Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.854
Filtrar
1.
J Cell Physiol ; 235(2): 1649-1662, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31392726

RESUMO

Hypoxia is a common pathological process caused by insufficient oxygen. Long noncoding RNAs (lncRNAs) have been proven to participate in this pathology. Hypoxia is reported to significantly reduce the secretion of tissue inhibitor of metalloproteinase 2 (TIMP2) and TIMP2 induces pheochromocytoma-12 (PC12) cell cycle arrest. Thus, our study aimed to explore the mechanism by which lncRNA maternally expressed gene 3 (MEG3) was implicated in hypoxia-induced PC12 cell injury through TIMP2 promoter methylation. To elucidate the potential biological significance of MEG3 and the regulatory mechanism between MEG3 and TIMP2, a hypoxia-induced PC12 cell injury model was generated. The hypoxia-exposed cells were subjected to a series of overexpression plasmids and short hairpin RNAs, followed by the measurement of levels of MEG3, TIMP2, lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), reactive oxygen species (ROS), Bcl-2-associated X protein, B-cell lymphoma-2, and caspase-3, as well as the changes in MMP, cell proliferation, apoptosis, and cell cycle progression. On the basis of the findings, MEG3 was upregulated in hypoxia-injured PC12 cells. MEG3 recruited methylation proteins DNMT3a, DNMT3b, and MBD1 and accelerated TIMP2 promoter methylation, which in turn inhibited its expression. Moreover, PC12 cells following MEG3 silencing and TIMP2 overexpression exhibited significantly decreased levels of LDH, MDA, and ROS along with cell apoptosis, yet increased SOD and MMP levels, as well as cell cycle entry to the S phase and cell proliferation. In conclusion, MEG3 silencing suppresses hypoxia-induced PC12 cell injury by inhibiting TIMP2 promoter methylation. This study may provide novel therapeutic targets for hypoxia-induced injury.

2.
Nanotechnology ; 31(4): 045302, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31578000

RESUMO

Targeted irradiation of nanostructures by a finely focused ion beam provides routes to improved control of material modification and understanding of the physics of interactions between ion beams and nanomaterials. Here, we studied radiation damage in crystalline diamond and silicon nanostructures using a focused helium ion beam, with the former exhibiting extremely long-range ion propagation and large plastic deformation in a process visibly analogous to blow forming. We report the dependence of damage morphology on material, geometry, and irradiation conditions (ion dose, ion energy, ion species, and location). We anticipate that our method and findings will not only improve the understanding of radiation damage in isolated nanostructures, but will also support the design of new engineering materials and devices for current and future applications in nanotechnology.

3.
Food Chem ; 304: 125377, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31476547

RESUMO

We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries.


Assuntos
Antibacterianos/análise , Aptâmeros de Nucleotídeos/química , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , Adsorção , Cloranfenicol/análise , Limite de Detecção , Análise Espectral , Tetraciclina/análise
4.
Virus Res ; 275: 197793, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31676367

RESUMO

Zika virus (ZIKV) is an emergent flavivirus associated with severe neurological disorders. ZIKV NS3 protein is a viral protease that cleaves the ZIKV polyprotein precursor into individual viral proteins. In this study, we found that ZIKV NS3 by itself exhibited mitochondrial localization, which was quite different from its endoplasmic reticulum (ER) localization in ZIKV-infected cells. We screened viral proteins and identified NS2B as the bona fide recruiter of NS3 to the ER. The NS2B C-terminal tail interacted with NS3 protease domain to retain NS3 on the ER. ß-Sheet motifs that formed between NS2B and the NS3 protease domain played important roles in their interaction, while mutation in the ß-strand of NS2B attenuated NS2B-NS3 interaction and impaired the ability of NS3 protease to cleave the polyprotein precursor into multiple viral proteins. Consequently, NS2B mutations led to severe inhibition of ZIKV replication and production due to insufficient NS3 protease activity. In summary, our study reveals the critical role of NS2B in NS3 recruitment and protease function and provides mechanistic insight into ZIKV replication.

5.
J Hazard Mater ; 383: 121240, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31563767

RESUMO

High-efficiency and cost-effective catalysts are critical to completely mineralization of organic contaminants for in-situ groundwater remediation via advanced oxidation processes (AOPs). The engineered biochar is a promising method for waste biomass utilization and sustainable remediation. This study engineers maize stalk (S)- and maize cob (C)-derived biochars (i.e., SB300, SB600, CB300, and CB600, respectively) with oxygen-containing functional groups as a carbon-based support for nanoscale zero-valent iron (nZVI). Morphological and physiochemical characterization showed that nZVI could be impregnated within the framework of the synthesized Fe-CB600 composite, which exhibited the largest surface area, pore volume, iron loading capacity, and Fe0 proportion. Superior degradation efficiency (100% removal in 20 min) of trichloroethylene (TCE, 0.1 mM) and fast pseudo-first-order kinetics (kobs =22.0 h-1) were achieved via peroxymonosulfate (PMS, 5 mM) activation by the Fe-CB600 (1 g L-1) under groundwater condition (bicarbonate buffer solution at pH = 8.2). Superoxide radical and singlet oxygen mediated by Fe0 and oxygen-containing group (i.e., CO) were demonstrated as the major reactive oxygen species (ROSs) responsible for TCE dechlorination. The effectiveness and mechanism of the Fe/C composites for rectifying organic-contaminated groundwater were depicted in this study.

6.
J Nanosci Nanotechnol ; 20(4): 2543-2549, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492274

RESUMO

In this work, crystalline Si nanoparticles are synthesized on a large scale via a low temperature molten salt method. The crystal morphologies and electrochemical properties of the samples after HCl and HF leaching are studied in detail. The electrochemical properties of the as-produced silicon samples, which are used as anode materials in lithium-ion batteries (LIBs), are evaluated. The final product, which contains more Si and less SiO², improves cyclic stability because it buffers the volumetric effect of Si during lithiation/delithiation. The HF acid leach removes the impurity of SiO². However, the prepared sample exhibits lower electrochemical properties. The sample with a low SiO² content can deliver a capacity of 1503 mAh g-1 after 50 cycles at a higher current density of 1 A g-1, and the Coulombic efficiency is approximately 100%. However, the sample after HF acid leaching only delivers a discharge capacity of 389 mAh g-1 at 1 A g-1 after 50 cycles.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31790582

RESUMO

Wetting and fouling phenomena are main concerns for membrane distillation (MD) in treating high salinity industrial wastewater. This work developed an omniphobic membrane by growing titanium dioxide (TiO2) nanorods on polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofibers using a hydrothermal technique. The TiO2 nanorods form a uniform pine-needle-like hierarchical nanostructure on PVDF-HFP fibers. A further fluorination treatment provides the membrane with a low-surface-energy omniphobic surface, displaying contact angles of 168o and 153o for water and mineral oil, respectively. Direct contact MD experiments demonstrated that the resulting membrane shows a high and stable salt rejection of >99.9%, while the pristine PVDF-HFP nanofiberous membrane suffers a rejection decline caused by intense pore wetting and oil fouling in the desalination process in presence of surfactant and mineral oil. The superior anti-wetting and anti-fouling behaviors were ascribed to a non-wetting Cassie-Baxter state established by the accumulating of a great deal of air in the hydrophobized hierarchical re-entrant structures. The development of omniphobic membranes with pine-needle-like hierarchical nanostructures provides an approach to mitigate membrane wetting and fouling in the MD process for the water reclamation from industrial wastewater.

8.
Plant Physiol Biochem ; 146: 374-383, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31794898

RESUMO

The plant-specific transcription factor TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING4 CELL FACTORS (TCP) plays a crucial role in plant growth and development. However, there have been no studies reporting on the function of strawberry TCP in regulating fruit development. In this study, FvTCP9, a woodland strawberry (Fragaria vesca) TCP gene, was isolated to explore its function in fruit ripening. The transcript accumulation levels of FvTCP9 were high in fruits, specifically in red fruits compared with other tissues or organs. Transient expression of the FvTCP9 gene in cultivated strawberry fruits revealed that over-expression of FvTCP9 promoted fruit ripening. Meanwhile, silencing FvTCP9, using tobacco rattle virus-induced gene silencing (VIGS), inhibited fruit ripening. The changes in ripening-related physiological conditions in transient fruits, such as the accumulation of anthocyanins and abscisic acid (ABA), and fruit firmness confirmed above results. Results suggested that FvTCP9 was involved in the biosynthesis of ABA and anthocyanins to regulate fruit ripening. Transcription analysis showed that the expression levels of ABA signaling-related genes (FaNCED1, FaPYR1, FaSnRK2, and FaABI5) were affected by FvTCP9. A yeast two-hybrid assay revealed that FvTCP9 interacted physically with FaMYC1 to modulate the biosynthesis process of anthocyanins. Taken together, this study demonstrated that FvTCP9 promoted fruit ripening by regulating the biosynthesis of ABA and anthocyanins.

9.
Nat Commun ; 10(1): 5458, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784534

RESUMO

The studies of quantum interference effects through bulk perovskite materials at the Ångstrom scale still remain as a major challenge. Herein, we provide the observation of room-temperature quantum interference effects in metal halide perovskite quantum dots (QDs) using the mechanically controllable break junction technique. Single-QD conductance measurements reveal that there are multiple conductance peaks for the CH3NH3PbBr3 and CH3NH3PbBr2.15Cl0.85 QDs, whose displacement distributions match the lattice constant of QDs, suggesting that the gold electrodes slide through different lattice sites of the QD via Au-halogen coupling. We also observe a distinct conductance 'jump' at the end of the sliding process, which is further evidence that quantum interference effects dominate charge transport in these single-QD junctions. This conductance 'jump' is also confirmed by our theoretical calculations utilizing density functional theory combined with quantum transport theory. Our measurements and theory create a pathway to exploit quantum interference effects in quantum-controlled perovskite materials.

10.
AJR Am J Roentgenol ; : 1-13, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31799873

RESUMO

OBJECTIVE. The purpose of this study was to explore the performance of MRI radiomics in predicting the pathologic classification and TNM staging of thymic epithelial tumors (TETs). MATERIALS AND METHODS. Clinical and MRI data for 189 patients with TETs were retrospectively collected. A total of 2088 radiomics features were extracted from T2-weighted images and T2-weighted fat-suppressed (FS) images. With the use of a support vector machine with recursive feature elimination, the optimal feature subsets were selected and used to construct two predictive models for pathologic classification and TNM staging. In multivariable logistic regression analysis, we incorporated the radiomics model, conventional MRI findings, and clinical variables to develop a radiomics nomogram for predicting risk stratification of advanced TETs. RESULTS. Of the extracted features, 125 features were selected to construct the radiomics model for predicting pathologic classification, and 69 features were selected to construct the radiomics model for predicting TNM staging. The models achieved AUC values of 0.880 and 0.948 in the training cohort and 0.771 and 0.908 in the test cohort, respectively, for distinguishing among low-risk thymomas, high-risk thymomas, and thymic carcinomas and differentiating between early-stage and advanced-stage TETs. The radiomics model, symptom, and pericardial effusion constituted a radiomics nomogram, with an AUC value of 0.967 (95% CI, 0.891-0.989) in the training cohort and 0.957 (95% CI, 0.842-0.974) in the test cohort. CONCLUSION. MRI radiomics analysis has the potential to differentiate the pathologic classification and TNM staging of TETs. A radiomics nomogram provides a useful tool for in dividualized prediction of the risk of advanced-stage TET before a patient undergoes treatment.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31785815

RESUMO

A heterozygous frameshift PRRT2 mutation (c.649_650InsC) has been identified as the major causative mutation in several paroxysmal disorders, including paroxysmal kinesigenic dyskinesia (PKD). Since PKD is an autosomal dominant disorder and since the frameshift mutations of PRRT2 may create a truncated protein, it remains unclear whether this mutation causes toxic gain of function or loss of function. By generating Prrt2 knock-in (KI) mice that express human PRRT2 with the c.649_650InsC mutation and by comparing the phenotypes of Prrt2 KI mice with knockout (KO) mice, we find that both KI and KO mice show the same extents of impaired rotarod and balance beam performance as well as the same sensitivity to seizure induction. Both KI and KO mice show altered formation of SNARE complex and number of synaptic vesicles. In addition, western blotting of KI mouse brain tissues could not detect truncated PRRT2 protein that might be generated by the c.649_650InsC mutation. Moreover, the level of PRRT2 mRNA in KI mice is significantly decreased, recapitulating the reduction of PRRT2 mRNA reported in PKD patients. Furthermore, mutant PRRT2 mRNA is unstable and showed shortened half-life than wild-type PRRT2 mRNA. Our studies suggest that PRRT2 frameshift mutation leads to the loss of function by affecting its mRNA stability, a mechanism that is different from haploinsufficiency due to dysfunctional protein or gain of function caused by truncated protein.

12.
Sci Total Environ ; : 134618, 2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31787289

RESUMO

The alpine treeline is shifting upward due to climate warming. However, the treeline species composition and the pace of its upward migration can be mediated by ecological interactions. In particular, so-called ecosystem engineers, i.e. species that modulate the microscale environmental conditions, at the treeline may play a crucial role. We conducted a three-year seedling transplant experiment at the alpine treeline ecotone in southwest China to study how the shrub Rhododendron rupicola modifies the microscale physical and biotic environments and thus influences the establishment and performance of the two treeline species Larix potaninii and Picea likiangensis. Seedlings were transplanted to the current timberline and treeline, as well as above the current treeline in order to determine the responses of the two tree species to the shrub with respect to the current tree distribution. R. rupicola modified the microenvironment by increasing soil moisture and nutrient contents, buffering soil temperature fluctuations, and by increasing richness and changing the composition of root-associated fungi. As a result, tree seedlings planted under shrubs had significantly higher survival, growth rates and nutrient accumulations than those planted in open ground. Furthermore, seedlings planted at lower elevations performed better than those planted at higher elevations. Beyond the treeline, seedling survival was very low on open ground but strongly facilitated by the shrub. Finally, facilitation effects were species-specific, with Larix benefitting more from the shrub than Picea, while Picea had less mortality than Larix in the absence of the shrub. This study demonstrates that shrubs, through the amelioration of physical and biotic microenvironmental conditions, can act as stepping stones for the establishment of selective tree species beyond the current treeline. This suggests that biotic interactions can strongly modify the treeline species composition and push the treeline beyond its current climatic limits, thereby facilitating the upward shift with ongoing climate warming.

13.
Sci Rep ; 9(1): 18018, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784655

RESUMO

Scientific management of nitrogen (N) fertilizer has a significant effect on yield while also reducing the environmental risks. In this study, we conducted field experiments over three years at two different sites (Zhengzhou and Shangshui) in Henan Province, China, using different N application rates (0, 90,180, 270, and 360 kg ha-1) to determine the relationships between soil N supply and N demand in winter wheat (Triticum aestivum L.). Optimal N input was then determined. Both sites showed the same trend. Namely, aboveground N uptake and soil nitrate N (NO3--N) increased with increasing N, while NO3--N decreased with increasing soil depth, gradually moving downwards with growth. A significant correlation (p < 0.001) between increasing aboveground N uptake and increasing NO3--N was also observed under N application, with the best relationships occurring in the 20-60 cm layer during jointing-anthesis (R2 = 0.402-0.431) and the 20-80 cm layer at maturity (R2 = 0.474). Root weight density showed the same spatial-temporal characteristics as NO3--N, following a unimodal trend with increasing N, and peaking at 90 kg ha-1. The root weight density was mainly distributed in the 0-60 cm layer (above 80%), with the 20-60 cm layer accounting for 30% of the total root system. In this layer, the root weight density was also significantly positively correlated with aboveground N uptake. Wheat yield reached saturation under high N (>270 kg ha-1), with a sharp decrease in N use efficiency (NUE) and linear increase in residual NO3--N. To balance yield and the risk of environmental pollution in the experimental area, an N application rate of 180-270 kg ha-1 is recommended under sufficient irrigation, thereby supporting a well-developed root system while ensuring balance between N supply and demand.

14.
Cell Death Dis ; 10(12): 916, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801947

RESUMO

The burgeoning functions of many microRNAs (miRs) have been well study in cancer. However, the level and function of miR-1205 in laryngeal squamous cell cancer remains unknown. In the current research, we validated that miR-1205 was notably downregulated in human laryngeal squamous cell carcinoma (LSCC) samples in comparison with tissues adjacent to LSCC, and correlated with T stage, lymph node metastasis, and clinical stage. Using Kaplan-Meier analysis indicates that high expression of miR-1205 has a favorable prognosis for patients with LSCC. Functional assays show that enforced miR-1205 expression attenuates the migration, growth, and invasion of LSCC cells. And E2F1 is verified to be a target of miR-1205, while E2F1 binds to miR-1205 promoter and transcriptionally inhibits miR-1205 expression. Overexpression of E2F1 reverses the inhibitory impacts of miR-1205 on LSCC cells in part. Importantly, E2F1 is abnormally increased in LSCC tissues, and its protein levels were inversely relevant to miR-1205 expression. High E2F1 protein level is in connection with clinical stage, T stage, lymph node metastasis, and poor prognosis. Consequently, reciprocal regulation of miR-1205 and E2F1 plays a crucial role in the progression of LSCC, suggesting a new miR-1205/E2F1-based clinical application for patients of LSCC.

15.
Carcinogenesis ; 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31802101

RESUMO

DNA methylation plays a crucial role in the pathogenesis of various diseases, including colorectal cancer (CRC). However, the global and temporal DNA methylation pattern during initiation and progression of colitis-associated cancer (CAC) are still unknown, including the potential therapeutic strategy of targeting methylation for CAC. In the present study, the global DNA methylation pattern was determined at different time points during CAC using DNA methylation sequencing, followed by the Starburst plot integrating alterations and potential functional prediction analysis. After demonstrating the regulatory role of DNA methyltransferases (DNMTs) on the expression of hub-genes in CRC cells, DNMT inhibitors were administered to treat CAC mice. Our results indicated that 811 genes were hypermethylated at different time points during initiation and progression of CAC. Genes that were downregulated and hypermethylated during CAC, including hub-genes BAD and inositol polyphosphate phosphatase-like 1 (INPPL1), were involved in MAPK signaling pathways, kit receptor signaling pathways, apoptosis, and EGF/EGFR signaling pathways. Upregulated DNMTs (DNMT1, DNMT3A, and DNMT3B) mediated downregulation and hypermethylation of BAD and INPPL1 in CAC and CRC cells. Low doses of DNMT inhibitors (decitabine (DAC) and azacitidine (AZA)) exerted efficient anti-tumor effects in CAC, accompanied with upregulation of BAD and INPPL1 expression, and apoptosis induction. In summary, the present study demonstrates the temporal DNA methylation pattern during CAC and provides a novel therapeutic strategy for treating this disease.

16.
Sci Adv ; 5(11): eaaw9120, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31803831

RESUMO

Two-dimensional synthetic polymers (2DSPs) are sheet-like macromolecules consisting of covalently linked repeat units in two directions. Access to 2DSPs with controlled size and shape and diverse functionality has been limited because of the need for monomers to retain their crystallinity throughout polymerization. Here, we describe a synthetic strategy for 2DSPs that obviates the need for crystallinity, via the free radical copolymerization of amphiphilic gemini monomers and their monomeric derivatives arranged in a bilayer at solid-liquid interfaces. The ease of this strategy allowed the preparation of 2DSPs with well-controlled size and shape and diverse functionality on solid templates composed of various materials with wide-ranging surface curvatures and dimensions. The resulting 2DSPs showed remarkable mechanical strength and have multiple applications, such as nanolithographic resist and antibacterial agent. The broad scope of this approach markedly expands the chemistry, morphology, and functionality of 2DSPs accessible for practical applications.

17.
ChemSusChem ; 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804002

RESUMO

The electrolysis of organic acids has garnered increasing attention in recent years. In addition to the famous electrochemical decarboxylation known as Kolbe electrolysis, a number of other electrochemical processes have been recently established, allowing for the construction of carbon-heteroatom and sulfur-heteroatom bonds from organic acids. In this review, we survey recent advances in electrochemical C-X and S-X (X = N, O, S, Se) bond forming reactions from five classes of organic acids and their conjugate bases, namely carboxylic, thiocarboxylic, phosphoric, sulfinic and sulfonic acids.

18.
Bioinformatics ; 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804670

RESUMO

MOTIVATION: The tissue atlas of the human protein atlas (HPA) houses immunohistochemistry (IHC) images visualizing the protein distribution from the tissue level down to the cell level, which provide an important resource to study human spatial proteome. Especially, the protein subcellular localization patterns revealed by these images are helpful for understanding protein functions, and the differential localization analysis across normal and cancer tissues lead to new cancer biomarkers. However, computational tools for processing images in this database are highly underdeveloped. The recognition of the localization patterns suffers from the variation in image quality and the difficulty in detecting microscopic targets. RESULTS: We propose a deep multi-instance multi-label model, ImPLoc, to predict the subcellular locations from IHC images. In this model, we employ a deep CNN-based feature extractor to represent image features, and design a multi-head self-attention encoder to aggregate multiple feature vectors for subsequent prediction. We construct a benchmark dataset of 1186 proteins including 7855 images from HPA and 6 subcellular locations. The experimental results show that ImPLoc achieves significant enhancement on the prediction accuracy compared with the current computational methods. We further apply ImPLoc to a test set of 889 proteins with images from both normal and cancer tissues, and obtain 8 differentially localized proteins with a significance level of 0.05. AVAILABILITY: https://github.com/yl2019lw/ImPloc. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

19.
Oncogene ; 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754211

RESUMO

Interpreting disease-causing variants, especially in noncoding regions by genome-wide association studies (GWAS), has become one of the most challenging and demanding tasks. We hypothesized that functional lncRNAs variants in GWAS-identified loci might alter expression level of genes associated with persistent HBV infection and hepatocellular carcinoma (HCC). Integrated bioinformatics approaches were used to prioritize potentially functional variants and a two-stage case-control study (2473 HBV positive HCC patients, 2248 persistent HBV carriers and 2294 spontaneously recovered subjects) was performed to assess the roles of these variants. The rs2844512 G > C variant in LINC01149 was identified to facilitate HBV spontaneous recovery (OR = 0.84, 95% CI = 0.77-0.92) but increase the risk of HCC (OR = 1.21, 95% CI = 1.11-1.32) in combined samples. Subsequent biological assays indicated this variant created a binding site for miR-128-3p and upregulated MICA expression by serving as a miRNA sponge, which might recruit NK-cells to lyse infected cells, but release highly soluble MICA by shedding to induce NK-cells exhaustion and tumor immune evasion. These findings highlight a regulatory circuit between LINC01149 and MICA, mediating by miR-128-3p, and the important role of upregulated MICA in conferring susceptibility to persistent HBV infection and HCC.

20.
Soft Robot ; 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31755821

RESUMO

This article describes a novel design of bioinspired soft robotic fingers based upon hybrid jamming principle-integrated layer jamming and particle jamming. The finger combines a fiber-reinforced soft pneumatic actuator with a hybrid jamming substrate. Taking advantage of different characteristics of layer jamming and particle jamming, the substrate is designed with three chambers filled with layers (function as bones) and two chambers filled with particles (function as joints). The layer regions and particle regions are interlocked with each other to guarantee load transfer from the fixed finger end to fingertip. With the proposed design, the finger is endowed with bending shape control, as well as variable stiffness capabilities. Theoretical analysis is conducted to predict the stiffness variation of the proposed finger at different vacuum levels, and experimental tests are performed to evaluate the finger's shape control and stiffness tuning effectiveness. Experimental results show that the proposed finger can achieve 5.52 times stiffness enhancement at primary position. Finally, we fabricate a gripper and perform grasping demonstrations on several objects. Results show that the gripper is able to transfer between low stiffness state for adaptive grasping and high stiffness state for robust holding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA