Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
J Am Chem Soc ; 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33382947

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) using Cu-based catalysts holds great potential for producing valuable multi-carbon products from renewable energy. However, the chemical and structural state of Cu catalyst surfaces during the CO2RR remains a matter of debate. Here, we show the structural evolution of the near-surface region of polycrystalline Cu electrodes under in situ conditions through a combination of grazing incidence X-ray absorption spectroscopy (GIXAS) and X-ray diffraction (GIXRD). The in situ GIXAS reveals that the surface oxide layer is fully reduced to metallic Cu before the onset potential for CO2RR, and the catalyst maintains the metallic state across the potentials relevant to the CO2RR. We also find a preferential surface reconstruction of the polycrystalline Cu surface toward (100) facets in the presence of CO2. Quantitative analysis of the reconstruction profiles reveals that the degree of reconstruction increases with increasingly negative applied potentials, and it persists when the applied potential returns to more positive values. These findings show that the surface of Cu electrocatalysts is dynamic during the CO2RR, and emphasize the importance of in situ characterization to understand the surface structure and its role in electrocatalysis.

2.
J Vis Exp ; (165)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33226026

RESUMO

In rodent models, tail vein injections are important methods for intravenous administration of experimental agents. Tail vein injections typically involve warming of the animal to promote vasodilation, which aids in both the identification of the blood vessels and positioning of the needle into the vessel lumen while securely restraining the animal. Although tail vein injections are common procedures in many protocols and are not considered highly technical if performed correctly, accurate and consistent injections are crucial to obtain reproducible results and minimize variability. Conventional methods for inducing vasodilation prior to tail vein injections generally depend on the use of a heat source such as a heat lamp, electrical/rechargeable heat pads, or pre-heated water at 37 °C. Despite being readily accessible in a standard laboratory setting, these tools evidently suffer from poor/limited thermo-regulatory capacity. Similarly, although various forms of restraining devices are commercially available, they must be used carefully to avoid trauma to the animals. These limitations of the current methods create unnecessary variables in experiments or result in varying outcomes between experiments and/or laboratories. In this article, we demonstrate an improved protocol using an innovative device that combines an independent, thermally regulated, warming device with an adjustable restraining unit into one system for efficient streamlined tail vein injection. The example we use is an intravenous model of fungal bloodstream infection that results in sepsis. The warming apparatus consists of a heat-reflective acrylic box installed with an adjustable automatic thermostat to maintain the internal temperature at a pre-set threshold. Likewise, the width and height of the cone restraining apparatus can be adjusted to safely accommodate various rodent sizes. With the advanced and versatile features of the device, the technique shown here could become a useful tool across a range of research areas involving rodent models that employ tail vein injections.

3.
J Am Chem Soc ; 142(48): 20489-20501, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33207117

RESUMO

Biological and heterogeneous catalysts for the electrochemical CO2 reduction reaction (CO2RR) often exhibit a high degree of electronic delocalization that serves to minimize overpotential and maximize selectivity over the hydrogen evolution reaction (HER). Here, we report a molecular iron(II) system that captures this design concept in a homogeneous setting through the use of a redox non-innocent terpyridine-based pentapyridine ligand (tpyPY2Me). As a result of strong metal-ligand exchange coupling between the Fe(II) center and ligand, [Fe(tpyPY2Me)]2+ exhibits redox behavior at potentials 640 mV more positive than the isostructural [Zn(tpyPY2Me)]2+ analog containing the redox-inactive Zn(II) ion. This shift in redox potential is attributed to the requirement for both an open-shell metal ion and a redox non-innocent ligand. The metal-ligand cooperativity in [Fe(tpyPY2Me)]2+ drives the electrochemical reduction of CO2 to CO at low overpotentials with high selectivity for CO2RR (>90%) and turnover frequencies of 100 000 s-1 with no degradation over 20 h. The decrease in the thermodynamic barrier engendered by this coupling also enables homogeneous CO2 reduction catalysis in water without compromising selectivity or rates. Synthesis of the two-electron reduction product, [Fe(tpyPY2Me)]0, and characterization by X-ray crystallography, Mössbauer spectroscopy, X-ray absorption spectroscopy (XAS), variable temperature NMR, and density functional theory (DFT) calculations, support assignment of an open-shell singlet electronic structure that maintains a formal Fe(II) oxidation state with a doubly reduced ligand system. This work provides a starting point for the design of systems that exploit metal-ligand cooperativity for electrocatalysis where the electrochemical potential of redox non-innocent ligands can be tuned through secondary metal-dependent interactions.

4.
IUCrJ ; 7(Pt 6): 1151-1167, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209326

RESUMO

Most crystallographic data processing methods use pixel integration. In serial femtosecond crystallography (SFX), the intricate interaction between the reciprocal lattice point and the Ewald sphere is integrated out by averaging symmetrically equivalent observations recorded across a large number (104-106) of exposures. Although sufficient for generating biological insights, this approach converges slowly, and using it to accurately measure anomalous differences has proved difficult. This report presents a novel approach for increasing the accuracy of structure factors obtained from SFX data. A physical model describing all observed pixels is defined to a degree of complexity such that it can decouple the various contributions to the pixel intensities. Model dependencies include lattice orientation, unit-cell dimensions, mosaic structure, incident photon spectra and structure factor amplitudes. Maximum likelihood estimation is used to optimize all model parameters. The application of prior knowledge that structure factor amplitudes are positive quantities is included in the form of a reparameterization. The method is tested using a synthesized SFX dataset of ytterbium(III) lysozyme, where each X-ray laser pulse energy is centered at 9034 eV. This energy is 100 eV above the Yb3+ L-III absorption edge, so the anomalous difference signal is stable at 10 electrons despite the inherent energy jitter of each femtosecond X-ray laser pulse. This work demonstrates that this approach allows the determination of anomalous structure factors with very high accuracy while requiring an order-of-magnitude fewer shots than conventional integration-based methods would require to achieve similar results.

5.
Clin Exp Nephrol ; 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33141305

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder caused by mutations in the polycystic kidney disease (PKD) gene. Although tolvaptan has benefits for renal involvement, the different effects depending on the gene mutation type are unknown. Thus, we explore the different effects of tolvaptan on the annual changes in total kidney volume (%TKV) and estimated glomerular filtration rate (eGFR) according to the gene mutation type in ADPKD patients. METHODS: In total, 135 ADPKD patients were screened, and 22 patients taking tolvaptan for at least a year were retrospectively studied at the Kurume University Hospital. We examined the decline in renal function and %TKV by computed tomography and analyzed the gene mutation. Patients were classified into the following four groups according to gene mutation type: PKD1-truncated, PKD1-non-truncated, PKD2, and mutation not found. Patients were treated with tolvaptan, and the effects of tolvaptan were analyzed according to the gene mutation type. RESULTS: Patients (age: 52.3 ± 11.2 years) were administered tolvaptan at a dose of 45 or 60 mg. No variation was observed in the annual changes in eGFR (%eGFR) (before: - 10.5% ± 13.9%, after: - 14.4% ± 8.1%, P = 0.139), whereas %TKV was significantly improved after the tolvaptan treatment (before: 14.9% ± 8.0%, after: - 5.4% ± 7.6%, P < 0.001). Unlike %eGFR, tolvaptan treatment significantly improved %TKV, regardless of the type of gene mutation. CONCLUSIONS: A year treatment with tolvaptan significantly improved %TKV in patients with ADPKD, regardless of the gene mutation type.

6.
J Am Chem Soc ; 142(44): 18795-18813, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32976708

RESUMO

Binding of N2 by the FeMo-cofactor of nitrogenase is believed to occur after transfer of 4 e- and 4 H+ equivalents to the active site. Although pulse EPR studies indicate the presence of two Fe-(µ-H)-Fe moieties, the structural and electronic features of this mixed valent intermediate remain poorly understood. Toward an improved understanding of this bioorganometallic cluster, we report herein that diiron µ-carbyne complex (P6ArC)Fe2(µ-H) can be oxidized and reduced, allowing for the first time spectral characterization of two EPR-active Fe(µ-C)(µ-H)Fe model complexes linked by a 2 e- transfer which bear some resemblance to a pair of En and En+2 states of nitrogenase. Both species populate S = 1/2 states at low temperatures, and the influence of valence (de)localization on the spectroscopic signature of the µ-hydride ligand was evaluated by pulse EPR studies. Compared to analogous data for the {Fe2(µ-H)}2 state of FeMoco (E4(4H)), the data and analysis presented herein suggest that the hydride ligands in E4(4H) bridge isovalent (most probably FeIII) metal centers. Although electron transfer involves metal-localized orbitals, investigations of [(P6ArC)Fe2(µ-H)]+1 and [(P6ArC)Fe2(µ-H)]-1 by pulse EPR revealed that redox chemistry induces significant changes in Fe-C covalency (-50% upon 2 e- reduction), a conclusion further supported by X-ray absorption spectroscopy, 57Fe Mössbauer studies, and DFT calculations. Combined, our studies demonstrate that changes in covalency buffer against the accumulation of excess charge density on the metals by partially redistributing it to the bridging carbon, thereby facilitating multielectron transformations.

7.
Phys Rev Lett ; 125(3): 037404, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745427

RESUMO

Kß x-ray emission spectroscopy is a powerful probe for electronic structure analysis of 3d transition metal systems and their ultrafast dynamics. Selectively enhancing specific spectral regions would increase this sensitivity and provide fundamentally new insights. Recently we reported the observation and analysis of Kα amplified spontaneous x-ray emission from Mn solutions using an x-ray free-electron laser to create the 1s core-hole population inversion [Kroll et al., Phys. Rev. Lett. 120, 133203 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.133203]. To apply this new approach to the chemically more sensitive but much weaker Kß x-ray emission lines requires a mechanism to outcompete the dominant amplification of the Kα emission. Here we report the observation of seeded amplified Kß x-ray emission from a NaMnO_{4} solution using two colors of x-ray free-electron laser pulses, one to create the 1s core-hole population inversion and the other to seed the amplified Kß emission. Comparing the observed seeded amplified Kß emission signal with that from conventional Kß emission into the same solid angle, we obtain a signal enhancement of more than 10^{5}. Our findings are the first important step of enhancing and controlling the emission of selected final states of the Kß spectrum with applications in chemical and materials science.

8.
Nanoscale ; 12(30): 16270-16284, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32760987

RESUMO

Analysis of the electronic structure and local coordination of an element is an important aspect in the study of the chemical and physical properties of materials. This is particularly relevant at the nanoscale where new phases of matter may emerge below a critical size. X-ray emission spectroscopy (XES) at synchrotron radiation sources and free electron lasers has enriched the field of X-ray spectroscopy. The spectroscopic techniques derived from the combination of X-ray absorption and emission spectroscopy (XAS-XES), such as resonant inelastic X-ray scattering (RIXS) and high energy resolution fluorescence detected (HERFD) XAS, are an ideal tool for the study of nanomaterials. New installations and beamline upgrades now often include wavelength dispersive instruments for the analysis of the emitted X-rays. With the growing use of XAS-XES, scientists are learning about the possibilities and pitfalls. We discuss some experimental aspects, assess the feasibility of measuring weak fluorescence lines in dilute, radiation sensitive samples, and present new experimental approaches for studying magnetic properties of colloidal nanoparticles directly in the liquid phase.

9.
Ther Apher Dial ; 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32777142

RESUMO

Serum carnitine is decreased in hemodialysis patients, which induces muscle atrophy. Thus, we examined the different effects of l-carnitine and exercise on exercise activity and muscle status in hemodialysis patients. Twenty patients were divided into l-carnitine and cycle ergometer groups and were followed for 3 months. Muscle and fat mass, physical activities, and muscle status were evaluated by an impedance, physical function test, and magnetic resonance imaging, respectively. The l-carnitine significantly increased muscle mass (P = .023) and thigh circumference (P = .027), decreased fat mass (P = .007), and shortened chair stand-up time (P = .002) and 10-m walk test (P = .037). The fat fraction was improved by the l-carnitine (P = .047). Compared with the exercise group, l-carnitine improved the changes in 10-m walk test (P = .026), chair stand-up time (P = .014), and thigh circumference (P = .022). Baseline fibroblast growth factor-21 and myostatin levels predicted the l-carnitine-associated changes in exercise activities. l-carnitine, rather than exercise, improved physical activity and muscle status in hemodialysis patients.

10.
Kurume Med J ; 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848104

RESUMO

BACKGROUND: Carnitine plays a pivotal role in energy synthesis through ß-oxidation in mitochondria. Serum and tissue levels of free carnitine are significantly decreased in dialysis patients, whereas acylcarnitine levels are increased. However, the precise kinetics and fate of carnitine fractions in chronic kidney disease (CKD) patients who are not on dialysis have not been clarified. This study aims to determine the kinetics of serum carnitine fractions in patients who were not on dialysis. METHODS: Seventy-five CKD patients not on dialysis were recruited in this study. Serum and urinary carnitine fraction levels were measured to evaluate the kinetics and regulation of serum carnitine fractions. Carnitine fractions were measured by the enzymatic cycling method. RESULTS: Total and free serum carnitine levels did not change with progression of CKD, whereas acylcarnitine levels and the acyl/free carnitine ratio significantly increased. Serum acylcarnitine levels were inversely associated with estimated glomerular filtration rate (r2 = 0.239, p < 0.001), but free carnitine levels were not. Serum free carnitine levels were positively associated with urinary free carnitine excretion (r2 = 0.214, p < 0.001), but serum acylcarnitine levels were not. Multiple stepwise regression analysis revealed that urinary free carnitine excretion and blood urea nitrogen were independent determinants of serum free carnitine and acylcarnitine levels, respectively. CONCLUSIONS: The present study demonstrated that serum acylcarnitine levels increased with renal dysfunction independent of urinary excretion levels. Serum free carnitine was not affected by renal function in CKD patients who were not on dialysis.

11.
J Am Chem Soc ; 142(33): 14249-14266, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32683863

RESUMO

Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme that catalyzes the conversion of methane to methanol at ambient temperature using a nonheme, oxygen-bridged dinuclear iron cluster in the active site. Structural changes in the hydroxylase component (sMMOH) containing the diiron cluster caused by complex formation with a regulatory component (MMOB) and by iron reduction are important for the regulation of O2 activation and substrate hydroxylation. Structural studies of metalloenzymes using traditional synchrotron-based X-ray crystallography are often complicated by partial X-ray-induced photoreduction of the metal center, thereby obviating determination of the structure of the enzyme in pure oxidation states. Here, microcrystals of the sMMOH:MMOB complex from Methylosinus trichosporium OB3b were serially exposed to X-ray free electron laser (XFEL) pulses, where the ≤35 fs duration of exposure of an individual crystal yields diffraction data before photoreduction-induced structural changes can manifest. Merging diffraction patterns obtained from thousands of crystals generates radiation damage-free, 1.95 Å resolution crystal structures for the fully oxidized and fully reduced states of the sMMOH:MMOB complex for the first time. The results provide new insight into the manner by which the diiron cluster and the active site environment are reorganized by the regulatory protein component in order to enhance the steps of oxygen activation and methane oxidation. This study also emphasizes the value of XFEL and serial femtosecond crystallography (SFX) methods for investigating the structures of metalloenzymes with radiation sensitive metal active sites.

12.
J Am Chem Soc ; 142(23): 10459-10467, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406683

RESUMO

Rapid and directed electron transfer (ET) is essential for biological processes. While the rates of ET over 1-2 nm in proteins can largely be described by simplified nonadiabatic theory, it is not known how these processes scale to microscopic distances. We generated crystalline lattices of Small Tetraheme Cytochromes (STC) forming well-defined, three-dimensional networks of closely spaced redox centers that appear to be nearly ideal for multistep ET. Electrons were injected into specific locations in the STC crystals by direct photoreduction, and their redistribution was monitored by imaging. The results demonstrate ET over mesoscopic to microscopic (∼100 µm) distances through sequential hopping in a biologically based heme network. We estimate that a hypothetical "nanowire" composed of crystalline STC with a cross-section of about 100 cytochromes could support the anaerobic respiration of a Shewanella cell. The crystalline lattice insulates mobile electrons from oxidation by O2, as compared to those in cytochromes in solution, potentially allowing for efficient delivery of current without production of reactive oxygen species. The platform allows direct tests of whether the assumptions based on short-range ET hold for sequential ET over mesoscopic distances. We estimate that the interprotein ET across 6 Å between hemes in adjacent proteins was about 105 s-1, about 100-fold slower than expectations based on simplified theory. More detailed analyses implied that additional factors, possibly contributed by the crystal lattice, may strongly impact mesoscale ET mainly by increasing the reorganizational energy of interprotein ET, which suggests design strategies for engineering improved nanowires suitable for future bioelectronic materials.

13.
ACS Appl Mater Interfaces ; 12(22): 25374-25382, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32383583

RESUMO

Bimetallic electrocatalysts provide a promising strategy for improving performance, especially in the enhancement of selectivity of CO2 reduction reactions. However, the first step of CO2 activation on bimetallic materials remains obscure. Considering bimetallic silver-copper (AgCu) as an example, we coupled ambient pressure X-ray photoelectron spectroscopy (APXPS) and quantum mechanics (QM) to examine CO2 adsorption and activation on AgCu exposed to CO2 with and without H2O at 298 K. The interplay between adsorbed species and the surface alloy composition of Cu and Ag is studied in atomic details. The APXPS experiment and density functional theory (DFT) calculations indicate that the clean sample has a Ag-rich surface layer. Upon adsorption of CO2 and surface O, we found that it is thermodynamically more favorable to induce subsurface Cu atoms substitution for some surface Ag atoms, modifying the stability and activation of CO2-related chemisorbed species. We further characterized this substitution effect by correlating the new adsorption species with the observed binding energy (BE) shift and intensity change in APXPS.

14.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434915

RESUMO

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Hidrogênio/metabolismo , Magnésio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fótons , Complexo de Proteína do Fotossistema II/química , Quinonas/metabolismo , Água/metabolismo
15.
Inorg Chem ; 59(9): 6000-6009, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32309932

RESUMO

An important class of non-heme dioxygenases contains a conserved Fe binding site that consists of a 2-His-1-carboxylate facial triad. Results from structural biology show that, in the resting state, these proteins are six-coordinate with aqua ligands occupying the remaining three coordination sites. We have utilized biotin-streptavidin (Sav) technology to design new artificial Fe proteins (ArMs) that have many of the same structural features found within active sites of these non-heme dioxygenases. An Sav variant was isolated that contains the S112E mutation, which installed a carboxylate side chain in the appropriate position to bind to a synthetic FeII complex confined within Sav. Structural studies using X-ray diffraction (XRD) methods revealed a facial triad binding site that is composed of two N donors from the biotinylated ligand and the monodentate coordination of the carboxylate from S112E. Two aqua ligands complete the primary coordination sphere of the FeII center with both involved in hydrogen bond networks within Sav. The corresponding FeIII protein was also prepared and structurally characterized to show a six-coordinate complex with two exogenous acetato ligands. The FeIII protein was further shown to bind an exogenous azido ligand through replacement of one acetato ligand. Spectroscopic studies of the ArMs in solution support the results found by XRD.


Assuntos
Dioxigenases/química , Ferroproteínas não Heme/química , Sítios de Ligação , Dioxigenases/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Ligantes , Conformação Molecular , Ferroproteínas não Heme/metabolismo
16.
Chem Commun (Camb) ; 56(38): 5158-5161, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32255061

RESUMO

Operando X-ray absorption spectroscopy was employed to study an active electrocatalyst, hyperfine ß-FeOOH nanorods (∅ 3 × 15 nm) surface-modified with amorphous Ni hydroxide. The nearest neighbor structure and valence of Fe3+ ions did not change under water oxidation conditions, while changes in the nearest neighbor ordering of Ni2+ ions and a reversible transition to Ni3+ were observed in accordance with the electrical bias for the reaction.

17.
J Fungi (Basel) ; 6(1)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168864

RESUMO

Disease is a complex outcome that can occur as a result of pathogen-mediated damage, host-mediated damage or both. This has led to the revolutionary concept of the damage response framework (DRF) that defines microbial virulence as a function of host immunity. The DRF outlines six scenarios (classes) of host damage or beneficial outcomes, depending on the microbe and the strength of the immune response. Candida albicans is uniquely adapted to its human host and can exist as either a commensal, colonizing various anatomical sites without causing notable damage, or as a pathogen, with the ability to cause a diverse array of diseases, ranging from mucosal to invasive systemic infections that result in varying levels of microbe-mediated and/or host-mediated damage. We recently categorized six different forms of candidiasis (oropharyngeal, hematogenous, intra-abdominal, gastrointestinal, denture stomatitis, and vulvovaginitis) into independent DRF classes, supporting a contemporary view of unique mechanisms of pathogenesis for these Candida infections. In this review, we summarize the evidence for the pathogenesis of these various forms of candidiasis in the context of the DRF with the further intent to provide insights into strategies to achieve a level of host response or outcome otherwise, that limits host damage.

18.
ACS Appl Mater Interfaces ; 12(16): 19054-19061, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32212629

RESUMO

Ordered interlayer stacking is intrinsic in two-dimensional covalent organic frameworks (2D COFs) and has strong implications on COF's optoelectronic properties. Reversible interlayer sliding, corresponding to shearing of 2D layers along their basal plane, is an appealing dynamic control of both structures and properties, yet it remains unexplored in the 2D COF field. Herein, we demonstrate that the reversible interlayer sliding can be realized in an imine-linked tetrathiafulvalene (TTF)-based COF TTF-DMTA. The solvent treatment induces crystalline phase changes between the proposed staircase-like sql net structure and a slightly slipped eclipsed sql net structure. The solvation-induced crystallinity changes correlate well with reversible spectroscopic and electrical conductivity changes as demonstrated in oriented COF thin films. In contrast, no reversible switching is observed in a related TTF-TA COF, which differs from TTF-DMTA in terms of the absence of methoxy groups on the phenylene linkers. This work represents the first 2D COF example of which eclipsed and staircase-like aggregated states are interchangeably accessed via interlayer sliding, an uncharted structural feature that may enable applications such as chemiresistive sensors.

19.
J Am Chem Soc ; 142(8): 3753-3761, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32013412

RESUMO

The S3 state is currently the last observable intermediate prior to O-O bond formation at the oxygen-evolving complex (OEC) of Photosystem II, and its electronic structure has been assigned to a homovalent MnIV4 core with an S = 3 ground state. While structural interpretations based on the EPR spectroscopic features of the S3 state provide valuable mechanistic insight, corresponding synthetic and spectroscopic studies on tetranuclear complexes mirroring the Mn oxidation states of the S3 state remain rare. Herein, we report the synthesis and characterization by XAS and multifrequency EPR spectroscopy of a MnIV4O4 cuboidal complex as a spectroscopic model of the S3 state. Results show that this MnIV4O4 complex has an S = 3 ground state with isotropic 55Mn hyperfine coupling constants of -75, -88, -91, and 66 MHz. These parameters are consistent with an αααß spin topology approaching the trimer-monomer magnetic coupling model of pseudo-octahedral MnIV centers. Importantly, the spin ground state changes from S = 1/2 to S = 3 as the OEC is oxidized from the S2 state to the S3 state. This same spin state change is observed following oxidation of the previously reported MnIIIMnIV3O4 cuboidal complex to the MnIV4O4 complex described here. This sets a synthetic precedent for the observed low-spin to high-spin conversion in the OEC.

20.
Acta Crystallogr D Struct Biol ; 76(Pt 2): 176-192, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32038048

RESUMO

Oxidation states of individual metal atoms within a metalloprotein can be assigned by examining X-ray absorption edges, which shift to higher energy for progressively more positive valence numbers. Indeed, X-ray crystallography is well suited for such a measurement, owing to its ability to spatially resolve the scattering contributions of individual metal atoms that have distinct electronic environments contributing to protein function. However, as the magnitude of the shift is quite small, about +2 eV per valence state for iron, it has only been possible to measure the effect when performed with monochromated X-ray sources at synchrotron facilities with energy resolutions in the range 2-3 × 10-4 (ΔE/E). This paper tests whether X-ray free-electron laser (XFEL) pulses, which have a broader bandpass (ΔE/E = 3 × 10-3) when used without a monochromator, might also be useful for such studies. The program nanoBragg is used to simulate serial femtosecond crystallography (SFX) diffraction images with sufficient granularity to model the XFEL spectrum, the crystal mosaicity and the wavelength-dependent anomalous scattering factors contributed by two differently charged iron centers in the 110-amino-acid protein, ferredoxin. Bayesian methods are then used to deduce, from the simulated data, the most likely X-ray absorption curves for each metal atom in the protein, which agree well with the curves chosen for the simulation. The data analysis relies critically on the ability to measure the incident spectrum for each pulse, and also on the nanoBragg simulator to predict the size, shape and intensity profile of Bragg spots based on an underlying physical model that includes the absorption curves, which are then modified to produce the best agreement with the simulated data. This inference methodology potentially enables the use of SFX diffraction for the study of metalloenzyme mechanisms and, in general, offers a more detailed approach to Bragg spot data reduction.


Assuntos
Cristalografia por Raios X/métodos , Lasers , Metaloproteínas/química , Animais , Teorema de Bayes , Interpretação Estatística de Dados , Ferredoxinas/química , Humanos , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA