Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 286: 28-36, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300139

RESUMO

MYB family genes act as important regulators modulating the response to abiotic stress in plants. However, much less is known about MYB proteins in cotton. Here, we found that a cotton MYB gene, GhMYB73, was induced by NaCl and abscisic acid (ABA). Silencing GhMYB73 expression in cotton increased sensitivity to salt stress. The cotyledon greening rate of Arabidopsis thaliana over-expressing GhMYB73 under NaCl or mannitol treatment was significantly enhanced during the seedling germination stage. What's more, several osmotic stress-induced genes, such as AtNHX1, AtSOS3 and AtP5CS1, were more highly induced in the over-expression lines than in wild type under salt treatment, supporting the hypothesis that GhMYB73 contributes to salinity tolerance by improving osmotic stress resistance. Arabidopsis lines over-expressing GhMYB73 had superior germination and cotyledon greening under ABA treatment, and some abiotic stress-induced genes involved in ABA pathways (AtPYL8, AtABF3, AtRD29B and AtABI5), had increased transcription levels under salt-stress conditions in these lines. Furthermore, we found that GhMYB73 physically interacts with GhPYL8 and AtPYL8, suggesting that GhMYB73 regulates ABA signaling during salinity stress response. Taken together, over-expression of GhMYB73 significantly increases tolerance to salt and ABA stress, indicating that it can potentially be used in transgenic technology approaches to improve cotton salt tolerance.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Estresse Salino/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Inativação Gênica , Genes myb , Gossypium/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Fatores de Transcrição/metabolismo
2.
Nat Commun ; 10(1): 2989, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278252

RESUMO

Multiple cotton genomes (diploid and tetraploid) have been assembled. However, genomic variations between cultivars of allotetraploid upland cotton (Gossypium hirsutum L.), the most widely planted cotton species in the world, remain unexplored. Here, we use single-molecule long read and Hi-C sequencing technologies to assemble genomes of the two upland cotton cultivars TM-1 and zhongmiansuo24 (ZM24). Comparisons among TM-1 and ZM24 assemblies and the genomes of the diploid ancestors reveal a large amount of genetic variations. Among them, the top three longest structural variations are located on chromosome A08 of the tetraploid upland cotton, which account for ~30% total length of this chromosome. Haplotype analyses of the mapping population derived from these two cultivars and the germplasm panel show suppressed recombination rates in this region. This study provides additional genomic resources for the community, and the identified genetic variations, especially the reduced meiotic recombination on chromosome A08, will help future breeding.

3.
Gene ; 709: 36-47, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30898717

RESUMO

Cotton fiber initiation is the first step in fiber development, and it determines the yield. Here, genome-wide transcriptome profiling of Gossypium arboreum was performed to determine the molecular basis of cotton fiber initiation. A comparison of the transcriptomes of fiber-bearing ovules at -0.5, 0, 0.5, 1, 1.5, 2, 2.5 and 3 d post-anthesis detected 12,049 differentially expressed genes that mainly participated in ribosome, carbon metabolism and amino acid biosynthesis pathways. Genes encoding alcohol dehydrogenase 1 and hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase, involving in fatty acid degradation and flavonoid biosynthesis, were enriched. Furthermore, 1049 differentially expressed transcription factors were identified. Among these, 17 were trihelix family transcription factors, which play important roles in plant development and responses to biotic and abiotic stresses. In total, 52 full-length trihelix genes, named as GaGTs, were identified in G. arboreum and located in 12 of the 13 cotton chromosomes. Transcriptomic data and a quantitative real-time PCR analysis indicated that several GaGTs were significantly induced during fiber initiation in G. arboreum. Thus, the genome-wide comprehensive analysis of gene expression in G. arboreum fiber initiation will serve as a useful resource for unraveling the functions of specific genes. The phylogenetic relationships and expression analyses of the G. arboreum trihelix genes established a solid foundation for future comprehensive functional analyses of the GaGTs.


Assuntos
Fibra de Algodão , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Sequências Hélice-Alça-Hélice , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Sequências Hélice-Alça-Hélice/genética , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Fatores de Transcrição/química
4.
BMC Plant Biol ; 18(1): 330, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514299

RESUMO

BACKGROUND: The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30 years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses. RESULT: In this study, 20, 15 (including 5 different transcripts) and 10 GSK genes were identified in G. hirsutum, G. raimondii and G. arboreum, respectively. A total of 65 genes from Arabidopsis, rice, and cotton were classified into 4 clades. High similarities were found in GSK3 protein sequences, conserved motifs, and gene structures, as well as good concordance in gene pairwise comparisons (G. hirsutum vs. G. arboreum, G. hirsutum vs. G. raimondii, and G. arboreum vs. G. raimondii) were observed. Whole genome duplication (WGD) within At and Dt sub-genomes has been central to the expansion of the GSK gene family. Furthermore, GhSK genes showed diverse expression patterns in various tissues. Additionally, the expression profiles of GhSKs under different stress treatments demonstrated that many are stress-responsive genes. However, none were induced by brassinolide treatment. Finally, nine co-expression sub-networks were observed for GhSKs and the functional annotations of these genes suggested that some GhSKs might be involved in cotton fiber development. CONCLUSION: In this present work, we identified 45 GSK genes from three cotton species, which were divided into four clades. The gene features, muti-alignment, conversed motifs, and syntenic blocks indicate that they have been highly conserved during evolution. Whole genome duplication was determined to be the dominant factor for GSK gene family expansion. The analysis of co-expressed sub-networks and tissue-specific expression profiles suggested functions of GhSKs during fiber development. Moreover, their different responses to various abiotic stresses indicated great functional diversity amongst the GhSKs. Briefly, data presented herein may serve as the basis for future functional studies of GhSKs.

5.
BMC Plant Biol ; 18(1): 350, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541440

RESUMO

BACKGROUND: Auxin-induced genes regulate many aspects of plant growth and development. The Gretchen Hagen 3 (GH3) gene family, one of three major early auxin-responsive families, is ubiquitous in the plant kingdom and its members function as regulators in modulating hormonal homeostasis, and stress adaptations. Specific Auxin-amido synthetase activity of GH3 subfamily II genes is reported to reversibly inactivate or fully degrade excess auxin through the formation of amino acid conjugates. Despite these crucial roles, to date, genome-wide analysis of the GH3 gene family has not been reported in cotton. RESULTS: We identified a total of 10 GH3 subfamily II genes in G. arboreum, 10 in G. raimondii, and 20 in G. hirsutum, respectively. Bioinformatic analysis showed that cotton GH3 genes are conserved with the established GH3s in plants. Expression pattern analysis based on RNA-seq data and qRT-PCR revealed that 20 GhGH3 genes were differentially expressed in a temporally and spatially specific manner, indicating their diverse functions in growth and development. We further summarized the organization of promoter regulatory elements and monitored their responsiveness to treatment with IAA (indole-3-acetic acid), SA (salicylic acid), GA (gibberellic acid) and BL (brassinolide) by qRT-PCR in roots and stems. These hormones seemed to regulate the expression of GH3 genes in both a positive and a negative manner while certain members likely have higher sensitivity to all four hormones. Further, we tested the expression of GhGH3 genes in the BR-deficient mutant pag1 and the corresponding wild-type (WT) of CCRI24. The altered expression reflected the true responsiveness to BL and further suggested possible reasons, at least in part, responsible for the dramatic dwarf and shriveled phenotypes of pag1. CONCLUSION: We comprehensively identified GH3 subfamily II genes in cotton. GhGH3s are differentially expressed in various tissues/organs/stages. Their response to IAA, SA, BL and GA and altered expression in pag1 suggest that some GhGH3 genes might be simultaneously involved in multiple hormone signaling pathways. Taken together, our results suggest that members of the GhGH3 gene family could be possible candidate genes for mechanistic study and applications in cotton fiber development in addition to the reconstruction of plant architecture.


Assuntos
Fibra de Algodão , Genes de Plantas/genética , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Gossypium/anatomia & histologia , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia
6.
Sci Rep ; 8(1): 14526, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266918

RESUMO

Sea-island cotton (Gossypium barbadense) has drawn great attention in the textile industry for its comprehensive resistance and superior fiber properties. However, the mechanisms involved in fiber growth and development are unclear. As TCP transcription factors play important roles in plant growth and development, this study investigated the TCP family genes in G. barbadense (GbTCP). We identified 75 GbTCP genes, of which 68 had no introns. Phylogenetic analyses categorized the GbTCP transcription factors into 11 groups. Genomic analyses showed that 66 genes are located on 21 chromosomes. Phylogenetic analyses of G. arboreum, G. raimondii, G. hirsutum, G. barbadense, Theobroma cacao, Arabidopsis thaliana, Oryza sativa, Sorghum bicolor, and Zea mays, Picea abies, Sphagnum fallax and Physcomitrella patens, categorized 373 TCP genes into two classes (Classes I and II). By studying the structures of TCP genes in sea-island cotton, we identified genes from the same evolutionary branches that showed similar motif patterns. qRT-PCR results suggested that the GbTCPs had different expression patterns in fibers at various developmental stages of cotton, with several showing specific expression patterns during development. This report helps lay the foundation for future investigations of TCP functions and molecular mechanisms in sea-island cotton fiber development.

7.
Int J Mol Sci ; 19(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205477

RESUMO

The CONSTANS (CO)-like gene family has been well studied for its role in the regulation of plant flowering time. However, their role remains poorly understood in cotton. To better understand the possible roles of CO-like in cotton, we performed a comprehensive genome-wide analysis of CO-like genes in cotton. Phylogenetic tree analysis showed that CO-like genes naturally clustered into three groups. Segmental duplication and whole genome duplication (WGD), which occurred before polyploidy, were important contributors to its expansion within the At ("t" indicates tetraploid) and Dt subgenomes, particularly in Group III. Long-terminal repeat retroelements were identified as the main transposable elements accompanying 18 genes. The genotype of GhCOL12_Dt displayed low diversity; it was a candidate involved in domestication. Selection pressure analyses indicated that relaxed purifying selection might have provided the main impetus during the evolution of CO-like genes in upland cotton. In addition, the high expression in the torus and calycle indicated that CO-like genes might affect flowering. The genes from Group II, and those from Group III involved in segmental duplication or WGD, might play important roles in response to drought and salt stress. Overall, this comprehensive genome-wide study of the CO-like gene family would facilitate further detailed studies in cotton.

8.
Nat Genet ; 50(6): 796-802, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29736014

RESUMO

The ancestors of Gossypium arboreum and Gossypium herbaceum provided the A subgenome for the modern cultivated allotetraploid cotton. Here, we upgraded the G. arboreum genome assembly by integrating different technologies. We resequenced 243 G. arboreum and G. herbaceum accessions to generate a map of genome variations and found that they are equally diverged from Gossypium raimondii. Independent analysis suggested that Chinese G. arboreum originated in South China and was subsequently introduced to the Yangtze and Yellow River regions. Most accessions with domestication-related traits experienced geographic isolation. Genome-wide association study (GWAS) identified 98 significant peak associations for 11 agronomically important traits in G. arboreum. A nonsynonymous substitution (cysteine-to-arginine substitution) of GaKASIII seems to confer substantial fatty acid composition (C16:0 and C16:1) changes in cotton seeds. Resistance to fusarium wilt disease is associated with activation of GaGSTF9 expression. Our work represents a major step toward understanding the evolution of the A genome of cotton.

9.
Front Genet ; 9: 33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467795

RESUMO

Members of the YABBY gene family, a small plant-specific family of genes, have been proposed to function in specifying abaxial cell fate. Although to date little has been learned about cotton YABBY genes, completion of the cotton genome enables a comprehensive genome-wide analysis of YABBY genes in cotton. Here, a total of 12, 12, and 23 YABBY genes were identified in Gossypium arboreum (2n = 26, A2), G. raimondii (2n = 26, D5), and G. hirsutum (2n = 4x = 52, [AD]t), respectively. Sequence analysis showed that the N-terminal zinc-finger and C-terminal YABBY domains in YABBY proteins are highly conserved among cotton, Arabidopsis, and rice. Eighty-five genes from eight sequenced species naturally clustered into five groups, and the YAB2-like group could be divided into three sub-groups, indicating that YABBYs are highly conserved among the examined species. Orthologs from the At and Dt sub-genomes (where "t" indicates tetraploid) showed good collinearity, indicating that YABBY loci are highly conserved between these two sub-genomes. Whole-genome duplication was the primary cause of upland cotton YABBY gene expansion, segmental duplication played important roles in YABBY gene expansion within the At and Dt sub-genomes, and the YAB5-like group was mainly generated by segmental duplication. The long-terminal repeat retroelements Copia and Gypsy were identified as major transposable elements accompanying the appearance of duplicated YABBY genes, suggesting that transposable element expansion might be involved in gene duplication. Selection pressure analyses using PAML revealed that relaxed purifying selection might be the main impetus during evolution of YABBY genes in the examined species. Furthermore, exon/intron pattern and motif analyses indicated that genes within the same group were significantly conserved between Arabidopsis and cotton. In addition, the expression patterns in different tissues suggest that YABBY proteins may play roles in ovule development because YABBYs are highly expressed in ovules. The expression pattern of YABBY genes showed that approximately half of the YABBYs were down-regulated under different stress treatments. Collectively, our results represent a comprehensive genome-wide study of the YABBY gene family, which should be helpful in further detailed studies on the gene function and evolution of YABBY genes in cotton.

10.
Int J Mol Sci ; 19(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415481

RESUMO

Members of the NF-YB transcription factor gene family play important roles in diverse processes related to plant growth and development, such as seed development, drought tolerance, and flowering time. However, the function of NF-YB genes in cotton remains unclear. A total of 23, 24, and 50 NF-YB genes were identified in Gossypium arboreum (G. arboreum), Gossypium raimondii (G. raimondii), and G. hirsutum, respectively. A systematic phylogenetic analysis was carried out in G. arboretum, G. raimondii, G. hirsutum, Arabidopsis thaliana, cacao, rice and, sorghum, where the 150 NF-YB genes were divided into five groups (α-ε). Of these groups, α is the largest clade, and γ contains the LEC1 type NF-YB proteins. Syntenic analyses revealed that paralogues of NF-YB genes in G. hirsutum exhibited good collinearity. Owing to segmental duplication within the A sub-genome (At) and D sub-genome (Dt), there was an expanded set of NF-YB genes in G. hirsutum. Furthermore, we investigated the structures of exons, introns, and conserved motifs of NF-YB genes in upland cotton. Most of the NF-YB genes had only one exon, and the genes from the same clade exhibited a similar motif pattern. Expression data show that most NF-YB genes were expressed ubiquitously, and only a few genes were highly expressed in specific tissues, as confirmed by quantitative real-time PCR (qRT-PCR) analysis. The overexpression of GhDNF-YB22 gene, predominantly expressed in embryonic tissues, indicates that GhDNF-YB22 may affect embryogenesis in cotton. This study is the first comprehensive characterization of the GhNF-YB gene family in cotton, and showed that NF-YB genes could be divided into five clades. The duplication events that occurred over the course of evolution were the major impetus for NF-YB gene expansion in upland cotton. Collectively, this work provides insight into the evolution of NF-YB in cotton and further our knowledge of this commercially important species.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Família Multigênica , Fatores de Transcrição/genética , Cromossomos de Plantas , Sequência Conservada , Elementos de DNA Transponíveis , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Gossypium/classificação , Fenótipo , Filogenia
11.
Plant Cell Physiol ; 59(2): 275-289, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165718

RESUMO

Verticillium wilt disease is one of the most destructive biotic stresses faced by cotton plants. Here, we performed a genome-wide association study (GWAS) in 215 Chinese Gossypium arboreum accessions inoculated as seedlings with Verticillium dahliae to identify candidate loci involved in wilt resistance. We identified 309 loci that had a significant association with Verticillium wilt resistance and - log(P) values >5.0; the highest signal appeared on Ca3 in a 74 kb haplotype block. Five genes were also located within this haplotype block. One of these genes, CG05, was positioned close to the most significant SNP Ca3_23037225 (14 kb); expression of the gene was induced by V. dahliae or by treatment with salicylic acid (SA). Therefore, we suggest that CG05 may respond to invasion by V. dahliae via an SA-related signaling pathway, and we designated this gene as GaGSTF9. We showed that GaGSTF9 was a positive regulator of Verticillium wilt through the use of virus-induced gene silencing (VIGS) and overexpression in Arabidopsis. In addition, the glutathione S-transferase (GST) mutant gstf9 of Arabidopsis was found to be more susceptible to Verticillium wilt than wild-type plants. The levels of endogenous SA and hydrogen peroxide had a significant effect on Arabidopsis plants that overexpressed GaGSTF9, indicating that GST may regulate reactive oxygen species content via catalytic reduction of the tripeptide glutathione (GSH), and then affect SA content. Our data demonstrated that GaGSTF9 was a key regulator mediating cotton responses to V. dahliae and a potential candidate gene for cotton genetic improvement.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Glutationa Transferase/genética , Gossypium/enzimologia , Gossypium/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa Transferase/metabolismo , Gossypium/efeitos dos fármacos , Gossypium/genética , Peróxido de Hidrogênio/metabolismo , Mutação/genética , Fenótipo , Reguladores de Crescimento de Planta/farmacologia , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética , Ácido Salicílico/metabolismo , Sementes/efeitos dos fármacos , Sementes/microbiologia , Transdução de Sinais/efeitos dos fármacos , Verticillium/efeitos dos fármacos
12.
Sci China Life Sci ; 61(12): 1566-1582, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30607883

RESUMO

Brassinosteroids (BRs), which are essential phytohormones for plant growth and development, are important for cotton fiber development. Additionally, BES1 transcription factors are critical for BR signal transduction. However, cotton BES1 family genes have not been comprehensively characterized. In this study, we identified 11 BES1 genes in G. arboreum, 11 in G. raimondii, 16 in G. barbadense, and 22 in G. hirsutum. The BES1 sequences were significantly conserved in the Arabidopsis thaliana, rice, and upland cotton genomes. A total of 94 BES1 genes from 10 different plant species were divided into three clades according to the neighbor-joining and minimum-evolution methods. Moreover, the exon/intron patterns and motif distributions were highly conserved among the A. thaliana and cotton BES1 genes. The collinearity among the orthologs from the At and Dt subgenomes was estimated. Segmental duplications in the At and Dt subgenomes were primarily responsible for the expansion of the cotton BES1 gene family. Of the GhBES1 genes, GhBES1.4_At/Dt exhibited BL-induced expression and was predominantly expressed in fibers. Furthermore, Col-0/mGhBES1.4_At plants produced curled leaves with long and bent petioles. These transgenic plants also exhibited decreased hypocotyl sensitivity to brassinazole and constitutive BR induced/repressed gene expression patterns. The constitutive BR responses of the plants overexpressing mGhBES1.4_At were similar to those of the bes1-D mutant.


Assuntos
Brassinosteroides/metabolismo , Gossypium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Sequência Conservada , Evolução Molecular , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/classificação , Gossypium/metabolismo , Hipocótilo/metabolismo , Família Multigênica , Mutação , Filogenia , Reguladores de Crescimento de Planta/metabolismo , Plantas Geneticamente Modificadas
14.
BMC Plant Biol ; 17(1): 142, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830364

RESUMO

BACKGROUND: MYB transcription factors (TFs) are one of the largest families of TFs in higher plants and are involved in diverse biological, functional, and structural processes. Previously, very few functional validation studies on R2R3 MYB have been conducted in cotton in response to abiotic stresses. In the current study, GaMYB85, a cotton R2R3 MYB TF, was ectopically expressed in Arabidopsis thaliana (Col-0) and was functionally characterized by overexpression in transgenic plants. RESULTS: The in-silico analysis of GaMYB85 shows the presence of a SANT domain with a conserved R2R3 MYB imperfect repeat. The GaMYB85 protein has a 257-amino acid sequence, a molecular weight of 24.91 kD, and an isoelectric point of 5.58. Arabidopsis plants overexpressing GaMYB85 exhibited a higher seed germination rate in response to mannitol and salt stress, and higher drought avoidance efficiency than wild-type plants upon water deprivation. These plants had notably higher levels of free proline and chlorophyll with subsequent lower water loss rates and higher relative water content. Germination of GaMYB85 transgenics was more sensitive to abscisic acid (ABA) and extremely liable to ABA-induced inhibition of primary root elongation. Moreover, when subjected to treatment with different concentrations of ABA, transgenic plants with ectopically expressed GaMYB85 showed reduced stomatal density, with greater stomatal size and lower stomatal opening rates than those in wild-type plants. Ectopic expression of GaMYB85 led to enhanced transcript levels of stress-related marker genes such as RD22, ADH1, RD29A, P5CS, and ABI5. CONCLUSIONS: Our results indicate previously unknown roles of GaMYB85, showing that it confers good drought, salt, and freezing tolerance, most probably via an ABA-induced pathway. These findings can potentially be exploited to develop improved abiotic stress tolerance in cotton plants.


Assuntos
Aclimatação , Arabidopsis/fisiologia , Secas , Genes myb/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Gossypium/genética , Gossypium/fisiologia , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Análise de Sequência de DNA
15.
BMC Plant Biol ; 17(1): 113, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683794

RESUMO

BACKGROUND: WUSCHEL-related homeobox (WOX) family members play significant roles in plant growth and development, such as in embryo patterning, stem-cell maintenance, and lateral organ formation. The recently published cotton genome sequences allow us to perform comprehensive genome-wide analysis and characterization of WOX genes in cotton. RESULTS: In this study, we identified 21, 20, and 38 WOX genes in Gossypium arboreum (2n = 26, A2), G. raimondii (2n = 26, D5), and G. hirsutum (2n = 4x = 52, (AD)t), respectively. Sequence logos showed that homeobox domains were significantly conserved among the WOX genes in cotton, Arabidopsis, and rice. A total of 168 genes from three typical monocots and six dicots were naturally divided into three clades, which were further classified into nine sub-clades. A good collinearity was observed in the synteny analysis of the orthologs from At and Dt (t represents tetraploid) sub-genomes. Whole genome duplication (WGD) and segmental duplication within At and Dt sub-genomes played significant roles in the expansion of WOX genes, and segmental duplication mainly generated the WUS clade. Copia and Gypsy were the two major types of transposable elements distributed upstream or downstream of WOX genes. Furthermore, through comparison, we found that the exon/intron pattern was highly conserved between Arabidopsis and cotton, and the homeobox domain loci were also conserved between them. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of WOX genes under different stress treatments showed that the different genes were induced by different stresses. CONCLUSION: In present work, WOX genes, classified into three clades, were identified in the upland cotton genome. Whole genome and segmental duplication were determined to be the two major impetuses for the expansion of gene numbers during the evolution. Moreover, the expression patterns suggested that the duplicated genes might have experienced a functional divergence. Together, these results shed light on the evolution of the WOX gene family, and would be helpful in future research.


Assuntos
Genes de Plantas , Gossypium/genética , Proteínas de Homeodomínio/genética , Sequência de Aminoácidos , Sequência Conservada , Duplicação Gênica , Expressão Gênica , Gossypium/metabolismo , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase , Estresse Fisiológico , Sintenia
16.
Front Plant Sci ; 8: 384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382045

RESUMO

Cotton is one of the major world oil crops. Cottonseed oil meets the increasing demand of fried food, ruminant feed, and renewable bio-fuels. MADS intervening keratin-like and C-terminal (MIKC)-type MADS-box genes encode transcription factors that have crucial roles in various plant developmental processes. Nevertheless, this gene family has not been characterized, nor its functions investigated, in cotton. Here, we performed a comprehensive analysis of MIKC-type MADS genes in the tetraploid Gossypium hirsutum L., which is the most widely cultivated cotton species. In total, 110 GhMIKC genes were identified and phylogenetically classified into 13 subfamilies. The Flowering locus C (FLC) subfamily was absent in the Gossypium hirsutum L. genome but is found in Arabidopsis and Vitis vinifera L. Among the genes, 108 were distributed across the 13 A and 12 of the D genome's chromosomes, while two were located in scaffolds. GhMIKCs within subfamilies displayed similar exon/intron characteristics and conserved motif compositions. According to RNA-sequencing, most MIKC genes exhibited high flowering-associated expression profiles. A quantitative real-time PCR analysis revealed that some crucial MIKC genes determined the identities of the five flower organs. Furthermore, the overexpression of GhAGL17.9 in Arabidopsis caused an early flowering phenotype. Meanwhile, the expression levels of the flowering-related genes CONSTANS (CO), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) were significantly increased in these lines. These results provide useful information for future studies of GhMIKCs' regulation of cotton flowering.

17.
Mol Genet Genomics ; 292(3): 593-609, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28251315

RESUMO

HD-ZIP IV proteins belong to the homeodomain-leucine zipper (HD-ZIP) transcription factor family and are involved in trichome development and drought stress in plants. Although some functions of the HD-ZIP IV group are well understood in Arabidopsis, little is known about their function in cotton. In this study, HD-ZIP genes were identified from three Gossypium species (G. arboreum, G. raimondii and G. hirsutum) and clustered into four families (HD-ZIP I, II, III and IV) to separate HD-ZIP IV from the other three families. Systematic analyses of phylogeny, gene structure, conserved domains, and expression profiles in different plant tissues and the expression patterns under osmotic stress in leaves were further conducted in G. arboreum. More importantly, ectopic overexpression of GaHDG11, a representative of the HD-ZIP IV family, confers enhanced osmotic tolerance in transgenic Arabidopsis plants, possibly due to elongated primary root length, lower water loss rates, high osmoprotectant proline levels, significant levels of antioxidants CAT, and/or SOD enzyme activity with reduced levels of MDA. Taken together, these observations may lay the foundation for future functional analysis of cotton HD-ZIP IV genes to unravel their biological roles in cotton.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Gossypium/genética , Proteínas de Homeodomínio/genética , Zíper de Leucina/genética , Pressão Osmótica/fisiologia , Fatores de Transcrição/genética , Catalase/metabolismo , Mapeamento Cromossômico , Secas , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Plantas Geneticamente Modificadas/genética , Superóxido Dismutase/metabolismo
18.
BMC Plant Biol ; 17(1): 59, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28253842

RESUMO

BACKGROUND: Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The complex mechanism underlying cotton resistance to Verticillium wilt remains uncharacterized. Identifying an endogenous resistance gene may be useful for controlling this disease. RESULTS: We cloned the ribosomal protein L18 (GaRPL18) gene, which mediates resistance to Verticillium wilt, from a wilt-resistant cotton species (Gossypium arboreum). We then characterized the function of this gene in cotton and Arabidopsis thaliana plants. GaRPL18 encodes a 60S ribosomal protein subunit important for intracellular protein biosynthesis. However, previous studies revealed that some ribosomal proteins are also inhibitory toward oncogenesis and congenital diseases in humans and play a role in plant disease defense. Here, we observed that V. dahliae infections induce GaRPL18 expression. Furthermore, we determined that the GaRPL18 expression pattern is consistent with the disease resistance level of different cotton varieties. GaRPL18 expression is upregulated by salicylic acid (SA) treatments, suggesting the involvement of GaRPL18 in the SA signal transduction pathway. Virus-induced gene silencing technology was used to determine whether the GaRPL18 expression level influences cotton disease resistance. Wilt-resistant cotton species in which GaRPL18 was silenced became more susceptible to V. dahliae than the control plants because of a significant decrease in the abundance of immune-related molecules. We also transformed A. thaliana ecotype Columbia (Col-0) plants with GaRPL18 according to the floral dip method. The plants overexpressing GaRPL18 were more resistant to V. dahliae infections than the wild-type Col-0 plants. The enhanced resistance of transgenic A. thaliana plants to V. dahliae is likely mediated by the SA pathway. CONCLUSION: Our findings provide new insights into the role of GaRPL18, indicating that it plays a crucial role in resistance to cotton "cancer", also known as Verticillium wilt, mainly regulated by an SA-related signaling pathway mechanism.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/microbiologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Verticillium/fisiologia , Gossypium/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
19.
PLoS One ; 12(1): e0170578, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125637

RESUMO

Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.


Assuntos
Proteínas de Arabidopsis/genética , Gossypium/genética , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Secas , Regulação da Expressão Gênica de Plantas , Germinação/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Tolerância ao Sal , Cloreto de Sódio , Estresse Fisiológico/fisiologia
20.
Plant Physiol Biochem ; 109: 128-136, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27669397

RESUMO

Calcium signaling regulates many developmental processes in plants. Calmodulin (CaM) is one of the most conserved calcium sensors and has a flexible conformation in eukaryotes. The molecular functions of CaM are unknown in cotton, which is a major source of natural fiber. In this study, a Gossypium hirsutum L.CaM7-like gene was isolated from upland cotton. Bioinformatics analysis indicated that the GhCaM7-like gene was highly conserved as compared with Arabidopsis AtCaM7. The GhCaM7-like gene showed a high expression level in elongating fibers. Expression of ß-glucuronidase was observed in trichomes on the stem, leaf and root in transgenic Arabidopsis plants of a PROGhCaM7-like:GUS fusion. Silencing of the GhCaM7-like gene resulted in decreased fiber length, but also caused reduction in stem height, leaf dimensions, seed length and 100-seed weight, in comparison with those of the control. Reduced expression of the GhCaM7-like gene caused decreased Ca2+ influx in cells of the leaf hypodermis and stem apex, and down-regulation of GhIQD1 (IQ67-domain containing protein), GhAnn2 (Annexins) and GhEXP2 (Expansin). These results indicate that the GhCaM7-like gene plays a vital role in calcium signaling pathways, and may regulate cotton fiber elongation and biomass production by affecting Ca2+ signatures and downstream signaling pathways of CaM.


Assuntos
Biomassa , Cálcio/metabolismo , Calmodulina/genética , Fibra de Algodão , Gossypium/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio/genética , Calmodulina/classificação , Calmodulina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA