the successful preparation of 2D ultra-thin SAA, which provides a new strategy for the preparation of HER electrocatalyst with high efficiency, activity, and stability.
RESUMO
More than 60% of moyamoya disease (MMD) patients suffers cerebral ischemia and preoperative cerebral infarction (CI) increases the risk of postoperative stroke and unfavorable outcome. We established a nomogram system for risk stratification of CI to help tailoring individualized management. We enrolled 380 patients including 680 hemispheres for the training cohort from our hospital and 183 patients including 348 hemispheres for the validation cohort from multicenter. A nomogram for CI was formulated based on the multivariable logistic regression analysis. The predictive accuracy and discriminative ability of nomogram were determined with concordance index (C-index) and calibration curve. For the training cohort, 246 hemispheres (36.2%) were found with CI. In multivariable logistic regression used generalized estimating equations approach, anterior choroidal artery (AchA) grade (grade 1, OR 0.214, 95%CI 0.124-0.372, P < 0.001; grade 2, OR 0.132, 95%CI 0.066-0.265, P < 0.001), cerebral perfusion (OR 4.796, 95%CI 2.922-7.872; P < 0.001), white matter hyperintensity (OR 3.652, 95%CI 1.933-6.902; P < 0.001), brush sign (OR 3.555, 95%CI 2.282-5.538; P < 0.001), and ivy sign (equivocal, OR 4.752, 95%CI 2.788-8.099, P < 0.001; present, OR 8.940, 95%CI 4.942-16.173, P < 0.001) were significant factors for CI. The C-index of the nomogram for predicting cerebral infarction was 0.890 (95%CI 0.866-0.915) in the training cohort and 0.847 (95%CI 0.805-0.889) in the validation cohort. The nomogram composed of AchA grade, cerebral perfusion, white matter hyperintensity, brush sign, and ivy sign could provide risk stratification of CI before surgery in patients with MMD. Active treatment might be recommended before CI, which could reduce the risk of stroke after surgery.