Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.934
Filtrar
1.
J Ethnopharmacol ; 282: 114617, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509605

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Berberine(BBR) is a kind of isoquinoline alkaloids extracted from the rhizomes of Coptis chinensis Franch., which was the main active ingredient. Accumulating evidence has shown that it has potential pharmacological effects in preventing the recurrence of colorectal adenomas. AIM OF THE STUDY: The roles of BBR in the overall recurrence of colorectal adenoma have still not been assessed because of the limitations of the available data and the restriction of a single study. Therefore, we evaluated the effectiveness and safety of BBR in preventing the recurrence of colorectal adenomas through a systematic review and meta-analysis of available data. MATERIALS AND METHODS: We searched four English databases (PubMed (MEDLINE), the Cochrane Central Register of Controlled Trials (CENTRAL), Embase and Web of Science) and four Chinese language databases (Chinese Biomedicine (CBM), China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP) and the WanFang Database) from their inception through October 2020. Meta-analysis was performed with RevMan5.3 software after data extraction and the quality of studies assessment. RESULTS: Three randomized controlled clinical trials were included with 1076 patients. Our results illustrated that 1-year and 2-year supplementation with BBR was associated with lower recurrence rate of colorectal adenoma (RR 0.69, 95% CI 0.57 to 0.84, p=0.0001; RR 0.75, 95% CI 0.64 to 0.88, p=0.0004). The relative risk of oral BBR for 1 year and 2 years is not comparable, for 2-year efficacy outcomes were assessed in all participants who had at least one colonoscopy with pathological evaluation after baseline (lots of participants completed the first colonoscopy but discontinued during the second follow-up interval.). Moreover, the results also suggest that BBR had more adverse events than placebo (RR 2.91, 95% CI 1.24 to 6.85, p=0.01). Through the full-text reading, no serious adverse events were observed, and constipation was the most common event which disappears once the drug is discontinued. CONCLUSION: Generally, the present study indicated that BBR has a comparable therapeutic effect on the prevention of colorectal adenomas recurrence. Adverse reactions are worthy of attention which requires additional studies to obtain a precise conclusion. PROSPERO REGISTRATION NO: CRD42020209135.

2.
Cell Mol Immunol ; 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497376

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initiates the infection process by binding to the viral cellular receptor angiotensin-converting enzyme 2 through the receptor-binding domain (RBD) in the S1 subunit of the viral spike (S) protein. This event is followed by virus-cell membrane fusion mediated by the S2 subunit, which allows virus entry into the host cell. Therefore, the SARS-CoV-2 S protein is a key therapeutic target, and prevention and treatment of coronavirus disease 2019 (COVID-19) have focused on the development of neutralizing monoclonal antibodies (nAbs) that target this protein. In this review, we summarize the nAbs targeting SARS-CoV-2 proteins that have been developed to date, with a focus on the N-terminal domain and RBD of the S protein. We also describe the roles that binding affinity, neutralizing activity, and protection provided by these nAbs play in the prevention and treatment of COVID-19 and discuss the potential to improve nAb efficiency against multiple SARS-CoV-2 variants. This review provides important information for the development of effective nAbs with broad-spectrum activity against current and future SARS-CoV-2 strains.

3.
Front Public Health ; 9: 724736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497795

RESUMO

With the rapid development of the economy of China, the interactivity between provinces and the mobility of the population is increasing. Some patients who could have received the same treatment in their residential areas still choose to receive services in areas with higher economic development and concentrated high-quality medical resources, resulting in a huge waste of medical resources. Blindly increasing medical resources everywhere does not necessarily increase the output effectively. In this study, the data envelopment analysis (DEA) model, social network analysis (SNA), cluster analysis, and regression analysis are used to analyze the structural characteristics of the economic network structure and efficiency of health care in China. The results show that indegree and eigenvector centrality have a significant positive correlation with the efficiency of health care, and the clustering coefficient has a significant negative correlation with the efficiency of health care in China. This study uses a k-means algorithm to classify 31 provinces into three groups and extract their characteristics. As for the supply of health care resources, the government should command and dispatch the resources in the whole country through a top-down design based on the characteristics of each province.

5.
Biol Chem ; 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34505461

RESUMO

Thiols are important units in amino acids such as cysteine and peptides like glutathione. Development of chemical sensors capable of precise detection of thiols is important in cancer diagnosis and therapy. We have developed novel two-photon fluorescent turn-on probes for selective detection of thiols. The probes displayed excellent sensitivity and low detection limits. The dual-purpose probes have been demonstrated to be suitable for simultaneous imaging and proteome profiling in live cells and tumor tissues. The unique turn-on design endows the probes with excellent selectivity toward thiols in vitro and in situ, and can be further developed to support a thiol-quantification assay.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34514796

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) as traditional electrochemiluminescence (ECL) luminophores have been widely applied in the analysis field. However, their ECL intensity and efficiency are still limited due to the aggregation-induced quenching (ACQ) effect of PAHs. Hence, to overcome this limitation, we put forward a new strategy to increase the ECL intensity and efficiency by eliminating the ACQ effect of PAHs through the coordinative immobilization of PAHs within metal-organic frameworks (MOFs). As anticipated, the proof-of-concept experiment indicated that the coordinative immobilization of perylene-3,4,9,10-tetracarboxylate (PTC) into a Zn-PTC MOF could distinctly increase the ECL intensity and efficiency compared with H4PTC aggregates and H4PTC monomers. The reason for the ECL enhancement of Zn-PTC was that the immobilization of PTC within the MOF effectively amplified the distance between perylene rings of PTC ligands and thus eliminated the ACQ effect. Furthermore, the PTC into Zn-PTC was stacked in an edge-to-edge mode to form J-aggregation, which was also conducive to ECL enhancement. On the basis of the excellent ECL performance, we utilized Zn-PTC as a new ECL emitter combined with exonuclease III-stimulated target cycling and DNAzyme-assisted cycling dual amplification strategies to construct an ECL sensor for microRNA-21 detection, which had a wide signal response (100 aM to 100 pM) with a detection limit of 29.5 aM. Overall, this work represents a new and convenient method to overcome the ACQ effect of PAHs and boost the ECL performance, which opens a new horizon for developing high-performance ECL materials, thus offering more opportunities for building highly sensitive ECL biosensors.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34515821

RESUMO

Different foliar barrier agents (FBA) were used by foliar spraying in first season field and pot experiments to compare their effects on Cadmium (Cd) reduction in wheat grains. The best two FBA (50 µM SNP and 2 mM Na2EDTA) can significantly reduce Cd concentration in wheat grains, and the filling period was the most effective period for FBA application. Compared with the control (H2O), foliar spraying 50 µM SNP or 2 mM Na2EDTA inhibited the moving of Cd from the lower tissue to upper tissue in stem and also significantly reduced the Cd accumulation in grains. Furthermore, compared with normal wheat variety (AK58), foliar spraying 50 µmol SNP or 2 mM Na2EDTA as the best two FBA significantly reduced Cd concentration in shoots of Cd low accumulation varieties (HZB and HJBY), which can be used for the safe production of wheat in Cd-contaminated farmlands.

8.
Adv Mater ; : e2103133, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34467573

RESUMO

Metal-free carbon-based materials with high electrocatalytic activity are promising catalysts for the oxygen reduction reaction (ORR) in several renewable energy systems. However, the performance of carbon-based materials is far inferior to that of Pt-based catalysts in acid electrolytes. Here, a novel carbon-based electrocatalyst is reported toward ORR in 0.1 m HClO4 with half-wave potential of 0.81 V and better durability (100 h reaction time) than commercial 20 wt% Pt/C. It is achieved by constructing graphitic-nitrogen (GN)-bonded pentagons in graphitic carbon to improve the intrinsic activity of the carbon sites and increasing the amount of active sites via expanding the interlayer spacing. X-ray absorption spectroscopy and aberration-corrected electron microscopy characterizations confirm the formation of GN-bonded pentagons in this carbon material. Raman and X-ray photoelectron spectroscopy reveal that the activity is linearly associated with the amounts of both pentagons and adjacent GN atoms. Density function theory further demonstrates that adjacent GN atoms significantly increase the charge density at the carbon atom of a GN-bonded pentagon, which is the activity origin for the ORR.

9.
J Control Release ; 338: 557-570, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34474072

RESUMO

Nanoparticles (NPs) coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHCs) can blunt autoimmune diseases by re-programming cognate effector T-lymphocytes into disease-suppressing regulatory T-cells, followed by massive expansion. Here, a method to quantify the absolute amounts of the active drug product is developed, to understand the relationship between bioavailability and pharmacodynamics. Incubation with plasma results in the formation of a protein corona that stabilizes the directional pMHC coat, shielding it from proteolysis or anti-drug antibody recognition, without any appreciable loss in biological potency. A quantitative method that harnesses these features indicates that the half-life of these compounds in the circulation and organs is an order of magnitude shorter (minutes vs. hours) than that measured using commonly-used semi-quantitative methods. Extensive transmission electron microscopy-based organ scanning and flow cytometry-based enumeration of pMHCII-NP capturing cells confirmed that these compounds are rapidly captured (within 1 min) by liver sinusoidal endothelial cells, Kupffer cells, splenic phagocytes and cognate T-cells, leading to a fast decline in the circulation. Therefore, the powerful pharmacodynamic effects of these compounds are dissociated from long bioavailability, implying a hit-and-run event. Collectively, these data provide a detailed view of the life-cycle of a nanoimmunomedicine, and suggest that the real half-lives of intact nanomedicines may be much shorter than those estimated using indirect approaches.

10.
Environ Sci Technol ; 55(18): 12652-12663, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34478283

RESUMO

The microbial characteristics related to nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) removal were investigated in three pilot scale constructed wetlands (CWs). Compared to horizontal subsurface flow (HSSF) and surface flow (SF) CWs, the aerobic vertical flow (VF) CW enriched more functional bacteria carrying genes for nitrification (nxrA, amoA), denitrification (nosZ), dephosphorization (phoD), and methane oxidation (mmoX), while the removal of COD, total P, and total N increased by 33.28%, 255.28%, and 299.06%, respectively. The co-occurrence network of functional bacteria in the HSSF CW was complex, with equivalent bacterial cooperation and competition. Both the VF and SF CWs exhibited a simple functional topological structure. The VF CW reduced functional redundancy by forming niche differentiation, which filtered out keystone species that were closely related to each other, thus achieving effective sewage purification. Alternatively, bacterial niche overlap protected a single function in the SF CW. Compared with the construction type, temperature, and plants had less effect on nutrient removal in the CWs from this subtropical region. Partial least-squares path modeling (PLS-PM) suggests that high dissolved oxygen and oxidation-reduction potential promoted a diverse bacterial community and that the nonkeystone bacteria reduced external stress for functional bacteria, thereby indirectly promoting nutrient removal.

11.
J Hazard Mater ; 416: 126163, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492941

RESUMO

Environmental magnetism in combination with machine learning can be used to monitor heavy metal pollution in sediments. Magnetic parameters and heavy metal concentrations of sediments from Chaohu Lake (China) were analyzed. The magnetic measurements, high- and low-temperature curves, and hysteresis loops showed the primary magnetic minerals were ferrimagnetic minerals in sediments. For most metals, their concentrations were highest during the wet season and lowest during the medium-water period. Cd, Hg, and Zn were moderately enriched and Cd and Hg posed a considerable ecological risk. A redundancy analysis indicated a relationship between physicochemical indexes and magnetic parameters and heavy metal concentrations. An artificial neural network (ANN) and support vector machine (SVM) were used to construct six models to predict the heavy metal concentrations and ecological risk index. The inclusion of both the physicochemical indexes and magnetic parameters as input factors in the models were significantly ameliorated the simulation accuracy for the majority of heavy metals. The training and test R, for Be, Fe, Pb, Zn, As, Cu, and Cr were > 0.8. The SVM showed better performance and hence it has potential for the efficient and economical long-term tracking and monitoring of heavy metal pollution in lake sediments.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Aprendizado de Máquina , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
12.
Shock ; 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506367

RESUMO

BACKGROUND: Sepsis-induced cardiomyopathy (SIC) is a major contributing factor for morbidity and mortality in sepsis. Accumulative evidence has suggested that cardiac mitochondrial oxidative phosphorylation is attenuated in sepsis, but the underlying molecular mechanisms remain incompletely understood. METHODS: Adult male mice of 9-12 weeks old were subjected to sham or cecal ligation and puncture procedure. Echocardiography in vivo and Langendorff-perfused hearts were used to assess cardiac function 24 hours after the procedures. Unbiased proteomics analysis was performed to profile mitochondrial proteins in the hearts of both sham and SIC mice. Seahorse respirator technology was used to evaluate oxygen consumption in purified mitochondria. RESULTS: Of the 665 mitochondrial proteins identified in the proteomics assay, 35 were altered in septic mice. The mitochondrial remodeling involved various energy metabolism pathways including subunits of the electron transport chain, fatty acid catabolism, and carbohydrate oxidative metabolism. We also identified a significant increase of pyruvate dehydrogenase (PDH) kinase 4 (PDK4) and inhibition of PDH activity in septic hearts. Furthermore, compared to sham mice, mitochondrial oxygen consumption of septic mice was significantly reduced when pyruvate was provided as a substrate. However, it was unchanged when PDH was bypassed by directly supplying the Complex I substrate NADH, or by using the Complex II substrate succinate, or using Complex IV substrate, or by providing the beta-oxidation substrate palmitoylcarnitine, neither of which require PDH for mitochondrial oxygen consumption. CONCLUSIONS: These data demonstrate a broad mitochondrial protein remodeling, PDH inactivation and impaired pyruvate-fueled oxidative phosphorylation during SIC, and provide a molecular framework for further exploration.

13.
J Healthc Eng ; 2021: 5709104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540187

RESUMO

Cytokine-induced killer (CIK) cells have been proved to be an effective method of tumor immunotherapy in numerous preclinical and clinical studies. In our previous study, a new method was developed to prime and propagate CIK cells by the combination of IL-2 and IL-15, and this kind of CIK cells had enhanced antitumor effect on lung cancer. For renal cell carcinoma (RCC), immunotherapy plays an important role because of the poor efficacy of radiotherapy and chemotherapy. In this study, we further evaluated the antitumor effects of these enhanced CIK cells against RCC. Enhanced CIK cells were generated by IL-2 combined with IL-15 and identified by flow cytometry. HEK-293 and ACHN cell lines were used to verify the efficiency of CIK cells in vitro, and then the ACHN tumor xenograft model was also employed for in vivo study. In addition, the secreted cytokines including IFN-γ, granzyme B, TNF-α, and perforin, as well as the local microstructure were also studied. Subsequently, 20 patients with RCC were enrolled into our study, and 11 patients were randomly divided into the autologous CIK treatment group for clinical research. The results showed that enhanced CIK cells exert better antitumor effects in RCC in vitro (p < 0.01 in HEK-293 and p < 0.05 in ACHN)and in vivo (p < 0.05). Patients benefit overall survival from enhanced CIK therapy in our clinical study. Our present preclinical and clinical studies for the first time elucidated that these enhanced CIK cells would be used as an effective adjuvant therapy in the treatment of RCC.

14.
Arch Microbiol ; 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545410

RESUMO

Avian pathogenic E. coli (APEC) caused avian colibacillosis is mostly common in poultry industry worldwide. APEC virulence factors lead to pathogenesis and the quorum sensing (QS) system is actively involved in the regulation of these virulence factors. Signaling molecules in QS are known as autoinducers (AIs). In QS-1, E. coli encodes a single LuxR homolog, i.e., SdiA, but does not express the LuxI homolog, an acyl-homoserine lactone (AHL) synthase of producing AI-1. Avian pathogenic E. coli (APEC) regulates its virulence genes expression in response to exogenous AHLs, but regulatory mechanisms of AHL and QS-1 are still unknown. This study targeted the APEC CE129 isolate as the reference strain, and the Yersinia enterocolitica yenI gene was expressed into APEC CE129. CE129/pyenI was conferred the ability to produce AHL signal. The CE129 SdiA mutant strain with an in-frame sdiA (AHL receptor) gene deletion was constructed by a λRed recombination system, which lost the ability to sense AHL. The goal of this study was to explore the function of QS-1 upon virulence and elucidate the regulatory effect of QS-1/AHL signals in the APEC strain. Adherence and invasion assays revealed that QS-1 affected APEC adherence and survival ability. APEC biofilm formation was also suppressed under C6HSL. Interestingly, APEC exhibited different phenotypes of acid tolerance and flagella expression when compared to enterotoxigenic E. coli or enterohemorrhagic E. coli (ETEC and EHEC, respectively). These findings enhance our understanding of the QS mechanism.

15.
Proteins ; 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546597

RESUMO

Analysis of protein subcellular localization is a critical part of proteomics. In recent years, as both the number and quality of microscopic images are increasing rapidly, many automated methods, especially convolutional neural networks, have been developed to predict protein subcellular location(s) based on bioimages, but their performance always suffers from some inherent properties of the problem. First, many microscopic images have non-informative or noisy sections, like unstained stroma and unspecific background, which affect the extraction of protein expression information. Second, the patterns of protein subcellular localization are very complex, as a lot of proteins locate in more than one compartment. In this study, we propose a new label-correlation enhanced deep neural network, laceDNN, to classify the subcellular locations of multi-label proteins from immunohistochemistry images. The model uses small representative patches as input to alleviate the image noise issue, and its backbone is a hybrid architecture of convolutional neural network and recurrent neural network, where the former network extracts representative image features and the latter learns the organelle dependency relationships. Our experimental results indicate that the proposed model can improve the performance of multi-label protein subcellular classification. This article is protected by copyright. All rights reserved.

16.
J Transl Med ; 19(1): 391, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526059

RESUMO

BACKGROUND: EMT is an important biological process in the mechanism of tumor invasion and metastasis. However, there are still many unknowns about the specific mechanism of EMT in tumor. At present, a comprehensive analysis of EMT-related genes in colorectal cancer (CRC) is still lacking. METHODS: All the data were downloaded from public databases including TCGA database (488 tumor samples and 52 normal samples) as the training set and the GEO database (GSE40967 including 566 tumor samples and 19 normal samples, GSE12945 including 62 tumor samples, GSE17536 including 177 tumor samples, GSE17537 including 55 tumor samples) as the validation sets. One hundred and sixty-six EMT-related genes (EMT-RDGs) were selected from the Molecular Signatures Database. Bioinformatics methods were used to analyze the correlation between EMT-RDGs and CRC prognosis, metastasis, drug efficacy, and immunity. RESULTS: We finally obtained nine prognostic-related EMT-RDGs (FGF8, NOG, PHLDB2, SIX2, SNAI1, TBX5, TIAM1, TWIST1, TCF15) through differential expression analysis, Unicox and Lasso regression analysis, and then constructed a risk prognosis model. There were significant differences in clinical characteristics, 22 immune cells, and immune functions between the high-risk and low-risk groups and the different states of the nine prognostic-related EMT-RDGs. The methylation level and mutation status of nine prognostic-related EMT-RDGs all affect their regulation of EMT. The Cox proportional hazards regression model was also constructed by the methylation sites of nine prognostic-related EMT-RDGs. In addition, the expression of FGF8, PHLDB2, SIX2, and SNAIL was higher and the expression level of NOG and TWIST1 was lower in the non-metastasis CRC group. Nine prognostic-related EMT-RDGs also affected the drug treatment response of CRC. CONCLUSIONS: Targeting these nine prognostic-related EMT-RDGs can regulate CRC metastasis and immune, which is beneficial for the prognosis of CRC patients, improve drug sensitivity in CRC patients.

17.
Bioengineered ; 12(1): 5916-5931, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34488541

RESUMO

Invasion is a critical pathway leading to tumor metastasis. This study constructed an invasion-related polygenic signature to predict osteosarcoma prognosis. We initially determined two molecular subtypes of osteosarcoma, Cluster1 (C1) and Cluster2 (C2).. A 3 invasive-gene signature was established by univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis of the differentially expressed genes (DEGs) between the two subtypes, and was validated in internal and two external data sets (GSE21257 and GSE39058). Patients were divided into high- and low-risk groups by their signature, and the prognosis of osteosarcoma patients in the high-risk group was poor. Based on the time-independent receiver operating characteristic (ROC) curve, the area under the curve (AUC) for 1-year and 2-year OS were higher than 0.75 in internal and external cohorts. This signature also showed a high accuracy and independence in predicting osteosarcoma prognosis and a higher AUC in predicting 1-year osteosarcoma survival than other four existing models. In a word, a 3 invasive gene-based signature was developed, showing a high performance in predicting osteosarcoma prognosis. This signature could facilitate clinical prognostic analysis of osteosarcoma.

18.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3900-3906, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472266

RESUMO

As a common disease worldwide, alcoholic liver injury is caused by long-term or excessive intake of alcohol and triggers cell death due to alcohol metabolism and reactive oxygen species(ROS)-mediated cytotoxicity. Wangshi Baochi(WSBC) Pills have been widely adopted in clinical practice for evacuating stasis, resolving turbidity, clearing heat, tranquilizing mind, invigorating sto-mach, promoting digestion, purging fire and removing toxin. This study aimed to investigate the efficacy of WSBC Pills in dispelling the effect of alcohol and protecting against acute alcoholic liver/stomach injury in mice, and preliminarily investigate its possible mole-cular mechanism. The results found that the preventive treatment with WSBC Pills contributed to elevating the activity of alcohol dehydrogenase(ADH) and its expression in liver and shortening the time required for sobering up of mice with acute alcoholic liver injury. The staining of liver pathological sections as well as the detection of serum aspartate aminotransferase(AST) and alanine aminotransferase(ALT) and liver ROS levels revealed that WSBC Pills protected the liver by reducing serum AST and ALT. It suppressed oxidative stress-induced liver injury by lowering liver ROS and elevating superoxide dismutase(SOD), and the liver-protecting effect was superior to that of silibinin. Western blot assay confirmed that WSBC Pills inhibited the oxidative stress by up-regulating SOD1 and NAD(P)H: quinone oxidoreductase 1(NQO-1). In addition, WSBC Pills lowered the ROS level to protect against the acute alcoholic stomach injury in mice. The findings have suggested that WSBC Pills alleviated the acute alcoholic liver/stomach injury in mice by increasing ADH and resisting oxidative stress.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Animais , Etanol , Fígado/metabolismo , Camundongos , Estresse Oxidativo , Estômago
20.
Adv Mater ; : e2104251, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34480501

RESUMO

Ultrasound energy transfer (UET) is developed and integrated into various bioelectronics with diagnostic, therapeutic, and monitoring capabilities. However, existing UET platforms generally enable one function at a time due to the single ultrasound channel architecture, limiting the full potential of bioelectronics that requires multicontrol modes. Here, a multichannel piezo-ultrasound implant (MC-PUI) is presented that integrates a hybrid waterborne acoustic metastructure (HWAM), multiple piezo-harvesters, and a miniaturized circuit with electronic components for selective wireless control via ultrasound frequency switching. The HWAM that utilizes both a 3D-printed air-diffraction matrix and a half-lambda Fabry-Perot resonator is optimized to provide the advantage of ultrasound selectivity at megahertz frequencies. Complying with U.S. Food and Drug Administration regulations, frequency-controlled multifunctional operations, such as wireless charging (≈11.08 µW) at 3.3 MHz and high-sensitivity wireless switch/control (threshold ≈0.55 MPa) of micro-light-emitting diode/motor at 1 MHz, are demonstrated ex vivo using porcine tissue and in vivo in a rat. The developed MC-PUI enhances UET versatility and opens up a new pathway for wireless implant design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...