Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 10(10)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581635

RESUMO

Root system plays an essential role in water and nutrient acquisition in plants. Understanding the genetic basis of root development will be beneficial for breeding new cultivars with efficient root system to enhance resource use efficiency in maize. Here, the natural variation of 13 root and 3 shoot traits was evaluated in 297 maize inbred lines and genome-wide association mapping was conducted to identify SNPs associated with target traits. All measured traits exhibited 2.02- to 21.36-fold variations. A total of 34 quantitative trait loci (QTLs) were detected for 13 traits, and each individual QTL explained 5.7% to 15.9% of the phenotypic variance. Three pleiotropic QTLs involving five root traits were identified; SNP_2_104416607 was associated with lateral root length (LRL), root surface area (RA), root length between 0 and 0.5mm in diameter (RL005), and total root length (TRL); SNP_2_184016997 was associated with RV and RA, and SNP_4_168917747 was associated with LRL, RA and TRL. The expression levels of candidate genes in root QTLs were evaluated by RNA-seq among three long-root lines and three short-root lines. A total of five genes that showed differential expression between the long- and short-root lines were identified as promising candidate genes for the target traits. These QTLs and the potential candidate genes are important source data to understand root development and genetic improvement of root traits in maize.

2.
Genes (Basel) ; 10(9)2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480272

RESUMO

ZmPGP1, involved in the polar auxin transport, has been shown to be associated with plant height, leaf angle, yield traits, and root development in maize. To explore natural variation and domestication selection of ZmPGP1, we re-sequenced the ZmPGP1 gene in 349 inbred lines, 68 landraces, and 32 teosintes. Sequence polymorphisms, nucleotide diversity, and neutral tests revealed that ZmPGP1 might be selected during domestication and improvement processes. Marker-trait association analysis in inbred lines identified 11 variants significantly associated with 4 plant architecture and 5 ear traits. SNP1473 was the most significant variant for kernel length and ear grain weight. The frequency of an increased allele T was 40.6% in teosintes, and it was enriched to 60.3% and 89.1% during maize domestication and improvement. This result revealed that ZmPGP1 may be selected in the domestication and improvement process, and significant variants could be used to develop functional markers to improve plant architecture and ear traits in maize.

3.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491955

RESUMO

Japonica and indica are two important subspecies in cultivated Asian rice. Irradiation is a classical approach to induce mutations and create novel germplasm. However, little is known about the differential response between japonica and indica rice after γ radiation. Here, we utilized the RNA sequencing and Weighted Gene Co-expression Network Analysis (WGCNA) to compare the transcriptome differences between japonica Nipponbare (NPB) and indica Yangdao6 (YD6) in response to irradiation. Japonica subspecies are more sensitive to irradiation than the indica subspecies. Indica showed a higher seedling survival rate than japonica. Irradiation caused more extensive DNA damage in shoots than in roots, and the severity was higher in NPB than in YD6. GO and KEGG pathway analyses indicate that the core genes related to DNA repair and replication and cell proliferation are similarly regulated between the varieties, however the universal stress responsive genes show contrasting differential response patterns in japonica and indica. WGCNA identifies 37 co-expressing gene modules and ten candidate hub genes for each module. This provides novel evidence indicating that certain peripheral pathways may dominate the molecular networks in irradiation survival and suggests more potential target genes in breeding for universal stress tolerance in rice.

4.
Plant Sci ; 286: 17-27, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300138

RESUMO

The plant-specific gibberellic acid (GA)-stimulated transcript gene family is critical for plant growth and development. There are 10 family members in rice (Oryza sativa), known as OsGASRs. However, few have been functionally characterized. Here, we investigated the function of OsGASR9 in rice. OsGASR9 transcripts were detected in various tissues, with the lowest and highest levels in leaves and panicles, respectively. Greater mRNA levels accumulated in young, compared with in old, panicles and spikelets. OsGASR9 localized to the plasma membrane, cytoplasm and nucleus. Transgenic RNA interference-derived lines in the Zhonghua 11 background exhibited reduced plant height, grain size and yield compared with the wild-type. The two osgasr9 mutants in the Nipponbare background showed similar phenotypes. Conversely, the overexpression of OsGASR9 in the two backgrounds increased plant height and grain size. A significantly increased grain yield per plant was also observed in the overexpression lines having a Nipponbare background. Furthermore, by measuring the GA-induced lengths of the second leaf sheaths and α-amylase activity levels of seeds, we concluded that OsGASR9 is a positive regulator of responses to GA in rice. Thus, OsGASR9 may regulate plant height, grain size and yield through the GA pathway and could have an application value in breeding.


Assuntos
Giberelinas/metabolismo , Oryza/genética , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Família Multigênica , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Interferência de RNA
5.
Heredity (Edinb) ; 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358987

RESUMO

Seed filling is a dynamic process that determines seed size and nutritional quality. This time-dependent trait follows a logistic (S-shaped) growth curve that can be described by a logistic function, with parameters of biological relevance. When compared between genotypes, the filling dynamics variations are explained by the differences of parameter values; as such, the parameter estimates can be considered as "traits" for genetic analysis to identify loci that are associated with the seed-filling process. We carried out genetic and genomic analysis of the seed-filling process in maize, using a recombinant inbred line (RIL) population derived from the two inbred lines with contrasting seed-filling dynamics. We recorded seed dry weight at 14 time points after pollination, spanning the early filling phases to the late maturation stages. Fitting these data to a logistic model allowed for estimating 12 characteristic parameters that can be used to meaningfully describe the seed-filling process. Quantitative trait locus (QTL) mapping of these parameters identified a total of 90 nonredundant loci. Using bulked segregant RNA-sequencing (BSR-seq) analysis, we identified eight genes that showed differential gene expression patterns at multiple time points between the extreme pools, and these genes co-localize with the mapped QTL regions. Two of the eight genes, GRMZM2G391936 and GRMZM2G008263, are implicated in starch and sucrose metabolism, and biosynthesis of secondary metabolites that are well known for playing a vital role in seed filling. This study suggests that the logistic model-based approach can efficiently identify genetic loci that regulate dynamic developing traits.

6.
Mol Phylogenet Evol ; 138: 205-218, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31132519

RESUMO

Colonization of the land by plants was a critical event in the establishment of modern terrestrial ecosystems, and many characteristics of land plants originated during this process, including the emergence of rosette terminal cellulose-synthesizing complexes. Cellulases are non-homologous isofunctional enzymes, encoded by glycosyl hydrolase (GH) gene families. Although the plant GH5_11 gene subfamily is presumed to encode a cell-wall degrading enzyme, its evolutionary and functional characteristics remain unclear. In the present study, we report the evolution of the land plant GH5_11 subfamily, and the functions of its members in terms of cellulase activity, through comprehensive phylogenetic analyses and observation of Arabidopsis mutants. Phylogenetic and sequence similarity analyses reveal that the ancestor of land plants acquired the GH5_11 gene from fungi through a horizontal gene transfer (HGT) event. Subsequently, positive selection with massive gene duplication and loss events contributed to the evolution of this subfamily in land plants. In Arabidopsis and rice, expression of GH5_11 genes are regulated by multiple abiotic stresses, the duplicated genes showing different patterns of expression. The Arabidopsis mutants atgh5_11a and atgh5_11c display low levels of cellulase and endoglucanase activities, with correspondingly high levels of cellulose, implying that the encoded proteins may function as endoglucanases. However, atgh5_11a and atgh5_11c also display an enlarged rosette leaf phenotype, and atgh5_11c is late-flowering under short photoperiods. These observations suggest that plant GH5_11s possess more functions beyond being endonucleases. To summarize, we demonstrate that the ancestor of land plants has acquired GH5_11 gene through HGT, which extends the cellulose degradation complexity. Our investigations illuminate features of part of the molecular framework underlying the origin of land plants and provide a focus on the cellulose degradation pathway.

7.
Nat Commun ; 10(1): 1949, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028264

RESUMO

Grain protein content (GPC) affects rice nutrition quality. Here, we identify two stable quantitative trait loci (QTLs), qGPC-1 and qGPC-10, controlling GPC in a mapping population derived from indica and japonica cultivars crossing. Map-based cloning reveals that OsGluA2, encoding a glutelin type-A2 precursor, is the candidate gene underlying qGPC-10. It functions as a positive regulator of GPC and has a pleiotropic effect on rice grain quality. One SNP located in OsGluA2 promoter region is associated with its transcript expression level and GPC diversity. Polymorphisms of this nucleotide can divide all haplotypes into low (OsGluA2LET) and high (OsGluA2HET) expression types. Population genetic and evolutionary analyses reveal that OsGluA2LET, mainly present in japonica accessions, originates from wild rice. However, OsGluA2HET, the dominant type in indica, is acquired through mutation of OsGluA2LET. Our results shed light on the understanding of natural variations of GPC between indica and japonica subspecies.


Assuntos
Proteínas de Grãos/metabolismo , Oryza/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Grão Comestível/metabolismo , Haplótipos/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética
8.
Planta ; 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30460404

RESUMO

MAIN CONCLUSION: Eight variants in ZmHKT1 promoter were significantly associated with root diameter, four haplotypes based on these significant variants were found, and Hap2 has the largest root diameter. Roots play an important role in uptake of water, nutrients and plant anchorage. Identification of gene and corresponding SNPs associated with root traits would enable develop maize lines with better root traits that might help to improve capacity for absorbing nutrients and water acquisition. The genomic sequences of a salt tolerance gene ZmHKT1 was resequenced in 349 maize inbred lines, and the association between nucleotide polymorphisms and seedling root traits was detected. A total of 269 variants in ZmHKT1 were identified, including 226 single nucleotide polymorphisms and 43 insertions and deletions. The gene displayed high level of nucleotide diversity, especially in non-genic regions. A total of 19 variations in untranslated region of ZmHKT1 were found to be associated with six seedling traits. Eight variants in promoter region were significantly associated with average root diameter (ARD), four haplotypes were found based on these significant variants, and Hap2 has the largest ARD. Two SNPs in high-linkage disequilibrium (SNP-415 and SNP 2169) with pleiotropic effects were significantly associated with plant height, root surface area, root volume, and shoot dry weight. This result revealed that ZmHKT1 was an important contributor to the phenotypic variations of seedling root traits in maize, these significant variants could use to develop functional markers to improve root traits.

9.
Plant Physiol ; 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190417

RESUMO

Polyamines, including putrescine (Put), spermidine (Spd), and spermine (Spm), play essential roles in a wide variety of prokaryotic and eukaryotic organisms. Rice (Oryza sativa) contains four putative spermidine/spermine synthase (SPMS)-encoding genes (OsSPMS1, OsSPMS2, OsSPMS3, and OsACAULIS5), but none have been functionally characterized. In this study, we used a reverse genetic strategy to investigate the biological function of OsSPMS1. We generated several homozygous RNA interference (RNAi) and overexpression (OE) lines of OsSPMS1. Phenotypic analysis indicated that OsSPMS1 negatively regulates seed germination, grain size, and grain yield per plant. The ratio of Spm to Spd was significantly lower in the RNAi lines and considerably higher in the OE lines than in the wild-type (WT), suggesting that OsSPMS1 may function as a spermine synthase. S-adenosyl-L-methionine is a common precursor of polyamines and ethylene biosynthesis. The 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene contents in seeds significantly increased in RNAi lines and decreased in OE lines, respectively, compared with wild-type. Additionally, the reduced germination rates and growth defects of OE lines could be rescued with ACC treatment. These data suggest that OsSPMS1 affects ethylene synthesis and may regulate seed germination and plant growth by affecting the ACC and ethylene pathways. Most importantly, an OsSPMS1 knockout mutant showed an increase in grain yield per plant in a high-yield variety, Suken118, suggesting that OsSPMS1 is an important target for yield enhancement in rice.

10.
Front Plant Sci ; 9: 1311, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233634

RESUMO

Maize starch plays a critical role in food processing and industrial application. The pasting properties, the most important starch characteristics, have enormous influence on fabrication property, flavor characteristics, storage, cooking, and baking. Understanding the genetic basis of starch pasting properties will be beneficial for manipulation of starch properties for a given purpose. Genome-wide association studies (GWAS) are becoming a powerful tool for dissecting the complex traits. Here, we carried out GWAS for seven pasting properties of maize starch with a panel of 230 inbred lines and 145,232 SNPs using one single-locus method, genome-wide efficient mixed model association (GEMMA), and three multi-locus methods, FASTmrEMMA, FarmCPU, and LASSO. We totally identified 60 quantitative trait nucleotides (QTNs) for starch pasting properties with these four GWAS methods. FASTmrEMMA detected the most QTNs (29), followed by FarmCPU (19) and LASSO (12), GEMMA detected the least QTNs (7). Of these QTNs, seven QTNs were identified by more than one method simultaneously. We further investigated locations of these significantly associated QTNs for possible candidate genes. These candidate genes and significant QTNs provide the guidance for further understanding of molecular mechanisms of starch pasting properties. We also compared the statistical powers and Type I errors of the four GWAS methods using Monte Carlo simulations. The results suggest that the multi-locus method is more powerful than the single-locus method and a combination of these multi-locus methods could help improve the detection power of GWAS.

11.
Plant Biotechnol J ; 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30160362

RESUMO

Heterotrimeric G proteins, which consist of Gα , Gß and Gγ subunits, function as molecular switches to regulate a wide range of developmental processes in plants. In this study, we characterize the function of rice RGG2, which encodes a type B Gγ subunit, in grain size and yield production. The expression levels of RGG2 are significantly higher than those of other rice Gγ -encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, RGG2 overexpression in Nipponbare (NIP) leads to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2-1 and zrgg2-2, exhibit enhanced growth, including elongated internodes, increased 1000-grain weight and plant biomass, and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3 ) treatment and the GA-induced α-amylase activity of seeds, we found that RGG2 is also involved in GA signaling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 provides a novel strategy for rice grain yield enhancement. This article is protected by copyright. All rights reserved.

12.
Genes Genomics ; 40(6): 669-683, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29892951

RESUMO

Members of the right open reading frame (RIO) atypical kinase family are present in all three domains of life. In eukaryotes, three subfamilies have been identified: RIO1, RIO2, and RIO3. Studies have shown that the yeast and human RIO1 and RIO2 kinases are essential for the biogenesis of small ribosomal subunits. Thus far, RIO3 has been found only in multicellular eukaryotes. In this study, we systematically identified members of the RIO gene family in 37 species representing the major evolutionary lineages in Viridiplantae. A total of 84 RIO genes were identified; among them, 41 were classified as RIO1 and 43 as RIO2. However, no RIO3 gene was found in any of the species examined. Phylogenetic trees constructed for plant RIO1 and RIO2 proteins were generally congruent with the species phylogeny. Subcellular localization analyses showed that the plant RIO proteins were localized mainly in the nucleus and/or cytoplasm. Expression profile analysis of rice, maize, and Arabidopsis RIO genes in different tissues revealed similar expression patterns between RIO1 and RIO2 genes, and their expression levels were high in certain tissues. In addition, the expressions of plant RIO genes were regulated by two drugs: mycophenolic acid and actinomycin D. Function prediction using genome-wide coexpression analysis revealed that most plant RIO genes may be involved in ribosome biogenesis. Our results will be useful for the evolutionary analysis of the ancient RIO kinase family and provide a basis for further functional characterization of RIO genes in plants.


Assuntos
Proteínas Serina-Treonina Quinases/genética , Viridiplantae/genética , Sequência de Aminoácidos/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Família Multigênica , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência/métodos , Transcriptoma/genética , Zea mays/genética
13.
Rice (N Y) ; 11(1): 32, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748895

RESUMO

BACKGROUND: Hybrid breeding is an effective tool to improve yield in rice, while parental selection remains the key and difficult issue. Genomic selection (GS) provides opportunities to predict the performance of hybrids before phenotypes are measured. However, the application of GS is influenced by several genetic and statistical factors. Here, we used a rice North Carolina II (NC II) population constructed by crossing 115 rice varieties with five male sterile lines as a model to evaluate effects of statistical methods, heritability, marker density and training population size on prediction for hybrid performance. RESULTS: From the comparison of six GS methods, we found that predictabilities for different methods are significantly different, with genomic best linear unbiased prediction (GBLUP) and least absolute shrinkage and selection operation (LASSO) being the best, support vector machine (SVM) and partial least square (PLS) being the worst. The marker density has lower influence on predicting rice hybrid performance compared with the size of training population. Additionally, we used the 575 (115 × 5) hybrid rice as a training population to predict eight agronomic traits of all hybrids derived from 120 (115 + 5) rice varieties each mating with 3023 rice accessions from the 3000 rice genomes project (3 K RGP). Of the 362,760 potential hybrids, selection of the top 100 predicted hybrids would lead to 35.5%, 23.25%, 30.21%, 42.87%, 61.80%, 75.83%, 19.24% and 36.12% increase in grain yield per plant, thousand-grain weight, panicle number per plant, plant height, secondary branch number, grain number per panicle, panicle length and primary branch number, respectively. CONCLUSIONS: This study evaluated the factors affecting predictabilities for hybrid prediction and demonstrated the implementation of GS to predict hybrid performance of rice. Our results suggest that GS could enable the rapid selection of superior hybrids, thus increasing the efficiency of rice hybrid breeding.

14.
Nat Commun ; 9(1): 1555, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674719

RESUMO

Early-diverging land plants such as mosses are known for their outstanding abilities to grow in various terrestrial habitats, incorporating tremendous structural and physiological innovations, as well as many lineage-specific genes. How these genes and functional innovations evolved remains unclear. In this study, we show that a dual-coding gene YAN/AltYAN in the moss Physcomitrella patens evolved from a pre-existing hemerythrin gene. Experimental evidence indicates that YAN/AltYAN is involved in fatty acid and lipid metabolism, as well as oil body and wax formation. Strikingly, both the recently evolved dual-coding YAN/AltYAN and the pre-existing hemerythrin gene might have similar physiological effects on oil body biogenesis and dehydration resistance. These findings bear important implications in understanding the mechanisms of gene origination and the strategies of plants to fine-tune their adaptation to various habitats.

17.
Front Plant Sci ; 9: 229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527220

RESUMO

Drought is a major abiotic stress factor limiting maize production, and elucidating the genetic control of root system architecture and plasticity to water-deficit stress is a crucial problem to improve drought adaptability. In this study, 13 root and shoot traits and genetic plasticity were evaluated in a recombinant inbred line (RIL) population under well-watered (WW) and water stress (WS) conditions. Significant phenotypic variation was observed for all observed traits both under WW and WS conditions. Most of the measured traits showed significant genotype-environment interaction (GEI) in both environments. Strong correlations were observed among traits in the same class. Multi-environment (ME) and multi-trait (MT) QTL analyses were conducted for all observed traits. A total of 48 QTLs were identified by ME, including 15 QTLs associated with 9 traits showing significant QTL-by-Environment interactions (QEI). QTLs associated with crown root angle (CRA2) and crown root length (CRL1) were identified as having antagonistic pleiotropic effects, while 13 other QTLs showed signs of conditional neutrality (CN), including 9 and 4 QTLs detected under WW and WS conditions, respectively. MT analysis identified 14 pleiotropic QTLs for 13 traits, SNP20 (1@79.2 cM) was associated with the length of crown root (CR), primary root (PR), and seminal root (SR) and might contribute to increases in root length under WS condition. Taken together, these findings contribute to our understanding of the phenotypic and genotypic patterns of root plasticity in response to water deficiency, which will be useful to improve drought tolerance in maize.

18.
PLoS One ; 13(1): e0190670, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304111

RESUMO

Anthocyanin accumulation in various maize tissues plays important roles in plant growth and development. In addition, some color-related traits can be used as morphological markers in conventional maize breeding processes and purity identification of hybrid seeds. Here, we noticed that the leaf sheath color was controlled by a dominant gene, because purple (PSH) and green leaf sheaths (GSH) were separated at a ratio of 3:1 in an F2 population. To map the gene, an F2 and a recombinant inbred line (RIL) population were derived from a cross between inbred line T877 (PSH) and DH1M (GSH). The PSH locus was mapped to the genomic region within 128.8 to 138.4 Mb using a bulked segregant sequencing approach. This position was further validated by linkage mapping using 190 F2 plants with GSH. Subsequently, the PSH locus was fine-mapped into an interval of 304.2 kb. A maize gene, GRMZM5G822829, was identified in this region, encoding a bHLH transcription factor. The expression level of this gene in T877 was found to be 9-fold higher than that of DH1M. In conclusion, our results suggest that GRMZM5G822829 is the putative candidate gene conferring leaf sheath color in maize.


Assuntos
Genes de Plantas , Ligação Genética , Folhas de Planta/genética , Zea mays/genética , Genes Dominantes , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Theor Appl Genet ; 131(3): 637-648, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29299612

RESUMO

KEY MESSAGE: A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Mapeamento Cromossômico , Citocininas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas , Oryza/crescimento & desenvolvimento , Fenótipo , Sementes/genética
20.
Sci Rep ; 7(1): 9324, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839126

RESUMO

The origin and evolution of land plants was an important event in the history of life and initiated the establishment of modern terrestrial ecosystems. From water to terrestrial environments, plants needed to overcome the enhanced ultraviolet (UV) radiation and many other DNA-damaging agents. Evolving new genes with the function of DNA repair is critical for the origin and radiation of land plants. In bacteria, the DNA-3-methyladenine glycosylase (MAG) recognizes of a variety of base lesions and initiates the process of the base excision repair for damaged DNA. The homologs of MAG gene are present in all major lineages of streptophytes, and both the phylogenic and sequence similarity analyses revealed that green plant MAG gene originated through an ancient horizontal gene transfer (HGT) event from bacteria. Experimental evidence demonstrated that the expression of the maize ZmMAG gene was induced by UV and zeocin, both of which are known as DNA-damaging agents. Further investigation revealed that Streptophyta MAG genes had undergone positive selection during the initial evolutionary period in the ancestor of land plants. Our findings demonstrated that the ancient HGT of MAG to the ancestor of land plants probably played an important role in preadaptation to DNA-damaging agents in terrestrial environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA