Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Inorg Chem ; 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33591741

RESUMO

A bifunctional ligand strategy for modification of the functional pores is of great significance in the structural design of metal-organic frameworks (MOFs). Herein, a new 2-fold interpenetrated "pillared-layer" 3D Co-MOF, {[Co(HL)(4,4'-bipy)]·DMF·2H2O}n (1), was successfully synthesized by using two kinds of ligands, imidazolecarboxylic acid and pyridine. The metal-carboxylic layers are pillared by the 4,4'-bipy ligand, displaying a 3D framework with rectangular 3D channels (high BET surface of 190.9 m2 g-1 and maximum aperture of 3.9 Å) that are decorated with abundant uncoordinated N and O atoms. 1 shows good water stability and thermal stability (320 °C). The proper pores and active sites endowed 1 with a selective adsorption of Congo red in aqueous solution. In addition, a high CO2 adsorption capacity and an excellent CO2 chemical conversion were observed.

2.
Dis Markers ; 2021: 6696198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505535

RESUMO

Non-small-cell lung cancer (NSCLC) is one of the most devastating diseases worldwide. The study is aimed at identifying reliable prognostic biomarkers and to improve understanding of cancer initiation and progression mechanisms. RNA-Seq data were downloaded from The Cancer Genome Atlas (TCGA) database. Subsequently, comprehensive bioinformatics analysis incorporating gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the protein-protein interaction (PPI) network was conducted to identify differentially expressed genes (DEGs) closely associated with NSCLC. Eight hub genes were screened out using Molecular Complex Detection (MCODE) and cytoHubba. The prognostic and diagnostic values of the hub genes were further confirmed by survival analysis and receiver operating characteristic (ROC) curve analysis. Hub genes were validated by other datasets, such as the Oncomine, Human Protein Atlas, and cBioPortal databases. Ultimately, logistic regression analysis was conducted to evaluate the diagnostic potential of the two identified biomarkers. Screening removed 1,411 DEGs, including 1,362 upregulated and 49 downregulated genes. Pathway enrichment analysis of the DEGs examined the Ras signaling pathway, alcoholism, and other factors. Ultimately, eight prioritized genes (GNGT1, GNG4, NMU, GCG, TAC1, GAST, GCGR1, and NPSR1) were identified as hub genes. High hub gene expression was significantly associated with worse overall survival in patients with NSCLC. The ROC curves showed that these hub genes had diagnostic value. The mRNA expressions of GNGT1 and NMU were low in the Oncomine database. Their protein expressions and genetic alterations were also revealed. Finally, logistic regression analysis indicated that combining the two biomarkers substantially improved the ability to discriminate NSCLC. GNGT1 and NMU identified in the current study may empower further discovery of the molecular mechanisms underlying NSCLC's initiation and progression.

3.
Bioresour Technol ; 319: 124208, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33045549

RESUMO

Salinity accumulation in osmotic membrane bioreactors (OMBRs) is one of the key challenges, which can be mitigated in situ by reverse-fluxed solute transport through integration of bioelectrochemical systems (BES). The effects of several key operating parameters on salinity accumulation were investigated. Salinity accumulation depended on balance between reversal solute flux (RSF) and reverse-fluxed ammonium (RFA) transport, which was driven by electrical migration and concentration diffusion. DS concentration was the primary factor influencing RSF, and the lowest DS concentration exhibited the minimum solute leakage. Aeration played a vital role in RFA transport, and a higher aeration helped to enhance RFA transport. Increased current generation (i.e., influent flow rate of 0.5 mL min-1 and external resistance of 5.0 Ω) contributed to RFA migration. The lack of electrolyte addition in catholyte contributed to RFA diffusion. These optimal parameters encourage the further development of an effective strategy for salinity mitigation in BES-based OMBR technology.


Assuntos
Salinidade , Purificação da Água , Reatores Biológicos , Membranas Artificiais , Osmose
4.
Biochim Biophys Acta Rev Cancer ; 1875(1): 188497, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33370570

RESUMO

Exosomes, microvesicles derived from the nuclear endosome and plasma membrane, can be released into the extracellular environment to act as mediators between the cell membrane and cytoplasmic proteins, lipids, or RNA. Exosomes are considered effective carriers of intercellular signals in prokaryotes and eukaryotes, because of their ability to efficiently transfer proteins, lipids, and nucleic acids between cellular compartments. Since the 2007 discovery that exosomes carry bioactive substances, exosomes have been intensively researched. In various physiological and pathological processes, exosomes play important biological roles by specifically combining with receptor cells and transmitting information. Their stable biological characteristics, diversity of contents, non-invasiveness path for introducing signaling molecules, and ability for rapid detection make exosomes a promising clinical diagnostic marker for potentially many pathological conditions, including cancers. Exosomes are not only considered biomarkers and prognostic disease factors, but also have potential as gene carriers and drug delivery vectors, and have important clinical significance and application potential in the fields of cancer diagnosis, prognosis, and treatment.

5.
Toxicol Ind Health ; : 748233720964312, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33215568

RESUMO

To explore the protective mechanism of L-arginine against T-2 toxin-induced apoptosis in mouse Leydig cells, we investigated whether L-arginine can prevent T-2 toxin-induced apoptosis in mouse Leydig cells and explored the underlying mechanisms. Leydig cells were isolated and cultured with control, T-2 toxin (10 nM), L-arginine (0.25, 0.5, and 1.0 mM), and T-2 toxin (10 nM T-2 toxin) + L-arginine (0.25, 0.5, or 1.0 mM) for 24 h. Cells and supernatants were harvested to examine proliferation of the cells, the apoptosis rate, activity of caspase-3 and mitochondria, and the gene expression levels of Bcl-2, Bax, PARP, and caspase-3. Results showed that proliferation and mitochondrial activity of Leydig cells were inhibited by administration of T-2 toxin. Bcl-2 gene expression levels was decreased, while the gene expression levels of Bax and PARP were increased, which could trigger mitochondria-mediated apoptosis, activate downstream caspase-3, and then increased caspase-3 at both activity and gene expression levels. The expression of the Bcl-2 gene was upregulated and the expression of Bax, caspase-3, and PARP gene were downregulated when L-arginine was added to the cultured cells. The results of this study showed that L-arginine could block T-2 toxin-induced apoptosis in mouse Leydig cells by regulating specific intracellular death-related pathways.

6.
Bioresour Technol ; 320(Pt A): 124285, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33130542

RESUMO

In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) was built to demonstrate that integration of MFC can enhance antibiotics (sulfadiazine (SDZ) and ciprofloxacin (CIP)) removal in CWs and control CH4 emissions. Better COD and antibiotics removal performance was obtained in CW-MFC. Notably, both reactors can remove more than 90.00% of CIP. A decline in methane fluxes (by 15.29%) was also observed in CW-MFC compared with CW. The presence of Acorus tatarinowii had no obvious effect on antibiotics removal but the application of manganese ore substrate reduced methane emissions. Further study showed that Proteobacteria was enriched on the Mn substrate anode and the relative abundance of Methanothrix was declined. The results suggested that suppression of methanogenesis may be contributed to a low methane flux in CW-MFC. This study will facilitate the application of CW-MFC to treat antibiotics wastewater and control the ecological risks of greenhouse gas emissions.

7.
Oncol Lett ; 20(6): 308, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33093917

RESUMO

Aberrant DNA replication is one of the driving forces behind oncogenesis. Furthermore, minichromosome maintenance complex component 3 (MCM3) serves an essential role in DNA replication. Therefore, in the present study, the diagnostic and prognostic value of MCM3 and its interacting proteins in hepatocellular carcinoma (HCC) were investigated. By utilizing The Cancer Genome Atlas (TCGA) database, global MCM3 mRNA levels were assessed in HCC and normal liver tissues. Its effects were further analyzed by reverse transcription-quantitative PCR (RT-qPCR), western blotting and immunohistochemistry in 78 paired HCC and adjacent tissues. Functional and pathway enrichment analyses were performed using the Search Tool for the Retrieval of Interacting Genes database. The expression levels of proteins that interact with MCM3 were also analyzed using the TCGA database and RT-qPCR. Finally, algorithms combining receiver operating characteristic (ROC) curves were constructed using binary logistic regression using the TCGA results. Increased MCM3 mRNA expression with high α-fetoprotein levels and advanced Edmondson-Steiner grade were found to be characteristic of HCC. Survival analysis revealed that high MCM3 expression was associated with poor outcomes in patients with HCC. In addition, MCM3 protein expression was associated with increased tumor invasion in HCC tissues. MCM3 and its interacting proteins were found to be primarily involved in DNA replication, cell cycle and a number of binding processes. Algorithms combining ROCs of MCM3 and its interacting proteins were found to have improved HCC diagnosis ability compared with MCM3 and other individual diagnostic markers. In conclusion, MCM3 appears to be a promising diagnostic biomarker for HCC. Additionally, the present study provides a basis for the multi-gene diagnosis of HCC using MCM3.

8.
Bioresour Technol ; 320(Pt A): 124300, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33129093

RESUMO

Hybrid osmotic membrane bioreactor (OMBR) takes advantage of the cooperation of varying biological or desalination processes and can achieve NEWS (nutrient-energy-water-solute) recovery from wastewater. However, a lack of universal parameters hinders our understanding. Herein, system configurations and new parameters are systematically investigated to help better evaluate recovery performance. High-quality water can be produced in reverse osmosis/membrane distillation-based OMBRs, but high operation cost limits their application. Although bioelectrochemical system (BES)/electrodialysis-based OMBRs can effectively achieve solute recovery, operation parameters should be optimized. Nutrients can be recovered from various wastewater by porous membrane-based OMBRs, but additional processes increase operation cost. Electricity recovery can be achieved in BES-based OMBRs, but energy balances are negative. Although anaerobic OMBRs are energy-efficient, salinity accumulation limits methane productions. Additional efforts must be made to alleviate membrane fouling, control salinity accumulation, optimize recovery efficiency, and reduce operation cost. This review will accelerate hybrid OMBR development for real-world applications.

9.
Water Sci Technol ; 82(2): 330-338, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941174

RESUMO

Nitrogen removal in osmosis membrane bioreactor (OMBR) is important to its applications but remains a challenge. In this study, a bioelectrochemically-assisted (BEA) operation was integrated into the feed side of OMBRs to enhance nitrogen removal, and sodium acetate was served as a draw solute and supplementary carbon source for the growth of denitrifying bacteria due to reversed-solute. The effects of operation mode and influent ammonium (NH4+) concentration were systematically examined. Compared to a conventional OMBR, the integrated BEA-OMBR achieved higher total nitrogen removal efficiency of 98.13%, and chemical oxygen demand removal efficiency of 95.83% with the influent NH4+-N concentration of 39 mg L-1. The sequencing analyses revealed that ammonia-oxidizing bacteria (0-0.04%), nitrite-oxidizing bacteria (0-0.16%), and denitrifying bacteria (1.98-8.65%) were in abundance of the microbial community in the feed/anode side of integrated BEA-OMBR, and thus BEA operation increased the diversity of the microbial community in OMBR. Future research will focus on improving nitrogen removal from a high ammonium strength wastewater by looping anolyte effluent to the cathode. These findings have demonstrated that BEA operation can be an effective approach to improve nitrogen removal in OMBRs toward sustainable wastewater treatment.


Assuntos
Desnitrificação , Nitrogênio , Reatores Biológicos , Osmose , Águas Residuárias
10.
Mol Ther Nucleic Acids ; 21: 712-724, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32771923

RESUMO

Long-chain non-coding RNAs (lncRNAs) are RNA molecules with a length greater than 200 nt and no function of encoding proteins. lncRNAs play a precise regulatory function at different levels of transcription and post-transcription, and they interact with various regulatory factors to regulate gene expression, and then participate in cell growth, differentiation, apoptosis, and other life processes. In recent years, studies have shown that the abnormal expression of lncRNAs is closely related to the occurrence and development of tumors, which is expected to become an effective biomarker in tumor diagnosis. The sequencing analysis of mutations in the whole tumor genome suggests that mutations in non-coding regions may play an important role in the occurrence and development of tumors. Therefore, in-depth study of lncRNAs is helpful to clarify the molecular mechanism of tumor occurrence and development and to provide new targets for tumor diagnosis and treatment. This review introduces the molecular mechanism and clinical application prospect of lncRNAs affecting tumor development from the perspective of gene expression and regulation.

11.
Environ Pollut ; 265(Pt B): 115084, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806463

RESUMO

The effects of the continuous accumulation of Zinc (Zn) on the fate of antibiotic resistance genes (ARGs) in constructed wetland-microbial fuel cells (CW-MFCs) remain unclear. In this study, the impacts of Zn addition and a circuit mode on antibiotic removal, occurrence of ARGs, the bacterial community, and bacterial functions were investigated in three groups of CW-MFCs. The results showed that continuous Zn exposure enriched the target ARGs during the initial stage, while excessive Zn accumulation decreased antibiotic removal and the abundance of ARGs. A principal component analysis demonstrated that ARGs and the bacterial community distribution characteristics were significantly impacted by the mass accumulation of antibiotics and Zn, as well as the circuit mode. A redundancy analysis, partial least squares path modeling, and Procrustes analysis revealed that the accumulation of antibiotics and Zn, the composition of the bacterial community, the circuit mode, and the abundance of intI associated with horizontal gene transfer jointly contributed to the distributions of ARGs in the electrodes and effluent. Moreover, continuous exposure to Zn decreased the bacterial diversity and changed the composition and function of the bacterial community predicted using PICRUSt tool. The co-occurrence of ARGs, their potential hosts and bacterial functions were further revealed using a network analysis. A variation partition analysis also showed that the accumulation of target pollutants and the circuit mode had a significant impact on the bacterial community composition and functions. Therefore, the interaction among ARGs, the bacterial community, bacterial functions, and pollutant accumulations in the CW-MFC was complex. This study provides useful implications for the application of CW-MFCs for the treatment of wastewater contaminated with antibiotics and heavy metals.


Assuntos
Fontes de Energia Bioelétrica , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Genes Bacterianos/efeitos dos fármacos , Áreas Alagadas , Zinco
12.
Zhongguo Zhong Yao Za Zhi ; 45(13): 2993-3000, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32726003

RESUMO

To scientifically evaluate the intervention effect of Chinese medicine preventive administration(combined use of Huo-xiang Zhengqi Oral Liquid and Jinhao Jiere Granules) on community population in the case of coronavirus disease 2019(COVID-19), a large cohort, prospective, randomized, and parallel-controlled clinical study was conducted. Total 22 065 subjects were included and randomly divided into 2 groups. The non-intervention group was given health guidance only, while the traditional Chinese medicine(TCM) intervention group was given two coordinated TCM in addition to health guidance. The medical instructions were as follows. Huoxiang Zhengqi Oral Liquid: oral before meals, 10 mL/time, 2 times/day, a course of 5 days. Jinhao Jiere Granules: dissolve in boiling water and take after meals, 8 g/time, 2 times/day, a course of 5 days, followed up for 14 days, respectively. The study found that with the intake of medication, the incidence rate of TCM intervention group was basically maintained at a low and continuous stable level(0.01%-0.02%), while the non-intervention group showed an overall trend of continuous growth(0.02%-0.18%) from 3 to 14 days. No suspected or confirmed COVID-19 case occurred in either group. There were 2 cases of colds in the TCM intervention group and 26 cases in the non-intervention group. The incidence of colds in the TCM intervention group was significantly lower(P<0.05) than that in the non-intervention group. In the population of 16-60 years old, the incidence rate of non-intervention and intervention groups were 0.01% and 0.25%, respectively. The difference of colds incidence between the two groups was statistically significant(P<0.05). In the population older than 60 years old, they were 0.04% and 0.21%, respectively. The incidence of colds in the non-intervention group was higher than that in the intervention group, but not reaching statistical difference. The protection rate of TCM for the whole population was 91.8%, especially for the population of age 16-60(95.0%). It was suggested that TCM intervention(combined use of Huoxiang Zhengqi Oral Liquid and Jinhao Jiere Granules) could effectively protect community residents against respiratory diseases, such as colds, which was worthy of promotion in the community. In addition, in terms of safety, the incidence of adverse events and adverse reactions in the TCM intervention group was relatively low, which was basically consistent with the drug instructions.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Medicamentos de Ervas Chinesas , Pandemias , Pneumonia Viral , Adolescente , Adulto , Infecções por Coronavirus/tratamento farmacológico , Humanos , Medicina Tradicional Chinesa , Pessoa de Meia-Idade , Pneumonia Viral/tratamento farmacológico , Estudos Prospectivos , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-32565857

RESUMO

Background: Luhong formula (LHF)-a traditional Chinese medicine containing Cervus nippon Temminck, Carthamus tinctorius L., Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao, Codonopsis pilosula (Franch.) Nannf., Cinnamomum cassia Presl, and Lepidium apetalum Willd-is used in the treatment of heart failure, but little is known about its mechanism of action. We have investigated the effects of LHF on antifibrosis. Methods: Forty-eight SD male rats were randomly assigned into six groups (n = 8), model group, sham-operation group, perindopril group (0.036 mg/ml), LHF high doses (LHF-H, 1.44 g/mL), LHF middle doses (LHF-M, 0.72 g/mL), and LHF low doses (LHF-L, 0.36 g/mL). Except the sham-operation group, the other groups were received an abdominal aorta constriction to establish a model of myocardial hypertrophy. The HW and LVW were measured to calculate the LVW/BW and HW/BW. ELISA was used to detect the serum concentration of BNP. The expressions of eNOS, TGF-ß1, caspase-3, VEGF, and VEGFR2 in heart tissues were assessed by western blot analysis. mRNA expressions of eNOS, Col1a1, Col3a1, TGF-ß1, VEGF, and VEGFR2 in heart tissues were measured by RT-PCR. The specimens were stained with hematoxylin-eosin (HE) and picrosirius red staining for observing the morphological characteristics and collagen fibers I and III of the myocardium under a light microscope. Results: LHF significantly lowered the rat's HW/BW and LVM/BW, and the level of BNP in the LHF-treated group compared with the model group. Histopathological and pathomorphological changes of collagen fibers I and III showed that LHF inhibited myocardial fibrosis in heart failure rats. Treatment with LHF upregulated eNOS expression in heart tissue and downregulated Col1a1, Col3a1, TGF-ß1, caspase-3, VEGF, and VEGFR2 expression. Conclusion: LHF can improve left ventricular remodeling in a pressure-overloaded heart failure rat model; this cardiac protective ability may be due to cardiac fibrosis and attenuated apoptosis. Upregulated eNOS expression and downregulated Col1a1, Col3a1, TGF-ß1, caspase-3, VEGF, and VEGFR2 expression may play a role in the observed LHF cardioprotective effect.

14.
Nat Plants ; 6(7): 897, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32533128

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Nat Plants ; 6(5): 556-569, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32393881

RESUMO

Directional intercellular transport of the phytohormone auxin mediated by PIN-FORMED (PIN) efflux carriers has essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. PIN activity is therefore regulated by multiple internal and external cues, for which the underlying molecular mechanisms are not fully elucidated. Here, we demonstrate that 3'-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub that perceives upstream lipid signalling and modulates downstream substrate activity through phosphorylation. Using genetic analysis, we show that the loss-of-function Arabidopsis pdk1.1 pdk1.2 mutant exhibits a plethora of abnormalities in organogenesis and growth due to defective polar auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 protein kinase, a well-known upstream activator of PIN proteins. We uncover a lipid-dependent phosphorylation cascade that connects membrane-composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes.

16.
World J Gastroenterol ; 26(12): 1242-1261, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32256014

RESUMO

Inflammatory bowel disease (IBD) is a complex disease with multiple pathogenic factors. Although the pathogenesis of IBD is still unclear, a current hypothesis suggests that genetic susceptibility, environmental factors, a dysfunctional immune system, the microbiome, and the interactions of these factors substantially contribute to the occurrence and development of IBD. Although existing and emerging drugs have been proven to be effective in treating IBD, none can cure IBD permanently. G protein-coupled receptors (GPCRs) are critical signaling molecules implicated in the immune response, cell proliferation, inflammation regulation and intestinal barrier maintenance. Breakthroughs in the understanding of the structures and functions of GPCRs have provided a driving force for exploring the roles of GPCRs in the pathogenesis of diseases, thereby leading to the development of GPCR-targeted medication. To date, a number of GPCRs have been shown to be associated with IBD, significantly advancing the drug discovery process for IBD. The associations between GPCRs and disease activity, disease severity, and disease phenotypes have also paved new avenues for the precise management of patients with IBD. In this review, we mainly focus on the roles of the most studied proton-sensing GPCRs, cannabinoid receptors, and estrogen-related GPCRs in the pathogenesis of IBD and their potential clinical values in IBD and some other diseases.

17.
Int J Neurosci ; : 1-10, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32271641

RESUMO

Objectives: Increasing evidence confirmed that miRNA plays a critical role in the occurrence and development of ischemic stroke. Here, the aim of this study was to examine the function and mechanisms of miR-195 in vascular endothelial cell apoptosis induced by oxygen-glucose deprivation (OGD).Methods: This study intended to use OGD to simulate ischemia in vitro. The mRNA expression of miR-195, IKKα and NF-κB in human umbilical vein endothelial cells (HUVECs) were detected by RT-qPCR. The proliferation and apoptosis ability of HUVECs were evaluated using MTT assay, colony formation assay and flow cytometry, respectively. Western blot was applied to examine related protein expression. The interaction between miR-195 and IKKα was verified by dual-luciferase reporter gene assay.Results: OGD significantly inhibited cell viability and induced cell apoptosis in HUVECs. Meanwhile, OGD treatment notably decreased the expression of miR-195, as well as enhanced NF-κB expression. Moreover, miR-195 directly interacted with IKKα and suppressed its expression. Mechanically, overexpression of miR-195 exhibited pro-proliferation and anti-apoptotic effect on HUVECs treated with OGD through targeting IKKα-mediated NF-κB pathway. At the molecular level, through suppressing IKKα/NF-κB pathway, miR-195 inhibited the expression of pro-apoptotic protein Bax and active caspase-3, but increased the expression of anti-apoptotic Bcl-2 in HUVECs.Conclusions: Our finding uncovers the protective effect of miR-195 on the biological behavior of HUVECs via suppression of the NF-κB pathway induced by IKKα, which may provide a new potential strategy for ischemic stroke clinical treatment.

18.
Int J Clin Exp Pathol ; 13(2): 248-253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211105

RESUMO

INTRODUCTION: Solid pseudopapillary neoplasm (SPN) is a rare pancreatic tumor that mainly affects young women. It is a low-grade malignant neoplasm, with an excellent prognosis after surgical treatment. We report herein a case of SPN presenting with ascites that was misdiagnosed as pancreatic tuberculosis (TB). CASE REPORT: A 16-year-old female initially presented with a large volume of ascites. Contrast-enhanced ultrasound and computed tomography found a heterogeneous lesion in the pancreatic body, which had slight contrast enhancement on the arterial phase. Analysis of ascites showed it was exudative. Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) of the mass only revealed a few blood clots. The diagnosis was highly suggestive of a pancreatic TB. However, after 6 months of anti-TB therapy, the pancreatic lesion remained essentially unchanged. Subsequently, magnetic resonance imaging indicated a mixed solid and cystic lesion with a well-defined margin in the pancreatic body. Further EUS-FNA showed monomorphic neoplastic cells with papillary architecture and immunohistochemical analysis revealed that the tumor cells were positive for ß-catenin, CD10, vimentin, cytokeratin, and synaptophysin. These findings were consistent with SPN. After distal pancreatectomy with splenectomy, postoperative pathology and immunohistochemical staining confirmed the diagnosis of SPN. CONCLUSION: Clinicians should consider the possibility of SPN for pancreatic heterogeneous masses. Multiple diagnostic imaging modalities and EUS-FNA may contribute to the preoperative diagnosis of this disease.

19.
Bioresour Technol ; 305: 123029, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32109730

RESUMO

Sulfamethoxazole (SMX) pollution in wastewater threatens public health. A novel membrane bioelectrochemical reactor (MBER) with loop operation was developed for SMX degradation in low-C/N ratio wastewater. A gas-permeable silicone membrane module was used to precisely control the dissolved oxygen in the catholyte and save energy. Compared with a traditional membrane bioreactor (i.e., open-circuit reactor), the removal of SMX was increased from 49.91% to 71.10% in the proposed MBER (i.e., closed-circuit reactor). Sequencing analyses revealed that SMX was removed via cometabolism with NH4+-N and COD removal in both the anode and cathode chambers. Six intermediates were detected as degradation products in the cathodic effluent; these intermediates pose a similar potential threat to the environment as SMX. Two possible degradation pathways, deduced from the sequencing analyses and degradation products, were proposed. These results provide a new technology for improving SMX removal through the integration/coupling of bioelectrochemical technology into a membrane bioreactor.

20.
Molecules ; 25(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074994

RESUMO

Constructed wetlands (CWs) could achieve high removal efficiency of antibiotics, but probably stimulate the spread of antibiotic resistance genes (ARGs). In this study, four CWs were established to treat synthetic wastewater containing sulfamethoxazole (SMX). SMX elimination efficiencies, SMX degradation mechanisms, dynamic fates of ARGs, and bacterial communities were evaluated during the treatment period (360 day). Throughout the whole study, the concentration of SMX in the effluent gradually increased (p < 0.05), but in general, the removal efficiency of SMX remained at a very high level (>98%). In addition, the concentration of SMX in the bottom layer was higher compared with that in the surface layer. The main byproducts of SMX degradation were found to be 4-amino benzene sulfinic acid, 3-amino-5-methylisoxazole, benzenethiol, and 3-hydroxybutan-1-aminium. Temporally speaking, an obvious increase of sul genes was observed, along with the increase of SMX concentration in the bottom and middle layers of CWs. Spatially speaking, the concentration of sul genes increased from the surface layer to the bottom layer.


Assuntos
Farmacorresistência Bacteriana/genética , Sulfametoxazol/farmacologia , Águas Residuárias/microbiologia , Áreas Alagadas , Antibacterianos/farmacologia , Humanos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...