Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 580(7801): 106-112, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238932

RESUMO

Radial glial progenitor cells (RGPs) are the major neural progenitor cells that generate neurons and glia in the developing mammalian cerebral cortex1-4. In RGPs, the centrosome is positioned away from the nucleus at the apical surface of the ventricular zone of the cerebral cortex5-8. However, the molecular basis and precise function of this distinctive subcellular organization of the centrosome are largely unknown. Here we show in mice that anchoring of the centrosome to the apical membrane controls the mechanical properties of cortical RGPs, and consequently their mitotic behaviour and the size and formation of the cortex. The mother centriole in RGPs develops distal appendages that anchor it to the apical membrane. Selective removal of centrosomal protein 83 (CEP83) eliminates these distal appendages and disrupts the anchorage of the centrosome to the apical membrane, resulting in the disorganization of microtubules and stretching and stiffening of the apical membrane. The elimination of CEP83 also activates the mechanically sensitive yes-associated protein (YAP) and promotes the excessive proliferation of RGPs, together with a subsequent overproduction of intermediate progenitor cells, which leads to the formation of an enlarged cortex with abnormal folding. Simultaneous elimination of YAP suppresses the cortical enlargement and folding that is induced by the removal of CEP83. Together, these results indicate a previously unknown role of the centrosome in regulating the mechanical features of neural progenitor cells and the size and configuration of the mammalian cerebral cortex.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32244472

RESUMO

Consumers' food safety risk information-seeking behavior plays a vital role in improving their food quality and safety awareness and preventing food safety risks. Based on the Risk Information Seeking and Processing Model (RISP), this paper empirically analyzes the food safety risk information-seeking intention of consumers in WeChat and influencing factors under the impact of food safety incidents. We use data from 774 WeChat users and apply the Structural Equation Modeling (SEM) approach. We also conduct multigroup analysis with demographic characteristics as moderating variables. The results demonstrated that: (1) Risk perception (p ≤ 0.01) has direct significant positive effects on consumers' intention to seek food safety information. Besides, higher risk perception (p ≤ 0.01) regarding food safety risks will make people feel more anxious and threatened, and then expand the gap between the information they need and the relevant knowledge they actually have (p ≤ 0.1), which will further stimulate them to seek more information (p ≤ 0.05). (2) Informational subjective norms (p ≤ 0.01) can not only directly affect consumers' information-seeking about food safety, but also indirectly affect consumers' intention through information insufficiency (p ≤ 0.01). (3) The more consumers trust the relevant channels (p ≤ 0.01), the stronger their intention to search for food safety risk information. Moreover, the multiple-group analysis also shows that the effects of consumers' gender, age, educational background, and average monthly earnings are different among different groups. Furthermore, implications are put forward for food safety risk communication efforts in China.

4.
Waste Manag ; 108: 1-12, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32334329

RESUMO

Insulating strategies are indispensable for laboratory-scale composting reactors, however, current insulation methods interfere with the aerobic fermentation behaviors related to composting. To address this issue, a centre-oriented real-time temperature compensation strategy was designed in this study. Five 9 L reactors (R1-R5) with different insulation strategies were used for the co-composting of dewatered sludge and Phragmites australis and compared. The process performance was assessed by monitoring the temperature, O2 and CO2 emissions, the physical-chemical properties of the composting materials were evaluated by measuring the organic matter (OM), carbon nitrogen ratio (C/N), pH, electrical conductivity (EC), and fluorescence excitation-emission matrix (EEM) spectra. And a 16S rDNA analysis was used to quantify the evolution of bacterial community. The main findings are as follows. Compared with R1 as a control, the insulating strategies can increase the maximum temperature and prolong the thermophilic phase of composting. Comparing R1 and R3 showed that real-time temperature compensation can better restore the real fermentation of the compost. The results showed that R5 had the best composting effect, reaching 69.8 °C, which was 25.1%, 29.7%, 19.3%, and 17.3% higher than R1, R2, R3, and R4, respectively, and remaining in the thermophilic phase for 4.24 d, which is 1.4, 1.5, 1.3, and 0.2 times longer than R1, R2, R3, and R4, respectively. Furthermore, it can significantly reduce the temperature difference between the centre and edge of the reactor, which improved the composting material allocation efficiency and composting process control accuracy, further providing a basis for the actual full-scale composting operation.

5.
Sci Total Environ ; 724: 138248, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247117

RESUMO

In this work, we investigated the impact of iron nanoparticle, including magnetite nanoparticles (Fe3O4 NPs) and nanoscale zero-valent iron (nZVI), on the anaerobic digestion (AD) performance. Moreover, the evolutions of antibiotic resistance genes (ARGs), class 1 integrons-integrase (intI1) and potential hosts of ARGs were also investigated. The optimal addition of Fe3O4 NPs and nZVI to promote methane production was 0.5 g/L and 1 g/L, which led to 22.07% and 23.02% increase in methane yield, respectively. The degradation rate of organic matter was also enhanced with the addition of Fe3O4 NPs or nZVI. The results of high-throughput sequencing showed that the reactors with iron NPs exhibited significant differences in microbial community structure, compared to the reactors with the non­iron NPs. Iron NPs have caused the relative abundance of the dominant bacteria (Proteobacteria, Firmicutes and Actinobacteria) generally decreased, while the dominant archaea (Euryarchaeota) increased in AD sludge. Quantitative PCR results revealed that iron NPs accelerated the reductions in total absolute abundance of ARGs, especially a beta-lactamase resistance encoded gene (blaOXA). Network analysis displayed that the attenuation of ARGs was mainly attributed to the decline of potential hosts (Proteobacteria, Firmicutes and Actinobacteria). Meanwhile, environmental factors (such as pH, soluble chemical oxygen demand and heavy metals) were also strongly correlated with ARGs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32286995

RESUMO

Understanding and classifying electromyogram (EMG) signals is of significance for dexterous prosthetic hand control, sign languages, grasp recognition, human-machine interaction, etc.. The existing research of EMG-based hand gesture classification faces the challenges of unsatisfied classification accuracy, insufficient generalization ability, lack of training data and weak robustness. To address these problems, this paper combines unsupervised and supervised learning methods to classify an EMG dataset consisting of 10 classes of hand gestures. To lessen the difficulty of classification, clustering methods including subtractive clustering and fuzzy c-means (FCM) clustering algorithms are employed first to obtain the initial partition of the inputs. In particular, modified FCM algorithm is proposed to accustom the conventional FCM to the multiclass classification problem. Based on the grouping information obtained from clustering, a type of two-step supervised learning approach is proposed. Specifically, a top-classifier and three sub-classifiers integrated with windowing method and majority voting are employed to accomplish the two-step classification. The results demonstrate that the proposed method achieves 100% test accuracy and the strongest robustness compared to the conventional machine learning approaches, which shows the potential for industrial and healthcare applications, such as movement intention detection, grasp recognition and dexterous prostheses control.

7.
Environ Pollut ; 261: 114226, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32113110

RESUMO

Acid mine drainage (AMD) is harmful to the environment and human health. Microorganisms-mineral interactions are responsible for AMD generation but can also remediate AMD contamination. Understanding the microbial response to AMD irrigation will reveal microbial survival strategies and provide approaches for AMD remediation. A terrace with sharp geochemical gradients caused by AMD flooding were selected to study the microbial response to changes in environmental parameters related to AMD contamination. AMD intrusion reduced soil microbial community diversity and further changed phylogenetic clustering patterns along the terrace gradient. We observed several genera seldom reported in AMD-related environments (i.e., Corynebacterium, Ochrobactrum, Natronomonas), suggesting flexible survival strategies such as nitrogen fixation, despite the poor nutritional environment. A co-occurrence network of heavily-contaminated fields was densely connected. The phyla Proteobacteria, Acidobacteria, Chloroflexi, and Euryarchaeota were all highly interconnected members, which may affect the formation of AMD. Detailed microbial response to different soil characterizations were highlighted by random forest model. Results revealed the top three parameters influencing the microbial diversity and interactions were pH, Fe(III), and sulfate. Various acidophilic Fe- and S-metabolizing bacteria were enriched in the lower fields, which were heavily contaminated by AMD, and more neutrophiles prevailed in the less-contaminated upper fields. Many indicator species in the lower fields were identified, including Desulfosporosinus, Thermogymnomonas, Corynebacterium, Shewanella, Acidiphilium, Ochrobactrum, Leptospirillum, and Allobaculum, representing acid-tolerant bacteria community in relevant environment. The detection of one known sulfate-reducing bacteria (i.e., Desulfosporosinus) suggested that biotic sulfate reduction may occur in acidic samples, which offers multiple advantages to AMD contamination treatment. Collectively, results suggested that the geochemical gradients substantially altered the soil microbiota and enriched the relevant microorganisms adapted to the different conditions. These findings provide mechanistic insights into the effects of contamination on the soil microbiota and establish a basis for in situ AMD bioremediation strategies.

8.
FEMS Microbiol Ecol ; 96(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129838

RESUMO

Biochar, a valuable product from the pyrolysis of agricultural and forestry residues, has been widely applied as soil amendment. However, the effect of different types of biochar on soil microorganisms and associated biochemical processes in paddy soil remains ambiguous. In this study, we investigated the impact of biochars derived from different feedstocks (rice straw, orange peel and bamboo powder) on the dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in paddy soil within 90 days of anaerobic incubation. Results showed that biochar amendment overall inhibited the accumulation of SCFAs while accelerating the Fe(III) reduction process in paddy soil. In addition, 16S rRNA gene sequencing results demonstrated that the α-diversity of the bacterial community significantly decreased in response to biochar amendments at day 1 but was relatively unaffected at the end of incubation, and incubation time was the major driver for the succession of the bacterial community. Furthermore, significant correlations between parameters (e.g. SCFAs and iron concentration) and bacterial taxa (e.g. Clostridia, Syntrophus, Syntrophobacter and Desulfatiglans) were observed. Overall, our findings demonstrated amendment with different types of biochar altered SCFA profile, Fe(III) reduction and bacterial biodiversity in rice paddy soil.

9.
FEBS Open Bio ; 10(5): 752-760, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32090490

RESUMO

Human melanoma is a highly malignant tumor originating from cutaneous melanocytes. The noncoding RNA microRNA (miR)-21-5p has been reported to be expressed at high levels in malignant melanocytic skin tissues, but its potential functional role in melanoma remains poorly understood. Here, we explored the cellular effects of miR-21-5p on melanoma in vitro and the underlying mechanisms. Quantitative real-time PCR was used to show that miR-21-5p is significantly up-regulated in clinical samples from patients with melanoma as compared with adjacent noncancerous tissues. Overexpression of miR-21-5p significantly enhanced, whereas knockdown attenuated, cell proliferation and G1/S transition in melanoma cell lines (A375 and M14). Luciferase reporter assays were used to show that the cyclin-dependent kinase inhibitor 2C (CDKN2C) is a downstream target of miR-21-5p. Furthermore, miR-21-5p mimics resulted in a decrease in CDKN2C expression, and CDKN2C expression was observed to be inversely correlated with miR-21-5p expression in melanoma tissues. Rescue experiments were performed to show that overexpression of CDKN2C partially reversed the effects of miR-21-5p up-regulation on A375 cells. Consistently, knockdown of CDKN2C abolished the effects of miR-21-5p down-regulation on A375 cells. Overall, our studies demonstrate that miR-21-5p can promote the growth of melanoma cells by targeting CDKN2C, which may induce G0/G1 phase arrest of melanoma cells.

10.
Sci Total Environ ; 713: 136451, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019010

RESUMO

Antimony (Sb) and arsenic (As) are toxic elements that occur widely in trace soil concentrations. Expansion of mining activities has increased Sb and As pollution, thus posing a severe threat to human welfare and ecological systems worldwide. Knowledge regarding the composition and adaptation of the microbial communities in these metal(loid) contaminated sites is still limited. In the current study, samples along a river flowing through the world's largest Sb mining area (Xikuangshan) were selected to investigate the microbial response to different Sb or As species. A comprehensive analysis of geochemical parameters, high-throughput sequencing, and statistical methods were applied to reveal the different effects of Sb and As on sedimentary microorganisms. Results suggested that the majority of the Sb and As fractions were not bioavailable. The Sb extractable fraction had a stronger effect on the microbial community compared with its As counterpart. Random forest analyses indicated that the easily exchangeable Sb fraction and specifically sorbed surface-bound fraction were the two most selective variables shaping microbial community diversity. A total of 11 potential keystone phyla, such as bacteria associated with the Bacteroidetes, Proteobacteria, and Firmicutes, were identified according to a molecular ecological network analysis. Strong correlations (|R| > 0.7, P < 0.05) were identified among the indigenous microbial community and pH (negative), sulfate (negative), and exchangeable Sb fraction (positive). Bacteria associated with the genera Geobacter, Phormidium, Ignavibacterium, Desulfobulbus, Ferruginibacter, Fluviicola, Methylotenera, and Scytonema, were predicted to tolerate or metabolize the Sb extractable fraction.


Assuntos
Microbiota , Antimônio , Arsênico , Monitoramento Ambiental , Rios , Poluentes do Solo
11.
Bioresour Technol ; 304: 123016, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32078907

RESUMO

The effects of four conductive nanomaterials (nano-carbon powder, nano-Al2O3, nano-ZnO, nano-CuO) on sludge anaerobic digestion (AD) performance and microbial community were investigated through a 36-day fermentation experiment. Results showed that biogas production enhanced by 16.9% and 23.4% with nano-carbon powder and nano-Al2O3 added but decreased by 90.2% and 17.3% with nano-ZnO and nano-CuO. Total solids (TS) removal efficiency was increased by 38.73% and 27.11% with nano-carbon powder and nano-Al2O3 added but decreased by 70.67% and 43.70% with nano-ZnO and nano-CuO. Kinetic analysis indicated four conductive nanomaterials could shorten the lag phase of AD sludge with an average rate of 51.75%. 16S rRNA amplicon sequencing results demonstrated microbes such as Syntrophomonas and Methanosaeta were enriched in nano-carbon powder and nano-Al2O3 reactors. However, microbial community diversity and richness were both inhibited by adding nano-ZnO and nano-CuO. Redundancy analysis (RDA) revealed that genera belong to Firmicutes and Chloroflexi could conduce to methanogenesis process.


Assuntos
Microbiota , Nanoestruturas , Anaerobiose , Reatores Biológicos , Cinética , Metano , RNA Ribossômico 16S , Esgotos
12.
iScience ; 23(2): 100835, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32000125

RESUMO

Cisplatin-based neoadjuvant chemotherapy has been shown to improve survival in patients with squamous cell carcinoma (SCC), but clinical biomarkers to predict chemosensitivity remain elusive. Here, we show the long noncoding RNA (lncRNA) LINC01011, which we termed cisplatin-sensitivity-associated lncRNA (CISAL), controls mitochondrial fission and cisplatin sensitivity by inhibiting BRCA1 transcription in tongue SCC (TSCC) models. Mechanistically, we found CISAL directly binds the BRCA1 promoter and forms an RNA-DNA triplex structure, sequestering BRCA1 transcription factor-GABPA away from the downstream regulatory binding region. Importantly, the clinical relevance of these findings is suggested by the significant association of CISAL and BRCA1 expression levels in TSCC tumors with neoadjuvant chemosensitivity and overall survival. We propose a new model where lncRNAs are tethered at gene promoter by RNA-DNA triplex formation, spatially sequestering transcription factors away from DNA-binding sites. Our study uncovers the potential of CISAL-BRCA1 signaling as a potential target to predict or improve chemosensitivity.

13.
J Craniofac Surg ; 31(1): 62-63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31469729

RESUMO

BACKGROUND: An anterior palatal fistula in a bilateral cleft lip and palate is a challenging clinical dilemma. The authors evaluate the feasibility and outcomes of the reconstruction of large anterior palatal fistulae using anteriorly based dorsal tongue flaps. METHODS: Eight patients with anterior palatal fistulae after repair of a bilateral cleft lip and palate using anteriorly based dorsal tongue flaps. The defect size varied from 1.0 × 1.0 cm to 1.5 × 2.0 cm, and the tongue flap size varied from 1.5 × 3.5 cm to 2.0 × 3.5 cm. RESULTS: All patients underwent successful reconstruction of palatal defects using anteriorly based tongue flaps, and no case of spontaneous detachment of the tongue flap occurred. The patients with palatal fistulae were followed up for 10 to 30 months, and no recurrence was encountered. CONCLUSION: An anteriorly based dorsal tongue flap is a safe and feasible surgical technique for the closure of anterior palatal fistulae.

14.
J Cosmet Dermatol ; 19(2): 473-476, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31152480

RESUMO

BACKGROUND: Reconstruction of lower vermilion defects is surgically challenging. AIMS: This study evaluated whether lower vermilion defects can be repaired using tongue flaps, and the reconstructive outcomes. MATERIALS AND METHODS: We evaluated 11 patients with early-stage lower vermilion cancers who underwent lower vermilion reconstruction using anteriorly based ventral tongue flaps following cancer ablation. We treated eight males and three females aged 54-67 years (median, 59.8 years). The defect/tongue flap dimensions ranged from 1.8 × 3.5 to 2.0 × 4.5 cm (median, 1.87 × 3.81 cm). RESULTS: No major complication developed in any patient. The postoperative esthetic results, orbicularis oris functions, and speech functions were excellent in six, eight, and nine patients, and satisfactory in five, three, and two, respectively. The patients were followed up for 13-36 months (median, 21.7 months); two local recurrences developed, and these patients underwent salvage surgeries. CONCLUSIONS: An anteriorly based ventral tongue flap is a safe and feasible option for reconstruction of lower vermilion defects.

15.
Nature ; 577(7788): 109-114, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827280

RESUMO

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways1. Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development2,3. However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomal-dominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients' peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.

16.
Bioresour Technol ; 294: 122139, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31525586

RESUMO

The effect of nanoscale zero-valent iron (NZVI) and magnetite nanoparticles (Fe3O4 NPs) on anaerobic digestion (AD) performance was investigated through a series of 100-day semi-continuous mesophilic anaerobic digestions. The results indicated that biogas production had increased by 24.44% and 21.66% with the addition of 0.5 g/L Fe3O4 NPs and 1.0 g/L NZVI, respectively. Besides, the abundance of five widespread antibiotic resistance genes (ARGs) (ermF, ermA, ermT, aac(6')-IB, blaOXA-1) was also studied. The decrease in abundance of aac(6')-IB and blaOXA-1 was observed during the AD process with an average removal rate of 95.69% and 44.82%, respectively. Most of the ARGs, especially ermA and ermT, were less abundant in NZVI group compared with control group. The overall results suggested that the addition of NZVI and Fe3O4 NPs contributed to a better sludge anaerobic digestion performance, and NZVI was beneficial to the removal of some ARGs.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Aminoglicosídeos , Anaerobiose , Ferro , Macrolídeos , Resistência beta-Lactâmica
17.
Dev Biol ; 455(2): 458-472, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31376393

RESUMO

The cerebellum undergoes major rapid growth during the third trimester and early neonatal stage in humans, making it vulnerable to injuries in pre-term babies. Experiments in mice have revealed a remarkable ability of the neonatal cerebellum to recover from injuries around birth. In particular, recovery following irradiation-induced ablation of granule cell precursors (GCPs) involves adaptive reprogramming of Nestin-expressing glial progenitors (NEPs). Sonic hedgehog signaling is required for the initial step in NEP reprogramming; however, the full spectrum of developmental signaling pathways that promote NEP-driven regeneration is not known. Since the growth regulatory Hippo pathway has been implicated in the repair of several tissue types, we tested whether Hippo signaling is involved in regeneration of the cerebellum. Using mouse models, we found that the Hippo pathway transcriptional co-activator YAP1 (Yes-associated protein 1) but not TAZ (transcriptional coactivator with PDZ binding motif, or WWTR1) is required in NEPs for full recovery of cerebellar growth following irradiation one day after birth. Although Yap1 plays only a minor role during normal development in differentiation of NEPs or GCPs, the size of the cerebellum, and in particular the internal granule cell layer produced by GCPs, is significantly reduced in Yap1 mutants after irradiation, and the organization of Purkinje cells and Bergmann glial fibers is disrupted. The initial proliferative response of Yap1 mutant NEPs to irradiation is normal and the cells migrate to the GCP niche, but subsequently there is increased cell death of GCPs and altered migration of granule cells, possibly due to defects in Bergmann glia. Moreover, loss of Taz along with Yap1 in NEPs does not abrogate regeneration or alter development of the cerebellum. Our study provides new insights into the molecular signaling underlying postnatal cerebellar development and regeneration.

18.
Water Res ; 165: 114981, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31446296

RESUMO

The frequent occurrence of thallium (Tl) in surface water has led to the imposition of strict environmental regulations. The need for an overview of effective and feasible technology to remove Tl from water/wastewater has therefore become urgently. This review introduced the current available methods for Tl removal, including adsorption, oxidation-reduction precipitation, solvent extraction and ion exchange processes, and summarized their advantages and disadvantages. The results showed that a single treatment technology was difficult to remove Tl to a trace level of "µg L-1", which required combined multi-technology to enhance the removal efficiency. In addition, the potential emergency and feasible technologies for Tl removal were recommended. However, several fundamental issues, such as the comparative toxicity of Tl(I) and Tl(III), the confliction of hydrolysis constants, the interference of complexant ligands as well as the influence of redox potential, were still needed to be addressed, since they would profoundly affect the selection of adopted treatment methods and the behavior of Tl removal. Future research efforts concerning the improvement of existing Tl removal technologies should be devoted to (a) developing multi-functional chemicals and adsorbents, non-toxic extractants, easy-recovery ion exchange resin and high-efficient coupling technology for advanced treatment, (b) carrying out large-scale experiments and economic assessment for real wastewater, and (c) providing safe-disposal treatment for the exhausted adsorption materials or sludge.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Tálio , Águas Residuárias , Água
19.
Inflammation ; 42(5): 1741-1753, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31267272

RESUMO

Streptococcus pneumoniae (S. pneumoniae) and viruses are considered as primary risks of community-acquired pneumonia (CAP), and the effects of co-infection bacterial and virus in the prognosis of patients with severe CAP (SCAP) are poorly described. Therefore, this study is conducted to investigate the regulation of Beclin1-PI3K/AKT axis in reinfection of S. pneumoniae after influenza A virus in mice model of bronchoalveolar lavage fluid (BALF). Samples of sputum and BALF were collected from patients with SCAP for etiological detection. The expression of each gene was determined by RT-qPCR and western blot analysis. Influenza A/PR/8/34 and S. pneumoniae were used to establish the mice model of reinfection pneumonia. The virus quantity, expression levels of inflammatory factors, bacterial load, and myeloperoxidase (MPO) activity were tested. HE staining was applied to observe histopathology of lung tissue. The expression of Beclin1 was downregulated and the PI3K/AKT pathway was activated in viral pneumonia. In vivo experiment, the reinfection of S. pneumoniae following influenza A virus infection increased the number of S. pneumoniae population, the activity of MPO, and the expression of TNF-α, IL-6, and IFN-γ in BALF of mice. In contrast, inhibition of the PI3K/AKT pathway or overexpression of Beclin1 reduced the number of S. pneumoniae population, the activity of MPO, and the expression of TNF-α, IL-6, and IFN-γ in BALF of mice reinfected with S. pneumoniae after influenza A virus infection. Collectively, our study demonstrates that inhibition of the PI3K/AKT signaling pathway or overexpressed Beclin1 alleviates reinfection of S. pneumoniae after influenza A virus infection in SCAP.


Assuntos
Proteína Beclina-1/metabolismo , Infecções Comunitárias Adquiridas , Influenza Humana/complicações , Infecções Pneumocócicas/prevenção & controle , Pneumonia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/prevenção & controle , Infecções Comunitárias Adquiridas/virologia , Modelos Animais de Doenças , Humanos , Vírus da Influenza A , Influenza Humana/virologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Infecções Pneumocócicas/patologia , Infecções Pneumocócicas/virologia , Pneumonia/microbiologia , Pneumonia/prevenção & controle , Pneumonia/virologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recidiva , Prevenção Secundária , Streptococcus pneumoniae
20.
Cancer Cell Int ; 19: 158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198407

RESUMO

Background: As a pivotal regulator, cyclin D3 gives play to a crucial value in conversion from the G1 stage to the S stage of cell cycle, which is implicated in tumor progression, especially proliferation and migration. Recent literatures have reported that cyclin D3 could predict survival time of malignancy patients. But, its prognostic role of cyclin D3 in neoplasms remains controversial. Methods: Databases involving EMBASE, PubMed and Web of Science were carefully searched, and literatures investigating the prognostic effect of aberrantly expressing cyclin D3 among human cancers were collected for further analysis. We used both hazards ratios and its corresponding 95% confidence intervals to evaluate the connection among the survival rate of malignancy patients and the expression of cyclin D3. Results: There were 13 eligible researches involving 16 cohorts and 2395 participants which were included in this study. The outcomes suggested that highly expressing cyclin D3 was significantly correlated with worse clinical prognosis of overall survival (HR 1.88; 95% CI 1.31-2.69) and disease specific survival (HR 2.68; 95% CI 1.35-5.31). But there existed no significant connection between the elevated expression of cyclin D3 with disease free survival (HR 2.65; 95% CI 0.83-8.46), recurrence-free survival (HR 2.86; 95% CI 0.82-9.96) and progression-free survival (HR 5.24; 95% CI 0.46-60.25) of diffident kinds of malignancy patients. Moreover, we discovered that elevated cyclin D3 expression was significantly connected with decreased overall survival in lymphoma (HR 3.72; 95% CI 2.18-6.36) while no significant relevance between highly expressing cyclin D3 and the overall survival in breast cancer was obtained (HR 2.12; 95% CI 0.76-5.91). Conclusions: This meta-analysis demonstrated that highly expressing cyclin D3 might be an unfavorable prognostic biomarker for various malignancy patients, which can make great contributions to the clinical diagnosis and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA