Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; : 1-7, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32397794

RESUMO

Maintenance of motor neuron structure and function is crucial in development and motor behaviour. However, the genetic regulatory mechanism of motor neuron function remains less well understood. In the present study, we identify a novel neuroprotective role of the microRNA miR-969 in Drosophila motor neurons. miR-969 is highly expressed in motor neurons. Loss of miR-969 results in early-onset and age-progressive locomotion impairment. Flies lacking miR-969 also exhibit shortened lifespan. Moreover, miR-969 is required in motor neurons. We further identify kay as a functionally important target of miR-969. Together, our results indicate that miR-969 can protect motor neuron function by limiting kay activity in Drosophila.

2.
Brain Res ; 1741: 146878, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32407713

RESUMO

Accumulating evidence suggests that myocyte enhancer factor 2D (MEF2D) is a pro-survival factor for neurons. However, whether MEF2D is involved in protecting neurons from cerebral ischemia/reperfusion injury remains unknown. The current study was designed to investigate the exact role and mechanism of MEF2D in regulating oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal injury, an in vitro model used to study cerebral ischemia/reperfusion injury. MEF2D expression was significantly induced in neurons in response to OGD/R injury. Functional analysis demonstrated that MEF2D upregulation significantly rescued the decreased viability of OGD/R-injured neurons and suppressed OGD/R-induced apoptosis and reactive oxygen species (ROS) production. By contrast, MEF2D knockdown increased the sensitivity of neurons to OGD/R-induced injury. Moreover, MEF2D overexpression increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and enhanced the activation of Nrf2 antioxidant signaling. However, Nrf2 knockdown partially blocked the MEF2D-mediated neuroprotective effect in OGD/R-exposed neurons. Overall, these results reveal that MEF2D overexpression attenuates OGD/R-induced injury by enhancing Nrf2-mediated antioxidant signaling. These findings suggest that MEF2D may serve as a neuroprotective target with a potential application for treatment of cerebral ischemia/reperfusion injury.

3.
Biomed Pharmacother ; 127: 110122, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32305698

RESUMO

Preeclampsia (PE) is a pregnancy-specific hypertensive syndrome and is a leading risk of thousands of patient and offspring's deaths worldwide with no effective therapies but early delivery. Quercetin is associated with multiple pathways that link placental dysfunction with the maternal system phenotypes in the pathogenesis of PE, however, whether quercetin can be used to treat preeclampsia is not known. We employed a preeclampsia animal model induced by ultra-low-dose endotoxin infusion and monitored angiogenic factors, inflammatory response and oxidative stress changes after quercetin treatment. We showed that quercetin attenuated multi-pathophysiology changes induced by LPS and ameliorated the symptoms. We concluded that quercetin significantly improved the pathophysiology in PE and could be developed as candidates for preeclampsia treatment.

4.
Nano Lett ; 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32323995

RESUMO

In this work, a separator modified by composite material of graphite fluoride nanosheets and poly(vinylidene difluoride) (GFNs-PVDF) is fabricated to in-situ construct a protective layer on Li metal anodes. The much-improved mechanical properties of this organic/inorganic protecting layer ensure efficient restriction on the growth of Li dendrites. The LiF and graphene nanosheets generated by the reaction of GFNs with lithium metal can not only provide fast transport channels for Li ions but also protect the Li metal anode from continuous corrosion of electrolytes. In addition, GFNs' lithiophilic nature guarantees the uniform Li nucleation site and perfect contact between li metal and the protecting layer without void space, leading to a low interfacial impedance and layer-by-layer lithium deposition. Together with the scalable method and cheap raw materials, this strategy provides new insights toward practical applications of Li metal batteries.

5.
J Dairy Sci ; 103(5): 3994-4001, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32113767

RESUMO

This study was conducted to reveal the prevalence, molecular characterization, and antibiotic susceptibility of Bacillus cereus isolated from dairy products including powdered infant formula, raw milk, pasteurized milk, ultra-high-temperature milk, and cheese. Five hundred samples collected from 5 provinces in China were analyzed in overall experiments. Multilocus sequence typing, distribution of toxin genes, and antibiotic susceptibility of the isolates were analyzed. Fifty-four B. cereus strains were detected; of these, 13 isolates (26%) were from raw milk, 12 isolates (12%) from pasteurized milk, 10 isolates (10%) from cheese, 12 isolates (8%) from ultra-high-temperature milk, and 7 isolates (7%) from powdered infant formula. These isolates were divided into 24 sequence types (ST); among them, ST24, ST26, ST82, ST142, ST377, ST857, and ST1046 were the main dominant ST. The results of detection of toxin genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, bceT, hlyII, and cesB) showed that 94.4% isolates carried nheABC genes, whereas only 11.1% of the isolates contained the hblACD gene cluster. In addition, detection rates of cytK, bceT, entFM, hlyII, and cesB genes were 75.9, 77.8, 85.2, 53.7, and 11.1%, respectively. The antibiotic susceptibility test indicated that most of B. cereus isolates were resistant to ampicillin, penicillin, cefepime, cephalothin, and oxacillin, and were susceptible to gentamicin, chloramphenicol, imipenem, tetracycline, ciprofloxacin, trimethoprim-sulfamethoxazole, erythromycin, kanamycin, and cefotetan. Therefore, this study revealed the prevalence and characteristics of B. cereus isolated from dairy products in China, indicating the potential risk and contributing to the effective prevention and control of this pathogen.

6.
Neurobiol Aging ; 90: 24-32, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32171588

RESUMO

The aging brain is associated with reduced cell surface expression of N-methyl-d-aspartate receptors (NMDARs), but the mechanism remains poorly understood. In the present study, we showed that in the striatum and hippocampus but not the cerebellum and parietal cortex, levels of α-synuclein monomers and oligomers increased with age, which correlated negatively with the expression of GluN1, and positively with the expression of total Rab5B. The oligomer-α-synuclein exhibited a stronger correlation with the expression of surface GluN1 and total Rab5B. In MES23.5 cells, the monomer- or oligomer-α-synuclein were shown to increase in a manner dependent on the concentrations of the added monomers and oligomers. Again, the oligomer-α-synuclein showed more potent effects than the monomer-α-synuclein on surface GluN1 and total Rab5B expression. Accordingly, the oligomer-treated cells showed a greater reduction in NMDA-evoked Ca2+ influx than the monomer-treated cells, which was largely inhibited by pistop2, a clathrin inhibitor. These results suggest that the age-dependent accumulation of α-synuclein monomers and oligomers differentially contributes to the reduction in surface NMDAR expression in selective brain regions.

7.
Front Oncol ; 10: 217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219060

RESUMO

Background: Patients with metastatic radioiodine-refractory papillary thyroid carcinoma (PTC) have limited treatment options and a poor prognosis. There is an urgent need to develop new drugs targeting PTC for clinical application. Apatinib, a novel small-molecule tyrosine kinase inhibitor (TKI), is highly selective for vascular endothelial growth factor receptor-2 (VEGFR2) and exhibits antitumor effects in a variety of solid tumors. Although apatinib has been shown to be safe and efficacious in radioiodine-refractory differentiated thyroid cancer, the mechanism underlying its antitumor effect is unclear. In this report, we explored the effects of apatinib on PTC in vitro and in vivo. Methods: VEGFR2 expression levels were evaluated by immunohistochemistry (IHC), qPCR, and western blotting (WB). The effects of apatinib on cell viability, colony formation, and migration in the Transwell assay were assessed in vitro, and its effect on tumor growth rate was assessed in vivo. In addition, the levels of proteins in signaling pathways were determined by WB. Finally, the autophagy level was assessed by WB, immunofluorescence (IF), and transmission electron microscopy. Results: We found that high VEGFR2 expression is associated with tumor size, T stage, and lymph node metastasis in patients with PTC and that apatinib inhibits PTC cell growth, promotes apoptosis, and induces cell cycle arrest through the PI3K/Akt/mTOR signaling pathway. Moreover, apatinib induces autophagy, and pharmacological inhibition of autophagy or small interfering RNA (siRNA)-mediated targeting of autophagy-associated gene 5 (ATG5) can further increase PTC cell apoptosis. Conclusion: Our data suggest that apatinib can induce apoptosis and autophagy via the PI3K/Akt/mTOR signaling pathway for the treatment of PTC and that autophagy is a potential novel target for future therapy in resistant PTC.

8.
Chemosphere ; 248: 126017, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32035383

RESUMO

Every year, the harvesting of Eucalyptus generates a large amount of abandoned Eucalyptus leaves (ELs), which may release dissolved organic matter (DOM) when immersed in water. If these substances are carried by surface runoff directly to the source of drinking water, some components in the DOM tend to form disinfection byproducts (DBPs) within the water-supply system, posing risk to human health. In this study, the characteristics of DOM released from leaves of Eucalyptus urophylla were studied and the potential of DBPs formation of the EL-released DOM during the chlorination process was investigated. The results showed that the EL-released DOM was mainly composed of small molecules and hydrophobic substances. Of the total EL-released DOM, the proportion with molecular weight less than 10 kDa accounted for over 80% and the hydrophobic substances took up over 62%. The DOM showed strong absorbance at UV254 and the fluorescence response corresponding to humic acid-like (HA-like) fractions, soluble microbial byproduct-like, aromatic protein and fulvic acid-like (FA-like) material, which have been considered to be related to the potential precursors of chlorinated DBPs. Non-targeted screening demonstrated the presence of phenolics, carbohydrates, and amino acids. The analysis of products generated in chlorination process revealed the formation of trichloromethane (TCM) and the total organic halogen (TOX). The present study fully confirms that the DOM released from Eucalyptus urophylla leaves has great potential for the generation of chlorinated DBPs.


Assuntos
Desinfetantes/análise , Desinfecção/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Eucalyptus , Halogenação , Humanos , Substâncias Húmicas/análise , Folhas de Planta/química , Abastecimento de Água
9.
ACS Appl Mater Interfaces ; 12(3): 3928-3935, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31888330

RESUMO

Smart 3D printed structural components with self-monitoring ability show potential applications in some extreme environments, such as deep-water and space. Fused deposition modeling (FDM) provides a feasible solution; however, it is still a big challenge to print structural components with high bending and stretching mechanical properties because of the weak interlayer bonding and the pores. Here, a low-cost and facile fabrication strategy of smart components combining FDM with laser-scribing technology is reported. A thin laser-induced graphene (LIG) layer (∼50 µm) can serve as the active materials of sensors, which can be obtained on the printed polyetheretherketone (PEEK) components. Accordingly, the PEEK-LIG smart components (PEEK-LIG SCs) can self-monitor the working process and the deformations (bidirectional bending and stretching) in real time with high sensitivity. For instance, the gauge factors of PEEK-LIG SCs for bending outward and stretching are up to 155.36 and 212.35 (2-5% strain), respectively. Besides, the PEEK-LIG SCs possess good reliability (>1000 cycles), fast response time (60 ms), and recovery time (247 ms). We further show the excellent performance of the PEEK-LIG smart gear in monitoring the rotation and the abrasion, indicating the wide potential applications of this strategy.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31931575

RESUMO

Stabilized Cu+ species have been widely considered as catalytic active sites in composite copper catalysts for catalytic reactions with industrial importance. However, few examples comprehensively explicated the origin of stabilized Cu+ in a low-cost and widely investigated CuO/TiO2 system. In this study, mass producible CuO/TiO2 catalysts with interface-stabilized Cu+ were prepared, which showed excellent low-temperature CO oxidation activity. A thorough characterization and theoretical calculations proved that the strong charge-transfer effect and Ti-O-Cu hybridization in Ti-doped CuO(111) at the CuO/TiO2 interface contributed to the formation and stabilization of Cu+ species. The CO molecule adsorbed on Cu+ and reacted directly with Ti doping-promoted active lattice oxygen via a Mars-van Krevelen mechanism, leading to the enhanced low-temperature activity.

11.
Small ; 16(5): e1905620, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31943735

RESUMO

The application and development of lithium metal battery are severely restricted by the uncontrolled growth of lithium dendrite and poor cycle stability. Uniform lithium deposition is the core to solve these problems, but it is difficult to be achieved on commercial Cu collectors. In this work, a simple and commercially viable strategy is utilized for large-scale preparation of a modified planar Cu collector with lithiophilic Ag nanoparticles by a simple substitution reaction. As a result, the Li metal shows a cobblestone-like morphology with similar size and uniform distribution rather than Li dendrites. Interestingly, a high-quality solid electrolyte interphase layer in egg shell-like morphology with fast ion diffusion channels is formed on the interface of the collector, exhibiting good stability with long-term cycles. Moreover, at the current density of 1 mA cm-2 for 1 mAh cm-2 , the Ag modified planar Cu collector shows an ultralow nucleation overpotential (close to 0 mV) and a stable coulombic efficiency of 98.54% for more than 600 cycles as well as long lifespan beyond 900 h in a Li|Cu-Ag@Li cell, indicating the ability of this method to realize stable Li metal batteries. Finally, full cells paired with LiNi0.8 Co0.1 Mn0.1 O2 show superior rate performance and stability compared with those paired with Li foil.

12.
J Colloid Interface Sci ; 563: 405-413, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31896486

RESUMO

Rational construction of MnCo2O4-based core-shell nanomaterials with distinctive and desirable architectures possesses great potential in the advanced electrode material of high-performance supercapacitors. Here, a new class of hierarchical core-shell nanowire arrays (NWAs) with a shell of NiWO4 nanoparticles and a core of MnCo2O4 nanowires is reported, which can significantly improve the electrochemical energy storage properties of supercapacitors. The unique core-shell structure endows the MnCo2O4@NiWO4 NWAs electrode with a high areal specific capacitance of 5.09 F cm-2 at a current density of 1 mA cm-2 and a superior cyclic retention of 96% after 5000 charge-discharge cycles, which are more preferable than those of MnCo2O4 NWAs electrode. More importantly, an aqueous electrochemical energy storage device (core-shell MnCo2O4@NiWO4 NWAs as the positive electrode and active carbon as the negative electrode, MnCo2O4@NiWO4//AC ASC) was assembled and shows a high energy density of 0.23 mWh cm-2 at a power density of 2.66 mW cm-2, and 0.09 mWh cm-2 at 16.00 mW cm-2, indicating hopeful potential for practical applications. This work highlights the significance of NiWO4 as a shell for hierarchical core-shell nanostructures, which can further improve the electron transport characteristic of the electrode material, thereby achieving performance breakthroughs in energy storage devices.

13.
Stem Cell Reports ; 14(2): 285-299, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951812

RESUMO

The Mixed Lineage Leukemia (MLL1, KMT2A) gene is critical for development and maintenance of hematopoietic stem cells (HSCs), however, whether this protein is limiting for HSC development is unknown due to lack of physiologic model systems. Here, we develop an MLL1-inducible embryonic stem cell (ESC) system and show that induction of wild-type MLL1 during ESC differentiation selectively increases hematopoietic potential from a transitional c-Kit+/Cd41+ population in the embryoid body and also at sites of hematopoiesis in embryos. Single-cell sequencing analysis illustrates inherent heterogeneity of the c-Kit+/Cd41+ population and demonstrates that MLL1 induction shifts its composition toward multilineage hematopoietic identities. Surprisingly, this does not occur through increasing Hox or other canonical MLL1 targets but through an enhanced Rac/Rho/integrin signaling state, which increases responsiveness to Vla4 ligands and enhances hematopoietic commitment. Together, our data implicate a Rac/Rho/integrin signaling axis in the endothelial to hematopoietic transition and demonstrate that MLL1 actives this axis.

14.
Neurosci Lett ; 716: 134640, 2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31759083

RESUMO

Dopaminergic (DAergic) degeneration and abnormal α-synuclein (α-syn) expression, phosphorylation and aggregation are observed in both the nigrostriatal system (NSS) and enteric nervous system (ENS) of patients with Parkinson's disease (PD). Whether these alterations in α-syn and DAergic neurons occur synchronously in the two nervous systems or follow a process that spreads from the gut to the brain remains a subject of debate. Here, in MPTP-intoxicated cynomolgus monkeys, we showed a parallel DAergic degeneration in the colon as well as in the substantia nigra and striatum (SN/STR), as indicated by reduced expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT). In addition, we observed a simultaneous increase in the concentrations of total, phosphorylated, and oligomeric α-syn in the colon and SN/STR. Moreover, we identified that the above changes in α-syn were associated with an increase in the expression of polo-like kinase 2 (PLK2), an enzyme that promotes α-syn phosphorylation, and a decrease in the activity of protein phosphatase 2A (PP2A), an enzyme that facilitates α-syn dephosphorylation. Because the colonic ENS can be readily analyzed using routine biopsies, the shared pathological features between the colonic ENS and the brain NSS found in this study provide useful information for assessing and understanding the neuropathology in PD patients using colonic biopsies.

15.
Anal Chim Acta ; 1096: 26-33, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883588

RESUMO

Accurate and sensitive detection of dopamine (DA) is fundamental to monitor and diagnose certain neurological diseases. Herein, highly ordered mesoporous ZnFe2O4 (OM-ZnFe2O4) is prepared via a facile nanocasting method and shows the highly sensitive in the electrochemical detection of DA. The optimized OM-ZnFe2O4-40 shows the most excellent activity for DA oxidation in a wide linear range from 2 to 600 nM with a quick response time of 5 s, high sensitivity of 0.094 nA nM-1 and a lower detection limit of 0.4 nM (S/N = 3). The electrode modified with OM-ZnFe2O4 is further successfully used to monitor the increase of DA concentration induced by K+-stimulation of living PC12 cells in a neurological environment. This work offers a simple and powerful strategy for designing electrodes for detecting DA in biological systems.

16.
Chemosphere ; 240: 124941, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726615

RESUMO

Ametryn (AMT), one of the most widely used herbicides in agriculture, has been frequently detected as a micropollutant in many aquatic environments. AMT residue not only pollutes water but also acts as a precursor for the production of disinfection by-products (DBPs). This study systematically investigated the fate of AMT during the UV/chlorine process. It was observed that the combination of UV irradiation and chlorination degraded AMT synergistically. The results of the radical quenching experiments suggested that AMT degradation by the UV/chlorine process involved the participation of UV photolysis, hydroxyl radical (OH) reactions, and reactive chlorine species (RCS) reactions, which accounted for 45.4%, 36.4%, and 14.5% of the degradation, respectively. Moreover, we found that Cl- 2 was an important reactive radical for AMT degradation. The chlorine dose, pH, coexisting anions (Cl- and HCO3-), and natural organic matter (NOM) were found to affect AMT degradation during the UV/chlorine process. Nineteen predominant intermediates/products of AMT degradation during UV/chlorine process were identified, including atrazine. Moreover, the corresponding transformation pathways were proposed, including electron transfer, bond cleavage (C-S, C-N), radical (OH, Cl and Cl- 2) reactions, and subsequent hydroxylation. The toxicity tests with Vibrio fischeri on AMT degradation suggested that more DBPs were generated by UV/chlorine-treated AMT, which possessed higher acute toxicity than AMT did. Although the UV/chlorine process evidently promoted the AMT degradation, optimization of process parameters may reduce the DBP production and merits further investigation.


Assuntos
Herbicidas/toxicidade , Triazinas/toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Aliivibrio fischeri , Cloro/química , Desinfecção/métodos , Halogenação , Radical Hidroxila/química , Cinética , Fotólise , Raios Ultravioleta , Água , Poluentes Químicos da Água/análise
17.
J Hazard Mater ; 381: 120914, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31351227

RESUMO

It is extremely desirable but challenging to develop a facile synthesis method to directly prepare reusable and longtime stable magnetic graphene oxide (GO) adsorbent. Here, a new approach to prepare a magnetic GO for removing the heavy metal ions is reported by using n-Propyltrimethoxysilane (NPTS) as a cross-coupling agent to connect Fe3O4/SiO2 and GO. The as-prepared magnetic GO can be separated quickly from their aqueous solution by the permanent magnet and also exhibited excellent adsorption performance for Cd(II) and Pb(II) with maximum adsorption capacities for Cd(II) and Pb(II) to 128.2 and 385.1 mg/g under neutral conditions, respectively. The presence of other ions such as Na(I) and K(I), had little influence on the Cd(II) and Pb(II) removal efficiency. Moreover, the as-prepared Fe3O4/SiO2-GO adsorbents can be recycled and exhibited good reproducibility. Thus, the magnetic GO adsorbents are effective materials for the removal of heavy metal ions and thus could offer a new platform for water cleanup.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31763754

RESUMO

Tiara[5]arenes (T[5]s), a new class of five-fold symmetric oligophenolic macrocycles that are not accessible from the addition of formaldehyde to phenol, were synthesized for the first time. These pillar[5]arene-derived structures display both unique conformational freedom, differing from that of pillararenes, with a rich blend of solid-state conformations and excellent host-guest interactions in solution. Finally we show how this novel macrocyclic scaffold can be functionalized in a variety of ways and used as functional crystalline materials to distinguish uniquely between benzene and cyclohexane.

19.
ACS Appl Mater Interfaces ; 11(47): 44751-44757, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31689074

RESUMO

By adjusting the stretch state of a triethylenetetramine (TETA) chain in an amine-functionalized porous organic polymer (POP), two adsorbents were designed to study the rational microenvironment for heavy metal ion removal. The quantum calculation elucidated that the hooped amino chains in FC-POP-CH2TETA-H exhibited stronger interactions with Pb(II) than the extended one in FC-POP-CH2TETA-E, not only through metal-ligand chelation but also metal coordination. The high binding energy of -2624 kJ mol-1 as well as the constructed microenvironment by the hooped amino chains ensured an extremely high Pb(II) capacity of 1134 mg g-1 on FC-POP-CH2TETA-H. Meanwhile, no more than 5 min to approach adsorption equilibrium revealed its ultrafast adsorption rate. It also showed excellent broad removal capability for multiple metal ions and nonsensitivity to pH. Therefore, by controlling the microenvironmental structures with suitable porosity, functional group stretching states, and coordination modes, the removal efficiency of heavy metal ions would be significantly enhanced, which further provided a promising strategy for designing a rational microenvironment to improve the task-specific separation properties.

20.
J BUON ; 24(4): 1555-1561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646808

RESUMO

PURPOSE: The main purpose of this study was to investigate the selective anticancer effects of Kaempferol against MFE-280 endometrial carcinoma cells along with evaluating its effects on apoptotic pathway, cell cycle phase distribution, cell invasion, cell migration and m-TOR/PI3K/Akt signalling pathway. METHODS: Cell viability of MFE-280 endometrial carcinoma cells was assessed by MTS [(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)] assay. Apoptosis was determined by acridine orange (AO)/ ethidium bromide (EB) double staining. Cell cycle analysis was determined by flow cytometry, while Boyden chamber assay was performed to study the effects of Kaempferol on cell migration and cell invasion, respectively. The effects of Kaempferol on the protein expression of m-TOR/PI3K/Akt signalling pathway were analysed by Western blot assay. RESULTS: Kaempferol exerted considerable and selective anticancer effects on MFE-280 endometrial carcinoma cells with IC50 of 10 µM. The anticancer effects were found to be due to activation of mitochondrial-mediated apoptotic pathway and G2/M phase cell cycle arrest. Furthermore, the results also revealed that Kaempferol significantly inhibited cell migration and cell invasion trend of these cancer cells. Our results also showed that, in comparison to the untreated cells, Kaempferol-treated cells exhibited a dose-dependent downregulation of p-mTOR, p-PI3K and p-AKT proteins. However, mTOR, PI3K and Akt expression levels remained more or less unaltered. CONCLUSIONS: In conclusion, the present study indicates that Kaempferol could exert anticancer effects in MFE-280 endometrial carcinoma cells selectively and that these effects were mediated via apoptosis induction, cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA