Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
J Biol Chem ; : 101275, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34619150

RESUMO

Previous studies suggested that cancer cells resemble neural stem/progenitor cells in regulatory network, tumorigenicity, and differentiation potential, and that neural stemness might represent the ground or basal state of differentiation and tumorigenicity. The neural ground state is reflected in the upregulation and enrichment of basic cell machineries and developmental programs, such as cell cycle, ribosomes, proteasomes, and epigenetic factors, in cancers and in embryonic neural or neural stem cells. However, how these machineries are concertedly regulated is unclear. Here, we show that loss of neural stemness in cancer or neural stem cells via muscle-like differentiation or neuronal differentiation, respectively, caused downregulation of ribosome and proteasome components and major epigenetic factors, including PRMT1, EZH2, and LSD1. Furthermore, inhibition of PRMT1, an oncoprotein that is enriched in neural cells during embryogenesis, caused neuronal-like differentiation, downregulation of a similar set of proteins downregulated by differentiation, and alteration of subcellular distribution of ribosome and proteasome components. By contrast, PRMT1 overexpression led to an upregulation of these proteins. PRMT1 interacted with these components and protected them from degradation via recruitment of the deubiquitinase USP7, also known to promote cancer and enriched in embryonic neural cells, thereby maintaining a high level of epigenetic factors that maintain neural stemness, such as EZH2 and LSD1. Taken together, our data indicate that PRMT1 inhibition resulted in repression of cell tumorigenicity. We conclude that PRMT1 coordinates ribosome and proteasome activity to match the needs for high production and homeostasis of proteins that maintain stemness in cancer and neural stem cells.

2.
J Hazard Mater ; 423(Pt A): 127040, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34474366

RESUMO

Osmotic membrane bioreactors (OMBRs) have been applied to enhance removal of antibiotics, however, information on the effects of molecular structures on the behavior of antibiotics is still lacking. Herein, adsorption kinetics, transformation pathways, and membrane rejection mechanisms of OMBRs were investigated by adding two typical antibiotics (i.e., sulfadiazine, SDZ, and tetracycline hydrochloride, TC-HCl). 80.70-91.12% of TC-HCl was removed by adsorption and biodegradation, while 17.50-75.14% of SDZ was removed by membrane rejection; this depended on its concentration due to reduced electrostatic interactions and hydrophobic adsorption. The adsorption capacity of TC-HCl (i.e., 1.34±0.01 mg/g) was significantly higher than that of SDZ (i.e., 0.18±0.03 mg/g) due to enhanced π-π interactions, hydrogen bonding and improved electrostatic interactions. The abundant production of polysaccharide-like substances from TC-HCl biodegradation contributed to microbial metabolism and thus enhanced microbial function during TC-HCl biotransformation. The primary degradation pathways were determined by microbial function analysis, and the primary intermediates from TC-HCl degradation were less toxic than those from SDZ degradation due to the different reactions of amino groups. These results and the corresponding mechanism provide a theoretical foundation for the further development of OMBR technology for highly efficient treatment of antibiotic wastewater.

3.
Eur J Cancer Prev ; 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34519693

RESUMO

Lung cancer is the leading cause of death worldwide, and its incidence continues to increase. The treatment of lung cancer is related to the subtypes and stages of cancer, but the therapeutic effect is still unsatisfactory. We found that 10 of the 13 genes were differentially expressed in lung cancer, YTHDF1, RBM15, HNRNPC, KIAA1429, METTL3 and YTHDF2 are high expression while METTL14, ZC3H13, FTO and WTAP are low expression. HNRNPC and METTL3 genes were associated with the risk and prognosis of LUAD and could regard as biomarkers for early diagnosis and treatment, which provides a theoretical basis for LUAD.

4.
Technol Cancer Res Treat ; 20: 15330338211041191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34520284

RESUMO

Lung cancer is listed as the most common reason for cancer-related death all over the world despite diagnostic improvements and the development of chemotherapy and targeted therapies. MicroRNAs control both physiological and pathological processes including development and cancer. A microRNA-9 to 1 (miR-9 to 1) overexpression model in lung cancer cell lines was established and miR-9 to 1 was found to significantly suppress the proliferation rate in lung cancer cell lines, colony formation in vitro, and tumorigenicity in nude mice of A549 cells. Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) was then identified to direct target of miR-9 to 1. The inhibition of UHRF1 by miR-9 to 1 causes G1 arrest and p15, p16, and p21 were re-expressed in miR-9 to 1 group in mRNA level and protein level. Silence of UHRF1 expression in A549 cells resulted in the similar re-expression of p15, p16, p21 which is similar with miR-9 to 1 infection. Therefore, we concluded that UHRF1 is a new target for miR-9 to 1 to suppress cell proliferation by re-expression of tumor suppressors p15, p16, and p21 mediated by UHRF1.

5.
Front Immunol ; 12: 722027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489971

RESUMO

Approximately half of the SARS-CoV-2 infections occur without apparent symptoms, raising questions regarding long-term humoral immunity in asymptomatic individuals. Plasma levels of immunoglobulin G (IgG) and M (IgM) against the viral spike or nucleoprotein were determined for 25,091 individuals enrolled in a surveillance program in Wuhan, China. We compared 405 asymptomatic individuals who mounted a detectable antibody response with 459 symptomatic COVID-19 patients. The well-defined duration of the SARS-CoV-2 endemic in Wuhan allowed a side-by-side comparison of antibody responses following symptomatic and asymptomatic infections without subsequent antigen re-exposure. IgM responses rapidly declined in both groups. However, both the prevalence and durability of IgG responses and neutralizing capacities correlated positively with symptoms. Regardless of sex, age, and body weight, asymptomatic individuals lost their SARS-CoV-2-specific IgG antibodies more often and rapidly than symptomatic patients did. These findings have important implications for immunity and favour immunization programs including individuals after asymptomatic infections.


Assuntos
Anticorpos Antivirais/sangue , Infecções Assintomáticas/epidemiologia , COVID-19/imunologia , Imunidade Humoral , SARS-CoV-2/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , COVID-19/epidemiologia , China , Monitoramento Epidemiológico , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2/patogenicidade , Adulto Jovem
6.
Medicine (Baltimore) ; 100(38): e27338, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559157

RESUMO

BACKGROUND: In patients with acute myocardial infarction (AMI) receiving percutaneous coronary intervention (PCI), the role of systemic therapeutic hypothermia remains controversial. We performed a protocol for systematic review and meta-analysis to investigate the effect of systemic therapeutic hypothermia in patients with AMI receiving PCI. METHODS: This study will use the Cochrane Library, Web of Science, PubMed, Embase, Allied and Complementary Medicine Database, China Biomedical Literature Database, China National Knowledge Infrastructure, China Science and Technology Journal Database, Wanfang Database, and Ongoing Clinical Trials Database. The search terms were hypothermia, cooling, myocardial infarction, myocardial ischemia and acute coronary syndrome. Quality assessment of the included studies was evaluated using the Cochrane risk of bias assessment tool. Statistical analyses were performed using RevMan 5.4 software. RESULTS: The findings of this study will be submitted to peer-reviewed journals for publication. CONCLUSION: This systematic review will provide evidence to determine whether hypothermia therapy is an effective and safe intervention for patients with AMI receiving PCI.Registration number: 10.17605/OSF.IO/9XJSB.


Assuntos
Hipotermia Induzida , Infarto do Miocárdio/terapia , Humanos , Metanálise como Assunto , Intervenção Coronária Percutânea , Revisões Sistemáticas como Assunto
7.
J Virol ; : e0003421, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550772

RESUMO

It remains controversial how interferon (IFN) response contributes to hepatitis B virus (HBV) control and pathogenesis. A previous study identified that hydrodynamic injection (HI) of type I IFN (IFN-I) inducer polyinosinic-polycytidylic acid (poly(I:C)) leads to HBV clearance in a chronic HBV mouse model. However, recent studies have suggested that premature IFN-I activation in the liver may facilitate HBV persistence. In the present study, we investigated how the early IFN-I response induces an immunosuppressive signaling cascade and thus causes HBV persistence. We performed HI of the plasmid adeno-associated virus (pAAV)/HBV 1.2 into adult BALB/c mice to establish an adult acute HBV replication model. Activation of the IFN-I signaling pathway following poly(I:C) stimulation or murine cytomegalovirus (MCMV) infection resulted in subsequent HBV persistence. HI of poly(I:C) with the pAAV/HBV 1.2 plasmid resulted in not only the production of IFN-I and the anti-inflammatory cytokine interleukin (IL)-10 but also the expansion of intrahepatic regulatory T cells (Tregs), Kupffer cells (KCs) and myeloid-derived suppressor cells (MDSCs), all of which impaired the T cell response. However, when poly(I:C) was injected at day 14 after the HBV plasmid injection, it significantly enhanced HBV specific T cell responses. In addition, interferon-alpha/beta receptor (IFNAR) blockade rescued T cell response by downregulating of IL-10 expression and decreasing Treg and KC expansion. Consistently, Treg depletion or IL-10 blockade also controlled HBV replication. Importance: IFN-I plays a double-edged sword role during chronic HBV infection. Here, we identified that application of IFN-I at different time points causes contrast outcome. Activation of the IFN-I pathway before HBV replication induces an immunosuppressive signaling cascade in the liver, and consequently caused HBV persistence while IFN-I activation post HBV infection enhances HBV-specific T cell responses and thus promote HBV clearance. This result provided an important clue to the mechanism of HBV persistence in adult individuals.

8.
J Transl Med ; 19(1): 400, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551785

RESUMO

BACKGROUND: Cancer stem cells (CSCs) are key regulators in the processes of tumor initiation, progression, and recurrence. The mechanism that maintains their stemness remains enigmatic, although the role of several long noncoding RNAs (lncRNAs) has been highlighted in the pancreatic cancer stem cells (PCSCs). In this study, we first established that PCSCs overexpressing lncRNA NORAD, and then investigated the effects of NORAD on the maintenance of PCSC stemness. METHODS: Expression of lncRNA NORAD, miR-202-5p and ANP32E in PC tissues and cell lines was quantified after RNA isolation. Dual-luciferase reporter assay, RNA pull-down and RIP assays were performed to verify the interactions among NORAD, miR-202-5p and ANP32E. We then carried out gain- and loss-of function of miR-202-5p, ANP32E and NORAD in PANC-1 cell line, followed by measurement of the aldehyde dehydrogenase activity, cell viability, apoptosis, cell cycle distribution, colony formation, self-renewal ability and tumorigenicity of PC cells. RESULTS: LncRNA NORAD and ANP32E were upregulated in PC tissues and cells, whereas the miR-202-5p level was down-regulated. LncRNA NORAD competitively bound to miR-202-5p, and promoted the expression of the miR-202-5p target gene ANP32E thereby promoting PC cell viability, proliferation, and self-renewal ability in vitro, as well as facilitating tumorigenesis of PCSCs in vivo. CONCLUSION: Overall, lncRNA NORAD upregulates ANP32E expression by competitively binding to miR-202-5, which accelerates the proliferation and self-renewal of PCSCs.

9.
Biomed Pharmacother ; 143: 112165, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34543986

RESUMO

The injury of endothelial cells is one of the initiating factors in restenosis after endovascular treatment. Human urinary kallidinogenase (HUK) is a tissue kallikrein which is used for ischemia-reperfusion injury treatment. Studies have shown that HUK may be a potential therapeutic agent to prevent stenosis after vascular injury, however, the precise mechanisms have not been fully established. This study is to investigate whether HUK can protect endothelial cells after balloon injury or H2O2-induced endothelial cell damage through the proline-rich tyrosine kinase 2 (Pyk2)/mitochondrial calcium uniporter (MCU) pathway. Intimal hyperplasia, a decrease of pinocytotic vesicles and cell apoptosis were found in the common carotid artery balloon injury and H2O2-induced endothelial cell damage, Pyk2/MCU was also up-regulated in such pathological process. HUK could prevent these injuries partially via the bradykinin B2 receptor by inhibiting Pyk2/MCU pathway, which prevented the mitochondrial damage, maintained calcium balance, and eventually inhibited cell apoptosis. Furthermore, MCU expression was not markedly increased if Pyk2 was suppressed by shRNA technique in the H2O2 treatment group, and cell viability was significantly better than H2O2-treated only. In short, our results indicate that the Pyk2/MCU pathway is involved in endothelial injury induced by balloon injury or H2O2-induced endothelial cell damage. HUK plays an protective role by inhibiting the Pyk2/MCU pathway in the endothelial injury.

10.
PLoS One ; 16(9): e0256211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499667

RESUMO

Previous studies have suggested that virtual reality (VR) can elicit emotions in different visual modes using 2D or 3D headsets. However, the effects on emotional arousal by using these two visual modes have not been comprehensively investigated, and the underlying neural mechanisms are not yet clear. This paper presents a cognitive psychological experiment that was conducted to analyze how these two visual modes impact emotional arousal. Forty volunteers were recruited and were randomly assigned to two groups. They were asked to watch a series of positive, neutral and negative short VR videos in 2D and 3D. Multichannel electroencephalograms (EEG) and skin conductance responses (SCR) were recorded simultaneously during their participation. The results indicated that emotional stimulation was more intense in the 3D environment due to the improved perception of the environment; greater emotional arousal was generated; and higher beta (21-30 Hz) EEG power was identified in 3D than in 2D. We also found that both hemispheres were involved in stereo vision processing and that brain lateralization existed in the processing.

11.
J Hazard Mater ; 416: 125864, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492812

RESUMO

Reactive red 2 (RR2) is a highly recalcitrant and toxic azo dye that can cause the collapse of biological treatment system. Although MFC can decolorize RR2 effectively, its performance is still inevitably affected by toxicity. Anthraquinone can enhance MFCs' performance through mediating electron transfer. In this study, an anthraquinone-rich natural plants (B.rheum (Rheum offcinale Baill)) was extracted and then added to MFCs. The optimal dosage was selected and the enhanced effects were investigated. The results showed that adding 5%(V/V) extract resulted in the optimal performance elevation of MFC. When 5% extract was added together with RR2, 15.63% and 1.33-fold improvement in RR2 decolorization efficiency and rate were achieved compared with the control group. Meanwhile, higher power density (2.75 W/m3), coulombic efficiency (6.45%), and lower internal resistance (233.69 Ω) were also observed when 5% B.rheum extract and RR2 were added. B.rheum extract in MFCs enhanced microbial activity and enriched the dye-degrading microorganisms, such as Enterobacter, Raoultella, Comamonas and Shinella. B.rheum extract acts as "antidote" in alleviating the biotoxicity of RR2 was firstly illustrated in this study. The results provided a new strategy for using plant-source electron mediators to simultaneously improve biological detoxification, bioelectricity generation and dye decolorization in bioelectrochemical system.


Assuntos
Compostos Azo , Fontes de Energia Bioelétrica , Compostos Azo/toxicidade , Corantes/toxicidade , Eletricidade , Eletrodos , Transporte de Elétrons , Elétrons
12.
Nat Commun ; 12(1): 4413, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285210

RESUMO

Enhanced neovasculogenesis, especially vasculogenic mimicry (VM), contributes to the development of triple-negative breast cancer (TNBC). Breast tumor-initiating cells (BTICs) are involved in forming VM; however, the specific VM-forming BTIC population and the regulatory mechanisms remain undefined. We find that tumor endothelial marker 8 (TEM8) is abundantly expressed in TNBC and serves as a marker for VM-forming BTICs. Mechanistically, TEM8 increases active RhoC level and induces ROCK1-mediated phosphorylation of SMAD5, in a cascade essential for promoting stemness and VM capacity of breast cancer cells. ASB10, an estrogen receptor ERα trans-activated E3 ligase, ubiquitylates TEM8 for degradation, and its deficiency in TNBC resulted in a high homeostatic level of TEM8. In this work, we identify TEM8 as a functional marker for VM-forming BTICs in TNBC, providing a target for the development of effective therapies against TNBC targeting both BTIC self-renewal and neovasculogenesis simultaneously.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/patologia , Receptores de Superfície Celular/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Mama/patologia , Mama/cirurgia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Feminino , Humanos , Mastectomia , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Receptores de Superfície Celular/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Carcinogenesis ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313732

RESUMO

Circular RNA (circRNA) is a large class of covalently closed circular RNA. As a member of competitive endogenous RNA (ceRNA), it participates in the regulation of circRNA-miRNA-mRNA network and plays an important role in the regulation of physiology and pathology. CircRNA is produced by the reverse splicing of exon, intron or both, forming exon or intron circRNA. Studies have shown that circRNA is a ubiquitous molecule, which exceeds the linear mRNA distributed in human cells. Because of its covalent closed-loop structure, circRNA is resistant to RNase R, which is more stable than linear mRNA; circRNA is highly conserved in different species. It was found that circRNA competitively adsorbs miRNA, as a miRNA sponge, to involve in the expression regulation of a variety of genes and plays an important role in tumor development, invasion, metastasis and other processes. These molecules offer new potential opportunities for therapeutic intervention and serve as biomarkers for diagnosis. In this paper, the origin, characteristics and functions of circRNA and its role in tumor development, invasion and metastasis, diagnosis and prognosis are reviewed.

14.
Front Immunol ; 12: 708523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220870

RESUMO

Major advances have been made in understanding the dynamics of humoral immunity briefly after the acute coronavirus disease 2019 (COVID-19). However, knowledge concerning long-term kinetics of antibody responses in convalescent patients is limited. During a one-year period post symptom onset, we longitudinally collected 162 samples from 76 patients and quantified IgM and IgG antibodies recognizing the nucleocapsid (N) protein or the receptor binding domain (RBD) of the spike protein (S). After one year, approximately 90% of recovered patients still had detectable SARS-CoV-2-specific IgG antibodies recognizing N and RBD-S. Intriguingly, neutralizing activity was only detectable in ~43% of patients. When neutralization tests against the E484K-mutated variant of concern (VOC) B.1.351 (initially identified in South Africa) were performed among patients who neutralize the original virus, the capacity to neutralize was even further diminished to 22.6% of donors. Despite declining N- and S-specific IgG titers, a considerable fraction of recovered patients had detectable neutralizing activity one year after infection. However, neutralizing capacities, in particular against an E484K-mutated VOC were only detectable in a minority of patients one year after symptomatic COVID-19. Our findings shed light on the kinetics of long-term immune responses after natural SARS-CoV-2 infection and argue for vaccinations of individuals who experienced a natural infection to protect against emerging VOC.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , SARS-CoV-2/imunologia , Idoso , Formação de Anticorpos/imunologia , COVID-19/terapia , Convalescença , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo
15.
Int J Biol Sci ; 17(9): 2223-2239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239351

RESUMO

Overexpression of pyrroline-5-carboxylate reductase 1 (PYCR1) has been associated with the development of certain cancers; however, no studies have specifically examined the role of PYCR1 in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas expression array and meta-analysis conducted using the Gene Expression Omnibus database, we determined that PYCR1 was upregulated in HCC compared to adjacent nontumor tissues (P < 0.05). These data were verified using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry analysis. Additionally, patients with low PYCR1 expression showed a higher overall survival rate than patients with high PYCR1 expression. Furthermore, PYCR1 overexpression was associated with the female sex, higher levels of alpha-fetoprotein, advanced clinical stages (III and IV), and a younger age (< 45 years old). Silencing of PYCR1 inhibited cell proliferation, invasive migration, epithelial-mesenchymal transition, and metastatic properties in HCC in vitro and in vivo. Using RNA sequencing and bioinformatics tools for data-dependent network analysis, we found binary relationships among PYCR1 and its interacting proteins in defined pathway modules. These findings indicated that PYCR1 played a multifunctional role in coordinating a variety of biological pathways involved in cell communication, cell proliferation and growth, cell migration, a mitogen-activated protein kinase cascade, ion binding, etc. The structural characteristics of key pathway components and PYCR1-interacting proteins were evaluated by molecular docking, and hotspot analysis showed that better affinities between PYCR1 and its interacting molecules were associated with the presence of arginine in the binding site. Finally, a candidate regulatory microRNA, miR-2355-5p, for PYCR1 mRNA was discovered in HCC. Overall, our study suggests that PYCR1 plays a vital role in HCC pathogenesis and may potentially serve as a molecular target for HCC treatment.

16.
Cell Signal ; 86: 110076, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34245861

RESUMO

Protein disulfide isomerase (PDI), a principal endoplasmic reticulum resident oxidoreductase chaperone, is known to play a role in malignancies. This study aims to explore the molecular mechanism by which PDI regulates endoplasmic reticulum stress and the apoptosis signaling pathway in colorectal cancer (CRC). We determined the expression of PDI in CRC tissues and adjacent normal tissues. Gain- and loss- of function assays were conducted to evaluate the effects of PDI on oxidative stress, endoplasmic reticulum stress, and apoptosis in CRC cells, as reflected by hydrogen peroxide (H2O2) level and the expression of related proteins. PDI protein expression was upregulated in CRC tissues. Small molecule inhibitor of PDI or PDI knockdown reduced CRC cell viability and induced apoptosis. Overexpression of wild-type PDI augmented the viability of CRC cells and inhibited endoplasmic reticulum stress response and apoptosis. Small molecule inhibitor of PDI or PDI knockdown increased intracellular H2O2 level and activated apoptosis signaling pathway, which could be reversed by wild-type PDI restoration. Moreover, the catalytic active site of C-terminal of PDI was found to be indispensable for the regulatory effects of PDI on H2O2 levels, apoptosis and cell viability in CRC cells. Collectively, PDI inhibits endoplasmic reticulum stress and apoptosis of CRC cells through its oxidoreductase activity, thereby promoting the malignancy of CRC.

17.
J Trace Elem Med Biol ; 68: 126819, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34293650

RESUMO

BACKGROUND: The National Institutes of Health (NIH) category IV prostatitis is a painless prostate gland inflammation, just as its name implies, this type of prostatitis is related with inflammation of the prostate, but most men are not conscious of it. However, category IV prostatitis is fairly common in general populations and reported having indirect relationships with prostate cancer. METHOD: We analyzed the concentration of zinc (Zn), copper (Cu), calcium (Ca) and magnesium (Mg) in expressed prostatic secretion (EPS) and serum of patients with category IV prostatitis and healthy controls, investigating the diagnostic potential of different metals in category IV prostatitis using a flame atomic absorption spectrometer (FAAS). RESULTS: Metal concentration combined clinical characteristics analysis suggested that average level of Zn, Ca, Mg were significantly lower in the EPS of patients with category IV prostatitis (P-value< 0.000), while Cu level raised obviously (P-value< 0.000). And in the serum, mean concentrations of Ca was also found to increase significantly in the patients with category IV prostatitis compared to healthy controls. Moreover, the correlation analysis indicated that age showed a positive correlation with EPS Zn, Ca, Mg concentration (P-value< 0.05), while albumin correlates with EPS Zn, Ca, Mg concentration reversely (P-value< 0.05) in patients with category IV prostatitis. CONCLUSION: Our report revealed that determination of the metal elements zinc, copper, calcium and magnesium in the serum and EPS could be a new and promising strategy for the rapid diagnosis of category IV prostatitis.

18.
Tissue Eng Regen Med ; 18(5): 887-893, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216376

RESUMO

BACKGROUND: Bile duct injury (BDI), which may occur during cholecystectomy procedures and living-donor liver transplantation, leads to life-altering complications and significantly increased mortality and morbidity. Tissue engineering, as an emerging method, has shown great potential to treat BDI. Here, we aimed to explore the application of small intestinal submucosa (SIS) matrix composites with bone marrow mesenchymal stem cells (BMSCs) to treat BDI in a rabbit model. METHODS: Rabbit-derived BMSCs were used as seed cells. Porcine SIS was used as the support material. Five centimetres of the common bile duct was dissected, and 1/3-1/2 of the anterior wall diameter was transversely incised to construct the rabbit BDI model. Then, SIS materials without/with BMSCs were inserted into the common bile duct of the BDI rabbits. After 1, 2, 4, and 8 weeks of implantation, the common bile duct was removed. Haematoxylin and eosin (HE) staining was used to assess pathological alterations in the common bile duct, while immunohistochemical staining and western blotting were used to detect expression of the epithelial cell markers CK19 and E-cadherin. Scanning electron microscopy was used to evaluate BMSC growth. RESULTS: Compared with BMSCs alone, SIS-attached BMSCs had increased growth. HE staining showed that the injured bile duct healed well and that the complex gradually degraded as the time from implantation increased. Immunohistochemical staining and western blotting showed that compared with the control group, the in vivo complex group had significantly elevated expression levels of CK19 and E-cadherin. CONCLUSION: BMSC implantation into SIS could improve BDI in rabbits, which might have clinical value for BDI treatment.


Assuntos
Transplante de Fígado , Células-Tronco Mesenquimais , Animais , Ductos Biliares/cirurgia , Células da Medula Óssea , Humanos , Doadores Vivos , Coelhos , Suínos
19.
Biol Trace Elem Res ; 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34176076

RESUMO

Kashin-Beck disease (KBD) is a chronic, degenerative osteoarthropathy related to selenium (Se) deficiency. Se participates in the synthesis of selenoprotein in the form of selenocysteine. In total, 25 selenoproteins, encoded by 25 genes, are currently found in humans; however, the effects of selenoprotein genes on chondrocyte apoptosis, particularly in apoptosis-related genes, remain poorly elucidated. Therefore, in the current study, the expression of selenoprotein genes and apoptosis-related genes were determined by RT-qPCR in patients and chondrocytes and the correlations between them were analyzed using Pearson and Spearman's rank correlation, and the chondrocyte apoptosis rate was detected by Annexin V-FITC/PI. The results showed that the mRNA levels of 17 selenoprotein genes were downregulated, whereas two genes were upregulated in patients with KBD. The BAX/BCL2 ratio and the mRNA levels of BAX and P53 were increased, but the mRNA levels of BCL2 and NF-κB p65 were decreased in patients with KBD. The mRNA levels of GPX2, GPX3, DIO1, TXNRD1, TXNRD3, and SPS2 were most closely associated with apoptosis-related genes in patients with KBD. Moreover, in the Se deficiency group, the mRNA levels of GPX3, DIO1, and TXNRD1 were downregulated and GPX activity was decreased, but the late apoptosis rate, the mRNA levels of BAX and P53, and the BAX/BCL2 ratio were increased; the opposite trend was observed in the Se supplement group. Collectively, these results indicate that selenoprotein transcription profile is dysregulated in patients with KBD. Furthermore, the expression of GPX3, DIO1, and TXNRD1 genes might be involved in the development of chondrocyte apoptosis by affecting antioxidant capacity.

20.
Int J Nanomedicine ; 16: 4073-4085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163160

RESUMO

Background: The efficacy of systemic chemotherapy for hepatocellular carcinoma (HCC) is predominantly hampered by low accumulation in tumor tissue and the high systemic toxicity of anticancer drugs. In this study, we designed an in situ drug-loaded injectable thermosensitive hydrogel system for the simultaneous delivery of norcantharidin-loaded nanoparticles (NCTD-NPs) and doxorubicin (Dox) via intratumoral administration to HCC tumors. Methods: NCTD-NPs were prepared by the thin film dispersion method using PCEC polymers as the carrier. Then, NCTD-NPs and Dox were co-encapsulated in a thermosensitive hydrogel based on Pluronic F127 (PF127) to construct a dual drug-loaded hydrogel system. The rheological properties of the drug-loaded hydrogel were studied using a rheometer. Drug release of the drug-loaded hydrogel and cytotoxicity in HepG2 cells were evaluated in vitro. An H22 tumor-bearing mice model was used to assess the in vivo antitumor activity of the drug-loaded hydrogel via intratumoral administration. Results: The prepared drug-loaded hydrogel exhibited good thermal-sensitive properties, which remained liquid at room temperature and rapidly transformed into a non-flowing gel at body temperature, and released the drugs in a sustained manner. In vitro studies revealed that the drug-loaded hydrogel exhibited remarkable antiproliferative activity in HepG2 cells compared to free drugs. In vivo antitumor efficacy experiments showed that the drug-loaded hydrogel significantly suppressed tumor growth, alleviated side effects, and prolonged the survival time of mice bearing H22 tumors compared to the other groups. Moreover, immunohistochemical staining revealed that the expression of Ki-67 and CD31 in the drug-loaded hydrogel group was significantly lower than that in the other groups (P < 0.05), indicating that the drug-loaded hydrogel effectively inhibited tumor proliferation and angiogenesis. Conclusion: The formulated hybrid thermosensitive hydrogel system with sustained drug release and enhanced therapeutic efficacy was demonstrated to be a promising strategy for the local-regional treatment of HCC via intratumoral administration.


Assuntos
Antineoplásicos/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/administração & dosagem , Hidrogéis/química , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Temperatura Corporal , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Preparações de Ação Retardada , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Poloxâmero/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...