Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Aging (Albany NY) ; 132021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33833129

RESUMO

This study investigated the effects of transforming growth factor-ß1 (TGF-ß1) and cyclooxygenase-2 (COX-2) on bone morphogenetic protein 9 (BMP9) in mesenchymal stem cells (MSCs). We found that BMP9 increased mRNA levels of TGF-ß1 and COX-2 in C3H10T1/2 cells. BMP9-induced osteogenic markers were enhanced by TGF-ß1 and reduced by TGF-ßRI-specific inhibitor LY364947. BMP9 increased level of p-Smad2/3, which were either enhanced or reduced by COX-2 and its inhibitor NS398. BMP9-induced osteogenic markers were decreased by NS398 and it was partially reversed by TGF-ß1. COX-2 increased BMP9-induced osteogenic marker levels, which almost abolished by LY364947. BMP9-induced bone formation was enhanced by TGF-ß1 but reduced by silencing TGF-ß1 or COX-2. BMP9's osteogenic ability was inhibited by silencing COX-2 but partially reversed by TGF-ß1. TGF-ß1 and COX-2 enhanced activation of p38 signaling, which was induced by BMP9 and reduced by LY364947. The ability of TGF-ß1 to increase the BMP9-induced osteogenic markers was reduced by p38-specific inhibitor, while BMP9-induced TGF-ß1 expression was reduced by NS398, but enhanced by COX-2. Furthermore, CREB interacted with Smad1/5/8 to regulate TGF-ß1 expression in MSCs. These findings suggest that COX-2 overexpression leads to increase BMP9's osteogenic ability, resulting from TGF-ß1 upregulation which then activates p38 signaling in MSCs.

2.
BMC Gastroenterol ; 21(1): 101, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663420

RESUMO

BACKGROUND: Liver metastasis is an important prognostic factor for pancreatic neuroendocrine neoplasms (pNENs), but the relationship between the clinical features of patients with pNEN and liver metastasis remains undetermined. The aim of this study was to establish and validate an easy-to-use nomogram to predict liver-metastasis in patients with pNEN. METHODS: We obtained the clinicopathologic data of 2960 patients with pancreatic neuroendocrine neoplasms from the Surveillance, Epidemiology and End Results (SEER) database between 2010 and 2016. Univariate and multivariate logistic regression were done to screen out independent influencing factors to establish the nomogram. The calibration plots and the area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of nomogram. Decision curve analysis (DCA) was applied to compare the novel model with the conventional predictive methods. RESULTS: A total of 2960 patients with pancreatic neuroendocrine neoplasms were included in the study. Among these, 1974 patients were assigned to the training group and 986 patients to the validation group. Multivariate logistic regression identified, tumor size, grade, other site metastasis, T stage and N stage as independent risk factors. The calibration plot showed good discriminative ability in the training and validation groups, with C-indexes of 0.850 for the training cohort and 0.846 for the validation cohort. The AUC values were 0.850 (95% CI 0.830-0.869) and 0.839 (95% CI 0.812-0.866), respectively. The nomogram total points (NTP) had the potential to stratify patients into low risk, medium risk and high risk (P < 0.001). Finally, comparing the nomogram with traditional prediction methods, the DCA curve showed that the nomogram had better net benefit. CONCLUSIONS: Our nomogram has a good ability to predict liver metastasis of pancreatic neuroendocrine neoplasms, and it can guide clinicians to provide suitable prevention and treatment measures for patients with medium- and high-risk liver metastasis.

3.
Phytother Res ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724590

RESUMO

Erycibes are members of the Convolvulaceae family, including more than 10 species worldwide that are distributed in tropical Asia. Some Erycibes species have long been used as traditional remedies for rheumatoid arthritis, fever, hepatitis, and liver injury in China and Thailand. A total of 152 compounds from Erycibes plants have been isolated and identified, categorized as flavonoids, coumarins, quinic acid derivatives, lignans, and alkaloids. Coumarins are the characteristic and active constituents of this species, including scopoletin and scopolin. Modern pharmacological studies have shown that the extracts and bioactive components of Erycibes plants exhibit several biological activities, including antiinflammatory, analgesic, hepatoprotective, anti-gout, antitumor, antioxidation, and other therapeutic effects. However, in recent years, due to destructive exploitation and utilization, some Erycibes plants' natural resources have become rare or endangered. Developing substitutes is a strategy to alleviate the pressure on those endangered medicinal plant resources. To provide a scientific basis for the development and protection of those threatened Erycibes species, this review summarized the current status of the chemical compositions, pharmacological activities, quality control studies, and the development of substitutes for Erycibes plants. In particular, the rationale for use of Porana sinensis currently on the market is discussed.

4.
ACS Appl Mater Interfaces ; 13(13): 14920-14927, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755428

RESUMO

Minimal residual disease (MRD) provides an independent prognostic factor for multiple myeloma (MM) patients. However, clinical MRD assays suffer from highly invasive sampling, insufficient detection sensitivity, and high cost. Herein, a stiMulus-Responsive ligand-Decorated microfluidic chip (MRD-Chip) was developed for efficient capture and controlled release of circulating myeloma cells (CMCs) in the peripheral blood for noninvasive myeloma evaluation. The CD138 antibody-decorated herringbone chip with a disulfide linker was designed to enhance the collision probability between blood cells and capture antibodies, leading to high capture efficiency of CMCs. More importantly, the captured CMCs can be nondestructively released via a thiol-exchange reaction, allowing them to be used for subsequent cellular and molecular analysis. By fluorescence in situ hybridization assay, we successfully identified the cytogenetic abnormalities (chromosome 1q21 amplification and p53 deletion) of CMCs in clinical samples. Overall, with the merits of noninvasive sampling, high capture efficiency (70.93%), high throughput (1.5 mL/h), and nondestructive release of target cells (over 90% viability) for downstream analysis, our strategy provides new opportunities for myeloma evaluation, such as prognosis assessment, efficacy monitoring, and mechanism research of disease relapse and drug resistance.

5.
Clin Transl Med ; 11(3): e366, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33784016

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the fourth fatal malignant tumour type worldwide. However, the exact molecular mechanism involved in HCC progression remains unclear. METHODS: Three pairs of HCC and matched portal vein tumour thrombus (PVTT) tissue samples were analysed by isobaric tags for relative and absolute quantification (iTRAQ) assay to investigate the differentially expressed proteins. Real-time quantitative PCR, immunostaining, and immunoblotting were performed to detect cofilin 1 (CFL1) in HCC and non-tumour tissues. CCK8 and EdU, and Transwell assays, respectively, determined cell proliferation, migration, and invasion of HCC cells. Further, subcutaneous and tail vein injection were performed in nude mice for investigating HCC growth and lung metastasis in vivo. Regulatory effect of hypoxia-inducible factor-1α (HIF-1α) on CFL1 was confirmed by chromatin immunoprecipitation (ChIP) assay. Finally, interaction between CFL1 and phospholipase D1 (PLD1) was studied using immunoprecipitation (IP) assay. RESULTS: The iTRAQ analysis identified expression of CFL1 to be significantly upregulated in PVTT than in HCC tissues. Increased expression of CFL1 was closely associated with unfavourable clinical features, and was an independent risk predictor of overall survival in HCC patients. The knockdown of CFL1 inhibited cell growth viability, invasiveness, and epithelial-mesenchymal transformation (EMT) in HCC cells. Furthermore, CFL1 silencing significantly suppressed the growth and lung metastasis of HCC cells in nude mice. Next, HIF-1α directly regulated CFL1 transcription by binding to the hypoxia-responsive element (HRE) in the promoter. Moreover, we disclosed the interaction between CFL1 and PLD1 in HCC cells using IP assay. Mechanistically, CFL1 maintained PLD1 expression by repressing ubiquitin-mediated protein degradation, thereby activating AKT signalling in HCC cells. Notably, the CFL1/PLD1 axis was found mediating the hypoxia-induced activation of the AKT pathway and EMT. CONCLUSION: The analysis suggests that hypoxia-induced CFL1 increases the proliferation, migration, invasion, and EMT in HCC by activating the PLD1/AKT pathway.

6.
Curr Microbiol ; 78(3): 1034-1038, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33527165

RESUMO

The genus Algibacter belongs to the family Flavobacteriaceae of the Bacteroidetes, and all members of this genus were isolated from marine environments. Among the Algibacter species, two members, Algibacter lectus KMM 3902T and Algibacter wandonensis WS-MY22T, were isolated from green algae and sediment around a brown algae respectively. The 16S rRNA gene sequences of these two type strains possess 99.4% sequence similarity. In this study, further studies were undertaken to clarify the taxonomic assignments of the two species. Whole-genome sequence analysis showed that the similarities for other phylogenetic markers are also very high (i.e. 99.9% for gyrB, 99.6% for recA and 99.9% for rpoD). Average nucleotide identity, average amino acids identity and digital DNA-DNA hybridization value between A. lectus KMM 3902T and A. wandonensis WS-MY22T are 98.3%, 98.6% and 89.4% respectively, all clearly exceed suggested species delineation thresholds. Furthermore, phylogenetic trees based on sequences of 16S rRNA gene and up-to-date bacterial core gene set (UBCG) consisting of 92 genes provided additional evidence that A. lectus KMM 3902T and A. wandonensis WS-MY22T are very closely related. In addition, a review of their profiles indicated that A. lectus KMM 3902T and A. wandonensis WS-MY22T did not present pronounced differences at phenotypic and chemotaxonomic levels. Based on these evidence, we propose that A. wandonensis should be reclassified as later heterotypic synonyms of A. lectus.

7.
J Pathol ; 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33638154

RESUMO

Tamoxifen (TAM) resistance is a significant clinical challenge in endocrine therapies for estrogen receptor (ER)-positive breast cancer patients. Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through diverse epigenetic mechanisms. However, the role and the underlying mechanisms of CUL4B in regulating drug resistance remain unknown. Here, we showed that CUL4B promotes TAM resistance in breast cancer cells through a miR-32-5p/ER-α36 axis. We found that upregulation of CUL4B correlated with decreased TAM sensitivity of breast cancer cells, and knockdown of CUL4B or expression of a dominant-negative CUL4B mutant restored the response to TAM in TAM-resistant MCF7-TAMR and T47D-TAMR cells. Mechanistically, we demonstrated that CUL4B renders breast cancer cells TAM-resistant by upregulating ER-α36 expression, which was mediated by downregulation of miR-32-5p. We further showed that CRL4B epigenetically represses the transcription of miR-32-5p by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes to promote trimethylation at H3K27 at the promoter of miR-32-5p. Pharmacologic or genetic inhibition of CRL4B/PRC2/HDAC complexes significantly increased TAM sensitivity in breast cancer cells in vitro and in vivo. Taken together, our findings thus establish a critical role for the CUL4B-miR-32-5p-ER-α36 axis in the regulation of TAM resistance and have important therapeutic implications for combined application of TAM and the inhibitors of CRL4B/PRC2/HDAC complex in breast cancer treatment. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

8.
Phys Chem Chem Phys ; 23(2): 1424-1436, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33393943

RESUMO

Among the constituent molecular classes of proteins and nucleic acids, the presence of Ribose and deoxy-Ribose in space remains unclear. Here, we provide experimental evidence of astronomically related sugar derivatives - carbon cluster (fullerenes and graphenes)/prebiotic sugar complexes - and study their formation processes in the gas phase. The results show that, with PAH cations (dicoronylene, DC, C48H20+)/(2-deoxy-d-Ribose, dR, C5H10O4, and dehydrated 2-deoxy-d-Ribose, DedR, C5H8O3) and fullerene cations (C60+)/(dR and DedR) as the initial molecular precursors, two series of graphene-prebiotic sugar cluster cations (graphene/dR and graphene/DedR, e.g., (dR)Cn+ and (DedR)Cn+) and two series of fullerene-prebiotic sugar cluster cations (fullerene/dR and fullerene/DedR, e.g., (dR)(DedR)2Cn+, (DedR)3Cn+, and (dR)2(DedR)Cn+) are formed through an ion-molecule reaction pathway under the influence of a strong radiation field. The structures of the newly formed complexes and the binding energies of these formation reactions are initially theoretically calculated. These laboratory studies attest to the importance of ion-molecule reaction synthesis routes for the chemical complexity in space, demonstrating that the gas phase interstellar materials could directly lead to the formation of large and complex sugar derivatives in a bottom-up growth process. The chemical evolution in space in which single molecules are transformed into complex molecules produces a wide variety of organic compounds (e.g., carbon cluster (fullerenes and graphenes)/prebiotic sugar complexes). For their astrobiological implications, this opens up aromatic based biogenic chemistry that is available to the parent of PAHs or fullerenes in the interstellar environments.


Assuntos
Desoxirribose/análogos & derivados , Fulerenos/química , Gases/química , Grafite/química , Desoxirribose/síntese química , Evolução Química , Grafite/síntese química
9.
Ecotoxicol Environ Saf ; 208: 111566, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396095

RESUMO

Androgens and estrogens often co-exist in aquatic environments and pose potential risks to fish populations. However, little is known about the endocrine disrupting effects of the mixture of androgens and estrogens in fish. In this study, transcriptional level of target genes related to the hypothalamic-pituitary-gonadal-liver (HPGL) axis, sex hormone level, VTG protein concentration, histology and secondary sex characteristic were assessed in the ovaries and livers of adult female western mosquitofish (Gambusia affinis) exposed to 17ß-estradiol (E2), testosterone (T), and mixtures of E2 and T for 91 days. The results showed that the transcriptional expression of cytochrome P450, family 19, subfamily A, polypeptide 1a (Cyp19a1a) was suppressed in the 200 ng/L T treatment and the 50 ng/L E2 + 200 ng/L T treatment in the ovaries. Steroidogenic acute regulatory protein (Star) and Cyp11a1 showed a similar expression pattern in the T treatment to its corresponding T + E2 mixtures. In the ovaries, the concentrations of 17ß-estradiol and testosterone were decreased in most treatments compared with the solvent control. VTG protein was induced in all steroid treatment. However, exposure to T or E2 + T mixture did not cause the abnormal cells of the ovaries and livers and an extension of the anal fins in female G. affinis. This study demonstrates that chronic exposure to E2, T and their mixtures affects the transcripts of genes in the HPGL axis, steroid hormone level and VTG protein concentration in the ovaries and livers, but fails to cause the histopathological effect of the ovaries and livers and alter the morphology of the anal fins in G. affinis.


Assuntos
Ciprinodontiformes/fisiologia , Disruptores Endócrinos/toxicidade , Estradiol/toxicidade , Androgênios/metabolismo , Animais , Ciprinodontiformes/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Disruptores Endócrinos/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Fígado/efeitos dos fármacos , Masculino , Ovário/efeitos dos fármacos , Testosterona/metabolismo , Vitelogeninas/metabolismo
10.
Trials ; 22(1): 85, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482853

RESUMO

BACKGROUND: Dyslipidemia is a major risk factor for atherosclerotic cardiovascular disease and a leading cause of death worldwide. The clinical utility of commonly used lipid-lowering drugs such as statins and fibrates is sometimes limited by the occurrence of various adverse reactions. Recently, berberine (BBR) has received increasing attention as a safer and more cost-effective option to manage dyslipidemia. Thus, a high-quality randomized controlled trial to evaluate the efficacy and safety of BBR in the treatment of dyslipidemia is deemed necessary. METHODS/DESIGN: This is a randomized, double-blind, and placebo-controlled clinical trial. A total of 118 patients with dyslipidemia will be enrolled in this study and randomized into two groups at a ratio of 1:1. BBR or placebo will be taken orally for 12 weeks. The primary outcome is the percentage of low-density lipoprotein cholesterol reduction at week 12. Other outcome measures include changes in other lipid profiles, high sensitivity C-reactive protein, blood pressure, body weight, Bristol Stool Chart, traditional Chinese medicine symptom form, adipokine profiles, and metagenomics of intestinal microbiota. Safety assessment includes general physical examination, blood and urine routine test, liver and kidney function test, and adverse events. DISCUSSION: This trial may provide high-quality evidence on the efficacy and safety of BBR for dyslipidemia. Importantly, the findings of this trial will help to identify patient and disease characteristics that may predict favorable outcomes of treatment with BBR and optimize its indication for clinical use. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR1900021361 . Registered on 17 February 2019.

11.
J Mater Chem B ; 9(5): 1441-1451, 2021 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-33469640

RESUMO

The functionalization of microrobots is essential for realizing their biomedical application in targeted cargo delivery, but the multifunctional integration of microrobots and controllable cargo delivery remains an enormous challenge at present. This work reports a kind of multi-functionalized micro-helical robot with superior loading capabilities for the controlled release of encapsulants. The magnetic microrobot, with a multilayer capsule helical structure, was developed via multifunctional strategies, including microfluidic synthesis, polyelectrolyte complexation, and surface coating with magnetic nanoparticles. The microrobot is constructed of a helical structure from a calcium alginate microfiber via a co-axial capillary microfluidic system. Then, it is coated with a polyelectrolyte complexation membrane and decorated with magnetic nanoparticles. After multi-step layer-by-layer (LbL) assembly with functionalized units, the structure is converted to a helical capsule possessing a soft and biocompatible polysaccharide alginate/chitosan/alginate shell with Fe3O4 nanoparticles decorated on the surface. The functionalized microrobot not only enables wireless steering with rotational locomotion under the control of a six degrees of freedoms (6-DOFs) electromagnetic system at different frequencies, but it also possesses stimuli-responsive abilities owing to the semi-permeable membrane, which can trigger the controllable release of encapsulants in response to ions in the environment. This work provides an efficient strategy for the superior multi-functionalization of microrobots to achieve enhanced locomotion and encapsulation performance for the loading, transport, and targeted delivery of cargo.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Robótica/métodos , Humanos
12.
Soft Matter ; 17(8): 2071-2080, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438710

RESUMO

When nanoparticles (NPs) enter into the biological system, a wide range of proteins will coat on their surfaces forming protein corona, which changes the initial synthetic characteristics of NPs to the biological identity, resulting in the loss of their targets or specially designed properties. Although pre-coating with proteins would reduce the protein corona formation, they may diminish the targeting moieties in the transport process. Patchy NPs can offer unique advantages of asymmetry, heterogeneity, and multi-functions. This has inspired us to use the asymmetry to realize the versatility of NPs, to accommodate stealth and targeting functions. In this study, we performed molecular dynamics simulations to investigate the adsorption mechanism between patchy NPs and human serum albumin, and the interaction mechanism between NP-HSA and the membrane. The results show that there is a high probability for HSA to interact with the hydrophobic, or charged brushes of patchy NPs. The adsorption sites, as calculated through the contact probability between NPs and the residues, depend on the NP surface properties. Furthermore, the HSA adsorption on NPs could improve the NP-membrane interaction. The simulation results provide deep understanding of the NP interaction mechanism, which would help the NP design for their biomedical applications.

13.
Biomolecules ; 11(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513883

RESUMO

Nanobody (Nb), a new type of biorecognition element generally from Camelidae, has the characteristics of small molecular weight, high stability, great solubility and high expression level in E. coli. In this study, with 19-nortestosterone (19-NT), an anabolic androgenic steroid as target drug, three specific Nbs against 19-NT were selected from camel immune library by phage display technology. The obtained Nbs showed excellent thermostability and organic solvent tolerance. The nanobody Nb2F7 with the best performance was used to develop a sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) for 19-NT detection. Under optimized conditions, the standard curve of ic-ELISA was fitted with a half-maximal inhibitory concentration (IC50) of 1.03 ng/mL and a detection limit (LOD) of 0.10 ng/mL for 19-NT. Meanwhile, the developed assay had low cross- reactivity with analogs and the recoveries of 19-NT ranged from 82.61% to 99.24% in spiked samples. The correlation coefficient between ic-ELISA and the ultra-performance liquid chromatography/mass spectrometry (UPLC-MS/MS) method was 0.9975, which indicated that the nanobody-based ic-ELISA could be a useful tool for a rapid analysis of 19-NT in animal urine samples.

14.
ACS Appl Mater Interfaces ; 13(1): 1503-1510, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33350808

RESUMO

The design and fabrication of light-actuated robots that can perform selective motions and targeted cargo delivery have attracted increasing interest in various fields. However, these robots' high-speed locomotion, precise direction control, and efficient actuation ability remain big challenges because of the relatively low photothermal efficiency, especially in the aquatic environment. This work proposes a plasmonic-enhanced graphene oxide (GO)-gold nanorod (Au NR)/calcium alginate (Ca-alginate) aquatic robot. The proposed robot design includes an independent power module (GO-Au NR layer) and a microscale cargo-loaded module (Ca-alginate layer). The plasmonic effect of Au NRs greatly improves the heat transfer efficiency, which in turn increases the temperature variation up to three times during the actuating process. This situation leads to a high traveling speed of the robot up to ∼35 mm/s. Benefiting from the high light-to-work efficiency, the position and posture of the proposed robot have good control in the aquatic environment. The robot is capable of programmable trajectory following, multirobot gathering, separation, and cooperation, providing an efficient solution for cargo delivery. Moreover, after releasing the cargo-loaded module to the target location, the power module can be easily actuated for collection, avoiding the potential side effects from the residual photothermal particles in conventional methods. The plasmonic-enhanced photothermal mechanism and independent module design offer a strategy for light-actuated aquatic robot development and would bring opportunities to further develop biomedical applications.

15.
Biomaterials ; 265: 120456, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33099066

RESUMO

External stimuli-responsive nanomedicine with desirable repetitive on-demand drug release character is postulated to greatly accommodate patients' flexible medication regime. To this object, light-activatable liposomes (Pt/Ce6-LP) integrated with both a Ce6 photodynamic component and a tetravalent platinum prodrug (Pt(IV)) chemotherapeutic component are engineered. This multifunctional system was rationally designed using unsaturated phospholipid to achieve repetitive on-demand drug release under discontinuous light irradiation, thus performing chemo-photodynamic therapy effect and immunopotentiation in hypoxic tumor. Furthermore, glutathione (GSH) consumption during transformation from Pt(IV) prodrug to Pt(II) can avoid depletion of reactive oxygen species (ROS) in photodynamic therapy (PDT). Note this positive feedback loop appears to remodel the redox balance of H2O2 and GSH in tumors, alleviating the hypoxic tumor microenvironment. The alleviated hypoxia is found to be critical to the enhancement of PDT efficacy, reversal of cisplatin resistance in tumors, and polarization of tumor-associated macrophages (TAMs) to the immunocompetent M1-phynotype. Pt/Ce6-LP with light radiation demonstrates significant antitumor effect and persistent post-medication inhibition in patient-derived tumor xenograft model of hepatocellular carcinoma.

16.
ACS Appl Mater Interfaces ; 13(1): 298-305, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33382593

RESUMO

Most DNA-based electrochemiluminescence (ECL) biosensors are established through the self-assembly of thiolated single-stranded DNA (ssDNA) probes on the Au electrode surface. Because of this random assembly process, a significant discrepancy exists in the distribution of a modified DNA film on different electrodes, which greatly affects the reproducibility of a biosensor. In this study, a porous bovine serum albumin (BSA) layer was first modified on the electrode surface, which can improve the position distribution and spatial orientation of the self-assembly ssDNA probe. It was then coupled with hyperbranched rolling circle amplification to develop the high-reproducibility-and-sensitivity ECL biosensor for human papillomavirus 16 E6 and E7 oncogene detection. In the presence of the target DNA, the surface of the electrode accumulates abundant amplified products through reaction, which contain double-stranded DNA (dsDNA) fragments of different lengths, followed by plentiful dichlorotris (1,10-phenanthroline) ruthenium(II) hydrate (Ru(phen)32+, acting as an ECL indicator) insertion into grooves of dsDNA fragments, and a strong signal can be detected. There is a linear relationship between the signal and the target concentration range from 10 fM to 15 pM, and the detection limit is 7.6 fM (S/N = 3). After the BSA modification step, the relative standard deviation was reduced from 9.20 to 3.96%, thereby achieving good reproducibility. The proposed ECL strategy provides a new method for constructing high-reproducibility-and-sensitivity ECL biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Papillomavirus Humano 16/isolamento & purificação , Proteínas Oncogênicas Virais/análise , Proteínas E7 de Papillomavirus/análise , Proteínas Repressoras/análise , Soroalbumina Bovina/química , Animais , Bovinos , Colo do Útero/virologia , Sondas de DNA/química , Sondas de DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Técnicas Eletroquímicas/métodos , Feminino , Papillomavirus Humano 16/química , Humanos , Limite de Detecção , Substâncias Luminescentes , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico , Proteínas Oncogênicas Virais/genética , Compostos Organometálicos/química , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/diagnóstico , Fenantrolinas/química , Proteínas Repressoras/genética , Reprodutibilidade dos Testes , Rutênio/química
17.
J Hazard Mater ; 404(Pt A): 124052, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039828

RESUMO

Polluted sediments pose potential threats to environmental and human health and challenges to water management. Biochar is a carbon-rich material produced through pyrolysis of biomass waste, which performs well in soil amendment, climate improvement, and water treatment. Unlike soil and aqueous solutions, sediments are both the sink and source of water pollutants. Regarding in-situ sediment remediation, biochar also shows unique advantages in removing or immobilizing inorganic and organic pollutants (OPs). This paper provides a comprehensive review of the current methods of in-situ biochar amendments specific to polluted sediments. Physicochemical properties (pore structure, surface functional groups, pH and surface charge, mineral components) were influenced by the pyrolysis conditions, feedstock types, and modification of biochar. Furthermore, the remediation mechanisms and efficiency of pollutants (heavy metals [HMs] and OPs) vary with the biochar properties. Biochar influences microbial compositions and benthic organisms in sediments. Depending on the location or flow rate of polluted sediments, potential utilization methods of biochar alone or coupled with other materials are discussed. Finally, future practical challenges of biochar as a sediment amendment are addressed. This review provides an overview and outlook for sediment remediation using biochar, which will be valuable for further scientific research and engineering applications.

18.
J Hazard Mater ; 401: 123747, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113730

RESUMO

This study pays a special attention to three phenolic endocrine disrupting compounds (EDCs), - bisphenol A (BPA), 4-nonylphenol (4-NP), and 4-tert-octylphenol (4-t-OP) - that are present in urban environments, resultant of several anthropogenic activities that can be also carried through rainfall runoff. We investigated the distributions of BPA, 4-NP, and 4-t-OP in Pearl River basin and estimated the mass loads in rainfall runoff, wastewater treatment plant (WWTP) effluents, and industrial wastewater from urbanized Huizhou and Dongguan regions. These three phenolic EDCs were detected frequently in tributaries and mainstream of Dongjiang River with the maximum 4-NP concentrations of 14,540 ng/L in surface waters and 3088 ng/g in sediments. BPA showed high concentrations in rainfall runoff samples with maximum concentrations of 5873 and 2397 ng/L in Huizhou and Dongguan regions, respectively, while concentrations for 4-NP and 4-t-OP were detected at tens to hundreds of nanograms per liter. Mass loads of phenolic EDCs from rainfall runoff were 3-62 times higher than those of WWTP effluents, suggesting rainfall runoff is an important source of phenolic EDCs into receiving waters. Sources and tributaries showed median to high estrogenic risks, while low to median risks were found in mainstream, implying the source control should be focused.

19.
Zhongguo Yi Liao Qi Xie Za Zhi ; 44(6): 471-475, 2020 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-33314851

RESUMO

A clinical information navigation system based on 3D human body model is designed. The system extracts the key information of diagnosis and treatment of patients by searching the historical medical records, and stores the focus information in a predefined structured patient instance. In addition, the rule mapping is established between the patient instance and the three-dimensional human body model, the focus information is visualized on the three-dimensional human body model, and the trend curve can be drawn according to the change of the focus, meanwhile, the key diagnosis and treatment information and the original report reference function are provided. The system can support the analysis, storage and visualization of various types of reports, improve the efficiency of doctors' retrieval of patient information, and reduce the treatment time.


Assuntos
Aplicações da Informática Médica , Modelos Anatômicos , Diagnóstico por Computador , Humanos , Software
20.
Asian J Surg ; 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33191072

RESUMO

BACKGROUND: Seroma is a common and inevitable postoperative complication in transabdominal preperitoneal (TAPP) hernia repair, especially in patients with large inguinoscrotal hernias. However, studies have rarely reported drainage in TAPP for large inguinoscrotal hernias. METHODS: Sixty-five patients with 78 large indirect inguinoscrotal hernias who underwent TAPP procedure with drainage between September 2016 and December 2019 were enrolled in this study. 181 patients with Type Ⅲ indirect inguinal hernias (European Hernia Society (EHS) classification, hernia defect >3 cm) who underwent TAPP without drainage (no-drainage group) between January 2019 and December 2019 were included for a comparison. In the drainage group, a 12-Fr drainage tube was inserted into the distal hernia sac via the preperitoneal space to decrease the incidence of seroma. RESULTS: There was no conversion to open procedures in all the patients. The operative time (56.5 ± 8.4 VS 54.8 ± 9.6 min, unilateral; 95.8 ± 10.4 VS 92.1 ± 13.9 min, bilateral), blood loss (5.9 ± 1.9 VS 5.6 ± 1.7 mL), visual analogue scale score on postoperative day 1 (2.3 ± 0.5 VS 2.2 ± 0.5) and postoperative hospital stay (1.1 ± 0.3 VS 1.0 ± 0.2 days) in the drainage group were equivalent to those in the no-drainage group (p > 0.05). The mean length of drainage was 5.2 ± 1.3 days. The drainage group had a significantly lower incidence of seroma than the no-drainage group (1.5% VS 9.4%, p = 0.037). The postoperative complications including haematoma, recurrence and chronic pain were comparable in the two groups. CONCLUSION: Drainage with appropriate duration is a feasible, safe and effective measure to decrease the incidence of seroma in TAPP for patients with large inguinoscrotal hernias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...