Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Filtros adicionais











Intervalo de ano
1.
Front Plant Sci ; 9: 223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541083

RESUMO

The endosperm occupies most of the available space within mature rice seeds, contains abundant nutrients, and directly influences both the quality and quantity of rice production. Initial reports noted that AtZHOUPI (AtZOU) coordinates endosperm breakdown and the concomitant separation of the embryo from this structure in Arabidopsis. The results of this study show that rice genomes contain two most closely related homologs of AtZOU, OsZOU-1 and OsZOU-2; of these, OsZOU-1 expression is limited to within the endosperm where it can be detected throughout this structure 5 days after pollination (DAP). Its expression gradually decreases from seven DAP to nine DAP. The second of the two most closely related homologs, OsZOU-2, is highly expressed in leaves and stem, but is not detected in developing seeds. Heterologous expression of OsZOU-1 and OsZOU-2 in Atzou-4 mutants also revealed that OsZOU-1 partially complements the seed phenotypes of these individuals, while its counterpart, OsZOU-2, was unable to recover these phenotypes. The over-expression of OsZOU-1 severely disrupts both seed development and plant growth in transgenic rice lines, as plants in which this gene has been knocked down failed in the separation of endosperm from embryo and cuticle formation during seed development. The results of this study therefore suggest that OsZOU-1 is orthologous to the AtZOU, and regulates both endosperm development and cuticle formation in rice.

2.
Plant Physiol ; 174(2): 1167-1176, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28336772

RESUMO

Leaf petiole angle (LPA) is an important plant architectural trait that affects canopy coverage, photosynthetic efficiency, and ultimately productivity in many legume crops. However, the genetic basis underlying this trait remains unclear. Here, we report the identification, isolation, and functional characterization of Glycine max Increased Leaf Petiole Angle1 (GmILPA1), a gene encoding an APC8-like protein, which is a subunit of the anaphase-promoting complex/cyclosome in soybean (Glycine max). A gamma ray-induced deletion of a fragment involving the fourth exon of GmILPA1 and its flanking sequences led to extension of the third exon and formation of, to our knowledge, a novel 3'UTR from intronic and intergenic sequences. Such changes are responsible for enlarged LPAs that are associated with reduced motor cell proliferation in the Gmilpa1 mutant. GmILPA1 is mainly expressed in the basal cells of leaf primordia and appears to function by promoting cell growth and division of the pulvinus that is critical for its establishment. GmILPA1 directly interacts with GmAPC13a as part of the putative anaphase-promoting complex. GmILPA1 exhibits variable expression levels among varieties with different degrees of LPAs, and expression levels are correlated with the degrees of the LPAs. Together, these observations revealed a genetic mechanism modulating the plant petiole angle that could pave the way for modifying soybean plant architecture with optimized petiole angles for enhanced yield potential.


Assuntos
Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Soja/fisiologia , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Loci Gênicos , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Ligação Proteica , Reprodutibilidade dos Testes , Homologia de Sequência do Ácido Nucleico , Soja/genética , Frações Subcelulares/metabolismo
3.
Front Plant Sci ; 8: 139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228767

RESUMO

Soybean (Glycine max Merr.) is the world's most widely grown legume and provides an important source of protein and oil. Improvement of seed quality requires deep insights into the genetic regulation of seed development. The endosperm serves as a temporary source of nutrients that are transported from maternal to filial tissues, and it also generates signals for proper embryo formation. Endosperm cell death is associated with the processes of nutrient transfer and embryo expansion. The bHLH domain transcription factor AtZHOUPI (AtZOU) plays a key role in both the lysis of the transient endosperm and the formation of embryo cuticle in Arabidopsis thaliana. There are two copies of soybean GmZOU (GmZOU-1 and GmZOU-2), which fall into the same phylogenetic clade as AtZOU. These two copies share the same transcription orientation and are the result of tandem duplication. The expression of GmZOUs is limited to the endosperm, where it peaks during the heart embryo stage. When the exogenous GmZOU-1 and GmZOU-2 were expressed in the zou-4 mutant of Arabidopsis, only GmZOU-1 partially complemented the zou mutant phenotype, as indicated by endosperm breakdown and embryo cuticle formation in the transgenic lines. This research confirmed that the GmZOU-1 is a ZOU ortholog that may be responsible for endosperm breakdown and embryo cuticle formation in soybean.

4.
Int J Mol Sci ; 18(1)2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28025485

RESUMO

Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Tolerância ao Sal , Fatores de Transcrição/genética , Secas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regulação para Cima
5.
Plant Mol Biol ; 91(4-5): 549-61, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27164978

RESUMO

T-DNA insertion mutants have been widely used to investigate plant gene functions. Unexpectedly, in several reported cases, the phenotype of T-DNA insertion mutations can be suppressed because of trans T-DNA interactions associated with epigenetic modification, which indicates that caution is needed when T-DNA mutants are used. In the present study, we characterized a novel process suppressing a T-DNA mutation. The spz2 (suppressor of zou 2) mutant was isolated as a suppressor of the phenotype of the zou-4 mutant caused by a T-DNA insertion in the first intron. The spz2 mutation partially recovered the native ZOU gene expression in the zou-4 background, but not in two other zou alleles, zou-2 and zou-3, with T-DNAs inserted in the exon and intron, respectively. The suppressed phenotype was inherited in a Mendelian fashion and is not associated with epigenetic modification. The recovery of the native ZOU gene expression in the spz2 zou-4 double mutant is caused by transcriptional read-through of the intronic T-DNA as a result of decreased proximal polyadenylation. SPZ2 encodes an RNA-binding protein, FPA, which is known to regulate polyadenylation site selection. This is the first example of FPA rescuing a T-DNA insertion mutation by affecting the polyadenylation site selection.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , DNA Bacteriano/genética , Genes de Plantas , Mutagênese Insercional/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Clonagem Molecular , Resistência Microbiana a Medicamentos/genética , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Supressores , Íntrons/genética , Mutação , Fenótipo , Poliadenilação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
7.
Plant Mol Biol ; 90(1-2): 33-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26482479

RESUMO

Soybean (Glycine max) is one of the most important crops in the world, and its yield is largely determined by grain weight and grain size. However, the genes that regulate soybean seed size have not been identified. CYP78A, which is highly conserved within terrestrial plants, regulates organ development. In Arabidopsis, AtCYP78A5/KLU has been shown to determine seed size. In the present study, soybean CYP78A72 (GmCYP78A72), one of the orthologs of KLU, was over-expressed in both Arabidopsis and soybean to examine its function in plant development. GmCYP78A72 heterologous expression in Arabidopsis resulted in enlarged sepals, petals, seeds and carpel. Over-expression of GmCYP78A72 in soybean resulted in increased pea size, which is an extremely desirable trait for enhancing productivity. Moreover, knock-down of GmCYP78A72 does not reduce grain size. However, silencing of GmCYP78A57, GmCYP78A70 and GmCYP78A72 genes in triplet reduces the seed size significantly indicating functional redundancy of these three GmCYP78A genes. In conclusion, we investigated the role of CYP78A in soybean seed regulation, and our strategy can be effectively used to engineer large seed traits in soybean varieties as well as other crops.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Soja/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Expressão Gênica , Inativação Gênica , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Soja/crescimento & desenvolvimento , Soja/metabolismo
8.
PLoS Genet ; 11(12): e1005660, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26642436

RESUMO

The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits PcG silencing by blocking the interaction of the core PRC2 with accessory components that promote its HMTase activity or its role in inhibiting transcription. ALP1 is the first example of a domesticated transposase acquiring a novel function as a PcG component. The antagonistic interaction of a modified transposase with the PcG machinery is novel and may have arisen as a means for the cognate transposon to evade host surveillance or for the host to exploit features of the transposition machinery beneficial for epigenetic regulation of gene activity.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Epigênese Genética , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Filogenia , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Plântula/genética , Transposases/biossíntese , Transposases/genética
9.
G3 (Bethesda) ; 5(12): 2793-9, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26483012

RESUMO

Soybean [Glycine max (L.) Merrill] is an important crop worldwide. In this study, a Chinese local soybean cultivar, Hedou 12, was resequenced by next generation sequencing technology to develop INsertion/DELetion (INDEL) markers for genetic mapping. 49,276 INDEL polymorphisms and 242,059 single nucleotide polymorphisms were detected between Hedou 12 and the Williams 82 reference sequence. Of these, 243 candidate INDEL markers ranging from 5-50 bp in length were chosen for validation, and 165 (68%) of them revealed polymorphisms between Hedou 12 and Williams 82. The validated INDEL markers were also tested in 12 other soybean cultivars. The number of polymorphisms in the pairwise comparisons of 14 soybean cultivars varied from 27 to 165. To test the utility of these INDEL markers, they were used to perform genetic mapping of a crinkly leaf mutant, and the CRINKLY LEAF locus was successfully mapped to a 360 kb region on chromosome 7. This research shows that high-throughput sequencing technologies can facilitate the development of genome-wide molecular markers for genetic mapping in soybean.


Assuntos
Mapeamento Cromossômico , Marcadores Genéticos , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Soja/genética , Cromossomos de Plantas , Genômica , Fenótipo , Filogenia , Polimorfismo Genético , Reprodutibilidade dos Testes , Soja/classificação
10.
New Phytol ; 196(4): 1251-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23025531

RESUMO

Heteroblasty refers to the changes in leaf shape and size (allometry) along stems. Although evolutionary changes involving heteroblasty might contribute to leaf diversity, little is known of the extent to which heteroblasty differs between species or how it might relate to other aspects of allometry or other developmental transitions. Here, we develop a computational model that can quantify differences in leaf allometry between Antirrhinum (snapdragon) species, including variation in heteroblasty. It allows the underlying genes to be mapped in inter-species hybrids, and their effects to be studied in similar genetic backgrounds. Heteroblasty correlates with overall variation in leaf allometry, so species with smaller, rounder leaves produce their largest leaves earlier in development. This involves genes that affect both characters together and is exaggerated by additional genes with multiplicative effects on leaf size. A further heteroblasty gene also alters leaf spacing, but none affect other developmental transitions, including flowering. We suggest that differences in heteroblasty have co-evolved with overall leaf shape and size in Antirrhinum because these characters are constrained by common underlying genes. By contrast, heteroblasty is not correlated with other developmental transitions, with the exception of internode length, suggesting independent genetic control and evolution.


Assuntos
Antirrhinum/genética , Modelos Biológicos , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Evolução Biológica , Quimera , Regulação da Expressão Gênica de Plantas , Variação Genética , Modelos Genéticos , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas
11.
PLoS One ; 7(2): e30715, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363474

RESUMO

In Arabidopsis, mutations in the Pc-G gene CURLY LEAF (CLF) give early flowering plants with curled leaves. This phenotype is caused by mis-expression of the floral homeotic gene AGAMOUS (AG) in leaves, so that ag mutations largely suppress the clf phenotype. Here, we identify three mutations that suppress clf despite maintaining high AG expression. We show that the suppressors correspond to mutations in FPA and FT, two genes promoting flowering, and in SEPALLATA3 (SEP3) which encodes a co-factor for AG protein. The suppression of the clf phenotype is correlated with low SEP3 expression in all case and reveals that SEP3 has a role in promoting flowering in addition to its role in controlling floral organ identity. Genetic analysis of clf ft mutants indicates that CLF promotes flowering by reducing expression of FLC, a repressor of flowering. We conclude that SEP3 is the key target mediating the clf phenotype, and that the antagonistic effects of CLF target genes masks a role for CLF in promoting flowering.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas/genética , Proteínas Repressoras/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Testes Genéticos , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Metilação , Mutação/genética , Fenótipo , Proteínas do Grupo Polycomb , Supressão Genética , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Development ; 135(21): 3501-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18849529

RESUMO

During Arabidopsis seed development, the growing embryo invades and consumes the surrounding endosperm tissue. The signalling pathways that coordinate the separation of the embryo from the endosperm and the concomitant breakdown of the endosperm are poorly understood. We have identified a novel bHLH transcription factor, ZHOUPI (ZOU), which mediates these processes. ZOU is expressed exclusively in the endosperm of developing seeds. It is activated in the central cell immediately after fertilization and is initially expressed uniformly in endosperm, subsequently resolving to the embryo surrounding region (ESR). However, zou mutant embryos have defects in cuticle formation and in epidermal cell adhesion, suggesting that ZOU functions non-autonomously to regulate embryonic development. In addition, the endosperm of zou mutant seeds fails to separate from the embryo, restricting embryo expansion and resulting in the production of shrivelled collapsed seeds. zou seeds retain more endosperm than do wild-type seeds at maturity, suggesting that ZOU also controls endosperm breakdown. We identify several target genes whose expression in the ESR is regulated by ZOU. These include ABNORMAL LEAF SHAPE1, which encodes a subtilisin-like protease previously shown to have a similar role to ZOU in regulating endosperm adhesion and embryonic epidermal development. However, expression of several other ESR-specific genes is independent of ZOU. Therefore, ZOU is not a general regulator of endosperm patterning, but rather controls specific signalling pathways that coordinate embryo invasion and breakdown of surrounding endosperm tissues.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/embriologia , Arabidopsis/genética , Desenvolvimento Embrionário/genética , Epiderme Vegetal/embriologia , Sementes/embriologia , Sementes/genética , Adesividade , Alelos , Arabidopsis/citologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Recessivos , Mutação/genética , Especificidade de Órgãos/genética , Fenótipo , Epiderme Vegetal/ultraestrutura , Plântula/citologia , Plântula/embriologia , Plântula/ultraestrutura , Sementes/citologia , Sementes/ultraestrutura , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA