RESUMO
Highly-active and low-cost bifunctional electrocatalysts for oxygen reduction and evolution are essential in rechargeable metal-air batteries, and single atom catalysts with Fe-N-C are promising candidates. However, the activity still needs to be boosted, and the origination of spin-related oxygen catalytic performance is still uncertain. Herein, an effective strategy to regulate local spin state of Fe-N-C through manipulating crystal field and magnetic field is proposed. The spin state of atomic Fe can be regulated from low spin to intermediate spin and to high spin. The cavitation of dxz and dyz orbitals of high spin Fe(â ¢) can optimize the O2 adsorption and promote the rate-determining step (*O2 to *OOH). Benefiting from these merits, the high spin Fe-N-C electrocatalyst displays the highest oxygen electrocatalytic activities. Furthermore, the high spin Fe-N-C-based rechargeable zinc-air battery displays a high power density of 170 mW cm-2 and good stability.
RESUMO
Sepsis is described as an immune response disorder of the host to infection in which microorganisms play a non-negligible role. Most survivors of sepsis experience ICU-acquired weakness, also known as septic myopathy, characterized by skeletal muscle atrophy, weakness, and irreparable damage/regenerated or dysfunctional. The mechanism of sepsis-induced myopathy is currently unclear. It has been believed that this state is triggered by circulating pathogens and their related harmful factors, leading to impaired muscle metabolism. Sepsis and its resulting alterations in the intestinal microbiota are associated with sepsis-related organ dysfunction, including skeletal muscle wasting. There are also some studies on interventions targeting the flora, including fecal microbiota transplants, the addition of dietary fiber and probiotics in enteral feeding products, etc., aiming to improve sepsis-related myopathy. In this review, we critically assess the potential mechanisms and therapeutic prospects of intestinal flora in the development of septic myopathy.
Assuntos
Microbioma Gastrointestinal , Doenças Musculares , Sepse , Humanos , Doenças Musculares/etiologia , Doenças Musculares/terapia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Sepse/metabolismoRESUMO
Norovirus (NoV) is an important cause of viral acute gastroenteritis (AGE). To gain insights into the epidemiological characteristics and genetic diversity of NoV among children in Hubei, 1216 stool samples from children (≤ 5 years) obtained under AGE surveillance from January 2017 to December 2019 were analyzed. The results showed that NoV was responsible for 14.64% of AGE cases, with the highest detection rate in children aged 7-12 months (19.76%). Statistically significant differences were found between male and female infection rates (χ2 â= â8.108, P â= â0.004). Genetic analysis of RdRp and VP1 sequences showed that NoV GII genotypes were GII.4 Sydney [P31] (34.35%), GII.3 [P12] (25.95%), GII.2 [P16] (22.90%), GII.4 Sydney [P16] (12.98%), GII.17 [P17] (2.29%), GII.6 [P7] and GII.3 [P16] (each at 0.76%). GII.17 [P17] variants were divided into the Kawasaki323-like lineage and the Kawasaki308-like lineage. A unique recombination event was detected between strains of GII.4 Sydney 2012 and GII.4 Sydney 2016. Significantly, all GII.P16 sequences associated with GII.4/GII.2 obtained in Hubei were correlated with novel GII.2 [P16] variants that re-emerged in Germany in 2016. Antigenic site analysis of complete VP1 sequences from all GII.4 variants from Hubei identified notable variable residues of antibody epitopes. Genotyping under continuous AGE surveillance and observation of the antigenic sites of VP1 are important monitoring strategies for emerging NoV strains.
RESUMO
BACKGROUND: Lupus nephritis is a rare immunological disorder. Genetic factors are considered important in its causation. We aim to systematically investigate the rare pathogenic gene variants in patients with lupus nephritis. METHODS: Whole-exome sequencing was used to screen pathogenic gene variants in 1886 probands with lupus nephritis. Variants were interpreted on the basis of known pathogenic variants or the American College of Medical Genetics and Genomics guidelines and studied by functional analysis, including RNA sequencing, quantitative PCR, cytometric bead array, and Western blotting. RESULTS: Mendelian form of lupus nephritis was confirmed in 71 probands, involving 63 variants in 39 pathogenic genes. The detection yield was 4%. The pathogenic genes enriched in nuclear factor kappa-B (NF-κB), type I interferon, phosphatidylinositol-3-kinase/serine/threonine kinase Akt (PI3K/AKT), Ras GTPase/mitogen-activated protein kinase (RAS/MAPK), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. Clinical manifestation patterns were diverse among different signaling pathways. More than 50% of the pathogenic gene variants were reported to be associated with lupus or lupus nephritis for the first time. The identified pathogenic gene variants of lupus nephritis overlapped with those of autoinflammatory and immunodeficiency diseases. Inflammatory signatures, such as cytokine levels of IL-6, IL-8, IL-1 ß , IFN α , IFN γ , and IP10 in serum and transcriptional levels of interferon-stimulated genes in blood, were significantly higher in patients with pathogenic gene variants compared with controls. The overall survival rate of patients with pathogenic gene variants was lower than those without pathogenic gene variants. CONCLUSIONS: A small fraction of patients with lupus nephritis had identifiable pathogenic gene variants, primarily in NF-κB, type I interferon, PI3K/AKT, JAK/STAT, RAS/MAPK, and complement pathways.
RESUMO
Natural spider silks with striking performances achieve extensive investigations. Nonetheless, a lack of consensus over the mechanism of the natural spinning hinders the development of artificial spinning methods where the regenerated spider silks generally show poor performances compared with the natural fibers. As is known, the Plateau-Rayleigh instability tends to break solution column into droplets and is considered a main challenge during fiber-spinning. Here in this study, by harnessing the viscoelastic properties of the regenerated spidroin dope solution via organic salt-zinc acetate (ZA), this outcome can be avoided, and dry-spinning of long and mechanically robust regenerated spider silk ribbons can be successfully realized. The as-obtained dry-spun spider silk ribbons show an enhanced modulus up to 14 ± 4 GPa and a toughness of ≈51 ± 9 MJ m-3 after the post-stretching treatment, which is even better than that of the pristine spider silk fibers. This facile and flexible strategy enriches the spinning methodologies which bypass the bottleneck of precisely mimicking the complex natural environment of the glands in spiders, shining a light to the spider-silk-based textile industrial applications.
RESUMO
Myopia is one of the most common eye diseases in children and adolescents worldwide. Currently, there is no effective treatment in clinical practice. Ocular tissue fibrosis is involved in the development of myopia and this study aimed to investigate the effect of miR-138-5p on choroidal fibrosis in myopic guinea pigs via regulating the HIF-1α signaling pathway. First, guinea pigs were randomly divided into a normal control (NC) group, a lens-induced myopia (LIM) group, a LIM + miR-138-5p-carried Lentivirus treatment (LV) group, and a LIM + miR-138-5p-Vector treatment (VECTOR) group. All animals were induced experimental myopia with a -6.0 diopter lens except those in the NC group. Meanwhile, animals in the LV group were supplemented with 5 µl of miR-138-5p-carried Lentivirus, while those in the VECTOR group were only supplemented with the same volume of miR-138-5p-Vector. After myopia induction for 2 and 4 weeks, the refractive status and other ocular parameters of the guinea pigs were measured. Further, the expression of hypoxia-inducible factor (HIF)-1α, transforming growth factor (TGF)-ß, collagen I, hydroxyproline (HYP), interleukin 1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), and a-smooth muscle actin (α-SMA) in choroidal tissues was investigated. Results showed that the refraction and axial length of the experimental myopic guinea pigs increased, and choroid fibrosis aggravated after experimental myopic induction. miR-138-5p can efficiently decrease the refraction and ocular length, and ameliorate the choroidal fibrosis of the experimental myopic guinea pigs via downregulating the fibrosis-related TGF-ß1, collagen I, HYP, IL-1ß, TNF-α, and α-SMA expression through inhibiting the HIF-1α signaling pathway. Our results provide new insight into controlling myopic development using microRNAs in clinical practice.
Assuntos
MicroRNAs , Miopia , Animais , Cobaias , Corioide/metabolismo , Corioide/patologia , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , MicroRNAs/genética , MicroRNAs/metabolismo , Miopia/genética , Miopia/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Subunidade alfa do Fator 1 Induzível por HipóxiaRESUMO
MicroRNAs (miRNAs/miRs) are a group of small noncoding RNAs that serve as posttranscriptional gene modulators. miRNAs have been demonstrated to serve a pivotal role in carcinogenesis and the dysregulated expression of miRNAs is a wellunderstood characteristic of cancer. In recent years, miR370 has been established as a key miRNA in various cancers. The expression of miR370 is dysregulated in various types of cancer and varies markedly across different tumor types. miR370 can regulate multiple biological processes, including cell proliferation, apoptosis, migration, invasion, as well as cell cycle progression and cell stemness. Moreover, it has been reported that miR370 affects the response of tumor cells to anticancer treatments. Additionally, the expression of miR370 is modulated by multiple factors. The present review summarizes the role and mechanism of miR370 in tumors, and demonstrates its potential as a molecular marker for cancer diagnosis and prognosis.
Assuntos
MicroRNAs , Neoplasias , Humanos , Neoplasias/genética , MicroRNAs/genética , Carcinogênese/genética , Apoptose/genética , Divisão CelularRESUMO
Mobile genetic elements (MGEs) mediated horizontal gene transfer is the primary reason for the propagation of antibiotic resistance genes in environment. The behavior of MGEs under magnetic biochar pressure in sludge anaerobic digestion (AD) is still unknown. This study evaluated the effects of different dosage magnetic biochar on the MGEs in AD reactors. The results showed that the biogas yield was highest (106.68 ± 1.16 mL g-1 VSadded) with adding optimal dosage of magnetic biochar (25 mg g-1 TSadded), due to it increased the microorganism's abundance involved in hydrolysis and methanogenesis. While, the total absolute abundance of MGEs in the reactors with magnetic biochar addition increased by 11.58%-77.37% compared with the blank reactor. When the dosage of magnetic biochar was 12.5 mg g-1 TSadded, the relative abundance of most MGEs was the highest. The enrichment effect on ISCR1 was the most significant, and the enrichment rate reached 158.90-214.16%. Only the intI1 abundance was reduced and the removal rates yield 14.38-40.00%, which was inversely proportional to the dosage of magnetic biochar. Co-occurrence network explored that Proteobacteria (35.64%), Firmicutes (19.80%) and Actinobacteriota (15.84%) were the main potential host of MGEs. Magnetic biochar changed MGEs abundance by affecting the potential MGEs-host community structure and abundance. Redundancy analysis and variation partitioning analysis showed that the combined effect of polysaccharides, protein and sCOD exhibited the greatest contribution (accounted for 34.08%) on MGEs variation. These findings demonstrated that magnetic biochar increases the risk of MGEs proliferation in AD system.
Assuntos
Genes Bacterianos , Esgotos , Anaerobiose , Antibacterianos/farmacologia , Sequências Repetitivas Dispersas , Fenômenos Magnéticos , Esterco/microbiologiaRESUMO
Layered double hydroxides (LDHs) are excellent catalysts for the oxygen evolution reaction (OER) because of their tunable properties, including chemical composition and structural morphology. An interplay between these adjustable properties and other (including external) factors might not always benefit the OER catalytic activity of LDHs. Therefore, we applied machine learning algorithms to simulate the double-layer capacitance to understand how to design/tune LDHs with targeted catalytic properties. The key factors of solving this task were identified using the Shapley Additive explanation and cerium was identified as an effective element to modify the double-layer capacitance. We also compared different modelling methods to identify the most promising one and the results revealed that binary representation is better than directly applying atom numbers as inputs for chemical compositions. Overpotentials of LDH-based materials as predicted targets were also carefully examined and evaluated, and it turns out that overpotentials can be predicted when measurement conditions about overpotentials are added as features. Finally, to confirm our findings, we reviewed additional experimental literature data and used them to test our machine algorithms to predict LDH properties. This analysis confirmed the very credible and robust generalization ability of our final model capable of achieving accurate results even with a relatively small dataset.
RESUMO
Electron shuttles (ES) can mediate long-distance electron transfer between extracellular respiratory bacteria (ERB) and the surroundings. However, the effects of graphite structure in ES on the extracellular electron transfer (EET) process remain ambiguous. This work investigated the function of graphite structure in the process of nitrobenzene (NB) degradation by Geobacter sulfurreducens PCA, in which highly aromatic carbon nanotubes (CNTs) was studied as a typical ES. The results showed that the addition of 1.5 g L-1 of CNTs improved the NB biodegradation up to 81.2%, plus 18.8% NB loss due to the adsorption property of CNTs, achieving complete removal of 200 µM NB within 9 h. The amendment of CNTs greatly increased the EET rate, indicating that graphite structure exhibited excellent electron shuttle performance. Furthermore, Raman spectrum proved that CNTs obtained better graphite structure after 90 h of cultivation with strain PCA, resulting in higher electrochemical performance. Also, CNTs was perceived as the "Contaminant Reservoir", which alleviated the toxic effect of NB and shortened the distance of EET process. Overall, this work focused on the effects of material graphite structure on the EET process, which enriched the understanding of the interaction between CNTs and ERB, and these results might promote their application in the in-situ bioremediation of nitroaromatic-polluted environment.
Assuntos
Grafite , Nanotubos de Carbono , Oxirredução , Grafite/metabolismo , Transporte de Elétrons , NitrobenzenosRESUMO
The incompatibility of poly(vinylidene difluoride) (PVDF) with acidic ionic liquid electrolytes and the use of toxic and high-cost N-methyl pyrrolidone (NMP) solvents hinder the wide application of aluminum-ion batteries (AIBs). In this work, sodium alginate (Na-Alg) is developed as an aqueous binder for the fabrication of graphite positive electrodes in AIBs. The compatibility of various binders with the ionic liquid electrolyte is evaluated, and interaction between various binders and graphite particles before and after cycling is compared and discussed. The results demonstrate that the well compatibility of Na-Alg in ionic liquids and its reasonable distribution on the graphite surface facilitate fast charge transfer and ion diffusion, reduce electrode polarization, and thus contributing to significantly improved cycling stability and rate capability of AIBs. This work provides a new insight into the development of low-cost, eco-friendly, and high-performance binders for AIBs.
RESUMO
The presence of atmospheric turbulence in a beam propagation path results in the spread of orbital angular momentum (OAM) modes of laser beams, limiting the performance of free-space optical communications with the utility of vortex beams. The knowledge of the effects of turbulence on the OAM spectrum (also named as spiral spectrum) is thus of utmost importance. However, most of the existing studies considering this effect are limited to the weak turbulence that is modeled as a random complex "screen" in the receiver plane. In this paper, the behavior of the OAM spectra of twisted Laguerre-Gaussian Schell-model (TLGSM) beams propagation through anisotropic Kolmogorov atmospheric turbulence is examined based on the extended Huygens-Fresnel integral which is considered to be applicable in weak-to-strong turbulence. The discrepancies of the OAM spectra between weak and strong turbulence are studied comparatively. The influences of the twist phase and the anisotropy of turbulence on the OAM spectra during propagation are investigated through numerical examples. Our results reveal that the twist phase plays a crucial role in determining the OAM spectra in turbulence, resisting the degeneration of the detection mode weight by appropriately choosing the twist factor, while the effects of the anisotropic factors of turbulence on the OAM spectra seem to be not obvious. Our findings can be applied to the analysis of OAM spectra of laser beams both in weak and strong turbulence.
RESUMO
The 2D layered metal hydroxides (LMHs) have been developed for electrooxidation of 5-hydroxymethylfurfural (HMF). In this work, an effective strategy is proposed to tailor the electronic structure of active sites at the atomic level, which is by introducing defects into the lattice structure. As an example, a series of ultrathin crumpled ternary NiVW-LMH electrocatalysts with abundant lattice vacancies (denoted as NiVWv -LMH) are prepared in this way. The introduction of tungsten (W) endows the catalyst with a special crumpled structure, which promotes the generation of lattice vacancies and thus exposes more unsaturated Ni activity sites. The NiVWv -LMH displays superb performance in the electrooxidation of HMF. The Tafel slope for electrodehydrogenation of Ni2+ OH bond to Ni(OH)O species is 12.04 mV dec-1 . The current density at 1.43 V versus reversible hydrogen electrode (RHE) toward the oxidation reaction of HMF reaches about 193 mA cm-2 , which is better than most of the common electrocatalysts, with an 5.37-fold improvement compared with Ni(OH)2 electrode. The preparation strategy demonstrates in this work can be useful for developing highly efficient electrocatalysts.
RESUMO
As(III) oxidation-dependent biological nitrogen fixing (As-dependent BNF) bacteria use a novel biogeochemical process observed in tailings recently. However, our understanding of microorganisms responsible for As-dependent BNF is limited and whether such a process occurs in As-contaminated soils is still unknown. In this study, two contrasting types of soils (surface soils versus river sediments) heavily contaminated by As were selected to study the occurrence of As-dependent BNF. BNF was observed in sediments and soils amended with As(III), whereas no apparent BNF was found in the cultures without As(III). The increased abundances of the nitrogenase gene (nifH) and As(III) oxidation gene (aioA) suggest that an As-dependent BNF process was catalyzed by microorganisms harboring nifH and aioA. In addition, DNA-SIP demonstrated that Thiobacillus spp. and Anaeromyxobacter spp. were putative As-dependent BNF bacteria in As-contaminated soils and sediments, respectively. Metagenomic analysis further suggested that these taxa contained genes responsible for BNF, As(III) oxidation, and CO2 fixation, demonstrating their capability for serving as As-dependent BNF. These results indicated the occurrence of As-dependent BNF in various As-contaminated habitats. The contrasting geochemical conditions in different types of soil suggested that these conditions may enrich different As-dependent BNF bacteria (Thiobacillus spp. for soils and Anaeromyxobacter spp. for sediments).
Assuntos
Arsênio , Arsenitos , Thiobacillus , Fixação de Nitrogênio , Nitrogênio , Thiobacillus/genética , Microbiologia do Solo , Solo/química , BactériasRESUMO
Based on one-year observation, the concentration, sources, and potential source areas of volatile organic compounds (VOCs) were comprehensively analyzed to investigate the pollution characteristics of ambient VOCs in Haikou, China. The results showed that the annual average concentration of total VOCs (TVOCs) was 11.4 ppbV, and the composition was dominated by alkanes (8.2 ppbV, 71.4%) and alkenes (1.3 ppbV, 20.5%). The diurnal variation in the concentration of dominant VOC species showed a distinct bimodal distribution with peaks in the morning and evening. The greatest contribution to ozone formation potential (OFP) was made by alkenes (51.6%), followed by alkanes (27.2%). The concentrations of VOCs and nitrogen dioxide (NO2) in spring and summer were low, and it was difficult to generate high ozone (O3) concentrations through photochemical reactions. The significant increase in O3 concentrations in autumn and winter was mainly related to the transmission of pollutants from the northeast. Traffic sources (40.1%), industrial sources (19.4%), combustion sources (18.6%), solvent usage sources (15.5%) and plant sources (6.4%) were identified as major sources of VOCs through the positive matrix factorization (PMF) model. The southeastern coastal areas of China were identified as major potential source areas of VOCs through the potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models. Overall, the concentration of ambient VOCs in Haikou was strongly influenced by traffic sources and long-distance transport, and the control of VOCs emitted from vehicles should be strengthened to reduce the active species of ambient VOCs in Haikou, thereby reducing the generation of O3.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Ozônio/química , Alcanos/análise , Alcenos , ChinaRESUMO
Aluminum-ion batteries (AIBs) are a promising candidate for large-scale energy storage due to the abundant reserves, low cost, good safety, and high theoretical capacity of Al. However, AIBs with inorganic positive electrodes still suffer from sluggish kinetics and structural collapse upon cycling. Herein, we propose a novel p-type poly(vinylbenzyl-N-phenoxazine) (PVBPX) positive electrode for AIBs. The dual active sites enable PVBPX to deliver a high capacity of 133â mAh g-1 at 0.2â A g-1 . More impressively, the expanded π-conjugated construction, insolubility, and anionic redox chemistry without bond rearrangement of PVBPX for AIBs contribute to an amazing ultra-long lifetime of 50000â cycles. The charge storage mechanism is that the AlCl4 - ions can reversibly coordinate/dissociate with the N and O sites in PVBPX sequentially, which is evidenced by both experimental and theoretical results. These findings establish a foundation to advance organic AIBs for large-scale energy storage.
RESUMO
We fabricate a 2D MXene and 1D whisker carbon nanotube (WCNT) binary composite, where the MXene layer was sandwiched between two WCNT films, and assemble a flexible resistive-type strain sensor using this composite film. The deformations of the conductive networks trigged by the external mechanical stimuli cause the variations of the number of effective conductive paths, which result in the changes of the electric resistance of composite films. The resistances of the MXene/WCNT composite films that carry the strain information about the external mechanical stimuli are monitored. In addition, we demonstrate the role of the conductive MXene networks and the WCNT networks in responding to the external mechanical stimuli. The MXene networks dominate the variations of the resistance of the strain sensors in the low strain range. In the middle strain range, the deformations of both the MXene networks and the WCNT networks are responsible for the variations of the resistance of the strain sensors. In the high strain range, an "island bridge" like conductive network forms, where MXenes act as islands and WCNTs connect the adjacent MXene islands like bridges. The multiple types of conductive networks lead to the high sensitivity of the MXene/WCNT-based strain sensors over a wide strain range and a wide response window. This stretchable strain sensor exhibits good performances in detecting human muscle motions with a wide strain range and has the potentials of being applicable to wearable electronics.
RESUMO
The cyclic shear behavior of frozen cement-treated soil-concrete interfaces is critical for analyzing soil-structure interfaces and foundation design in cold regions and artificially frozen ground. The cyclic shear behavior of the interface between frozen cement-treated sand and structure is investigated in this paper at various normal stresses and temperatures. Experimental results include the variation of the peak shear stress, peak normal displacement, shear stiffness with the number of cycles, and the relationship between peak shear stress and smoothness under certain conditions. Peak shear stresses of warm frozen cement-treated sand and cold frozen cement-treated sand varied with cycle number. Additionally, the former is significantly larger than the latter in the stable phase. The peak normal displacement showed the same results, indicating that the ice crystals formed on the surface and the strength of the frozen cement-treated sand have significant differences at various temperatures. The study's findings aid in understanding the complexities of the cyclic shear behavior of frozen cement-treated sand and structure interfaces and provide references on frozen cement-treated sand zones in practical engineering.
RESUMO
Porous CNT sponge (CNTS) and aligned CNT array (CNTA) were used as light absorbers to generate water vapor by harvesting solar energy. To improve the wettability of water on superhydrophobic CNTs and enhance water transport in porous CNT materials, CNTs were decorated with a hydrophilic silk fibroin (SF) protein coating. Water rapidly infiltrates the porous SF-modified CNT materials. Importantly, strong water-SF interactions via the hydrogen bonding between SF protein molecules and CNT sidewalls resulted in a reduction in the vaporization enthalpy of water in the SF-modified CNT materials, which facilitated vapor generation. Additionally, the SF-modified CNT light absorbers exhibit excellent vapor generation performance over a wide pH range of 2 to 12 and good stability. The SF-modified CNT materials thus have the advantage of being potentially applicable to the purification of wastewater and desalination of brackish water with high or low pH values. SF-CNTA light absorbers with vertically aligned CNTs, which are of great benefit in water transport and vapor escape, achieved a water evaporation rate of 3.2 kg m-2 h-1 under one sun irradiation with an energy transfer efficiency of 94%. After a desalination treatment, the concentrations of primary ions in seawater are greatly decreased and meet the requirements for drinking water.