Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Regen ; 10(1): 30, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34487238

RESUMO

Polycomb repressive complexes (PRCs) are essential in mouse gastrulation and specify neural ectoderm in human embryonic stem cells (hESCs), but the underlying molecular basis remains unclear. Here in this study, by employing an array of different approaches, such as gene knock-out, RNA-seq, ChIP-seq, et al., we uncover that EZH2, an important PRC factor, specifies the normal neural fate decision through repressing the competing meso/endoderm program. EZH2-/- hESCs show an aberrant re-activation of meso/endoderm genes during neural induction. At the molecular level, EZH2 represses meso/endoderm genes while SOX2 activates the neural genes to coordinately specify the normal neural fate. Moreover, EZH2 also supports the proliferation of human neural progenitor cells (NPCs) through repressing the aberrant expression of meso/endoderm program during culture. Together, our findings uncover the coordination of epigenetic regulators such as EZH2 and lineage factors like SOX2 in normal neural fate decision.

2.
FASEB J ; 35(9): e21777, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403519

RESUMO

Mycobacterium bovis is the causative agent of bovine tuberculosis and also responsible for serious threat to public health. Koumiss is a fermented mare's milk product, used as traditional drink. Here, we explored the effect of koumiss on gut microbiota and the host immune response against M bovis infection. Therefore, mice were treated with koumiss and fresh mare milk for 14 days before M bovis infection and continue for 5 weeks after infection. The results showed a clear change in the intestinal flora of mice treated with koumiss, and the lungs of mice treated with koumiss showed severe edema, inflammatory infiltration, and pulmonary nodules in M bovis-infected mice. Notably, we found that the content of short-chain fatty acids was significantly lower in the koumiss-treated group compared with the control group. However, the expression of endoplasmic reticulum stress and apoptosis-related proteins in the lungs of koumiss-treated mice were significantly decreased. Collectively, these findings suggest that koumiss treatment disturb the intestinal flora of, which is associated with disease severity and the possible mechanism that induces lungs pathology. Our current findings can be exploited further to establish the "gut-lung" axis which might be a novel strategy for the control of tuberculosis.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Kumis/efeitos adversos , Mycobacterium bovis/efeitos dos fármacos , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Ácidos Graxos/análise , Fezes/química , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/imunologia , Cavalos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/imunologia , Tuberculose Pulmonar/dietoterapia , Tuberculose Pulmonar/metabolismo
3.
Vet Microbiol ; 258: 109126, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34020176

RESUMO

Mycobacterium bovis (M. bovis) infection triggers cytokine production via pattern recognition receptors. These cytokines include type I interferons (IFNs) and interleukin-1ß (IL-1ß). Excessive type I IFN levels impair host resistance to M. bovis infection. Therefore, strict control of type I IFN production is helpful to reduce pathological damage and bacterial burden. Here, we found that a deficiency in caspase-1, which is the critical component of the inflammasome responsible for IL-1ß production, resulted in increased IFN-ß production upon M. bovis infection. Subsequent experiments demonstrated that caspase-1 activation reduced cyclic GMP-AMP synthase (cGAS) expression, thereby inhibiting downstream TANK-binding kinase 1 (TBK1)- interferon regulatory factor 3 (IRF3) signaling and ultimately reducing IFN production. A deficiency in caspase-1 activation enhanced the bacterial burden during M. bovis infection in vitro and in vivo and aggravated pathological lesion formation. Thus, caspase-1 activation reduced IFN-ß production upon M. bovis infection by dampening cGAS-TBK1-IRF3 signaling, suggesting that the inflammasome protects hosts by negatively regulating harmful cytokines.


Assuntos
Caspase 1/metabolismo , Animais , Inibidores de Caspase/farmacologia , Sobrevivência Celular , Dipeptídeos/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inflamassomos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium bovis , Nucleotidiltransferases , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Distribuição Aleatória , para-Aminobenzoatos/farmacologia
4.
J Orthop Surg Res ; 16(1): 273, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879213

RESUMO

BACKGROUND: The purpose of present study was to identify the differentially expressed genes (DEGs) associated with BMP-9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) by using bioinformatics methods. METHODS: Gene expression profiles of BMP-9-induced MSCs were compared between with GFP-induced MSCs and BMP-9-induced MSCs. GSE48882 containing two groups of gene expression profiles, 3 GFP-induced MSC samples and 3 from BMP-9-induced MSCs, was downloaded from the Gene Expression Omnibus (GEO) database. Then, DEGs were clustered based on functions and signaling pathways with significant enrichment analysis. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in cytoplasm, nucleus, and extracellular exosome signaling pathway. RESULTS: A total of 1967 DEGs (1029 upregulated and 938 downregulated) were identified from GSE48882 datasets. R/Bioconductor package limma was used to identify the DEGs. Further analysis revealed that there were 35 common DEGs observed between the samples. GO function and KEGG pathway enrichment analysis, among which endoplasmic reticulum, protein export, RNA transport, and apoptosis was the most significant dysregulated pathway. The result of protein-protein interaction (PPI) network modules demonstrated that the Hspa5, P4hb, Sec61a1, Smarca2, Pdia3, Dnajc3, Hyou1, Smad7, Derl1, and Surf4 were the high-degree hub nodes. CONCLUSION: Taken above, using integrated bioinformatical analysis, we have identified DEGs candidate genes and pathways in BMP-9 induced MSCs, which could improve our understanding of the key genes and pathways for BMP-9-induced osteogenic of MSCs.


Assuntos
Diferenciação Celular/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcriptoma , Estudos de Associação Genética/métodos , Fator 2 de Diferenciação de Crescimento/metabolismo , Proteínas de Choque Térmico , Humanos , Pró-Colágeno-Prolina Dioxigenase , Isomerases de Dissulfetos de Proteínas , Canais de Translocação SEC
5.
J Infect ; 83(1): 61-68, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33892015

RESUMO

Caspases are classified as inflammatory or apoptotic category. Inflammatory caspases participate in inflammasome activation, while apoptotic caspases mediate apoptotic activation. Previous studies have shown that apoptotic caspases prevent the production of IFN-ß during apoptosis or virus infection. However, the relationship between apoptotic caspases and IFN-ß production during intracellular bacterial infection is still unclear. Here, we investigated the role of apoptotic caspases in IFN-ß production induced by Mycobacterium bovis (M. bovis) infection. M. bovis is an intracellular bacterium and belongs to the Mycobacterium tuberculosis complex. M. bovis infection can cause tuberculosis in animals and human beings. In the current study, we found that M. bovis infection triggered mitochondrial stress, which caused the leakage of cytochrome c into the cytoplasm, and in turn, activated the downstream caspase-9 and-3. Furthermore, our results showed that activation of apoptotic caspases reduced IFN-ß production during M. bovis infection and vice versa. Confocal microscopy analysis revealed that apoptotic caspases prevented IFN-ß production by decreasing p-IRF3 nuclear translocation. Our findings demonstrate that apoptotic caspases negatively regulate the production of IFN-ß induced by an intracellular bacterial infection.


Assuntos
Apoptose , Caspases , Interferon beta/imunologia , Macrófagos/imunologia , Mycobacterium bovis , Animais , Caspases/genética , Macrófagos/microbiologia , Camundongos , Tuberculose
6.
Pharmaceutics ; 12(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271900

RESUMO

Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis complex imposing a high zoonotic threat to human health. The limited efficacy of BCG (Bacillus Calmette-Guérin) and upsurges of drug-resistant tuberculosis require new effective vaccination approaches and anti-TB drugs. Poly (lactic-co-glycolic acid) (PLGA) is a preferential drug delivery system candidate. In this study, we formulated PLGA nanoparticles (NPs) encapsulating the recombinant protein bovine neutrophil ß-defensin-5 (B5), and investigated its role in immunomodulation and antimicrobial activity against M. bovis challenge. Using the classical water-oil-water solvent-evaporation method, B5-NPs were prepared, with encapsulation efficiency of 85.5% ± 2.5%. These spherical NPs were 206.6 ± 26.6 nm in diameter, with a negatively charged surface (ζ-potential -27.1 ± 1.5 mV). The encapsulated B5 protein from B5-NPs was released slowly under physiological conditions. B5 or B5-NPs efficiently enhanced the secretion of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß and IL-10 in J774A.1 macrophages. B5-NPs-immunized mice showed significant increases in the production of TNF-α and immunoglobulin A (IgA) in serum, and the proportion of CD4+ T cells in spleen compared with B5 alone. In immunoprotection studies, B5-NPs-immunized mice displayed significant reductions in pulmonary inflammatory area, bacterial burden in the lungs and spleen at 4-week after M. bovis challenge. In treatment studies, B5, but not B5-NPs, assisted rifampicin (RIF) with inhibition of bacterial replication in the lungs and spleen. Moreover, B5 alone also significantly reduced the bacterial load in the lungs and spleen. Altogether, our findings highlight the significance of the B5-PLGA NPs in terms of promoting the immune effect of BCG and the B5 in enhancing the therapeutic effect of RIF against M. bovis.

7.
Nat Commun ; 11(1): 5249, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067447

RESUMO

The first major build-up of Antarctic glaciation occurred in two consecutive stages across the Eocene-Oligocene transition (EOT): the EOT-1 cooling event at ~34.1-33.9 Ma and the Oi-1 glaciation event at ~33.8-33.6 Ma. Detailed orbital-scale terrestrial environmental responses to these events remain poorly known. Here we present magnetic and geochemical climate records from the northeastern Tibetan Plateau margin that are dated precisely from ~35.5 to 31 Ma by combined magneto- and astro-chronology. These records suggest a hydroclimate transition at ~33.7 Ma from eccentricity dominated cycles to oscillations paced by a combination of eccentricity, obliquity, and precession, and confirm that major Asian aridification and cooling occurred at Oi-1. We conclude that this terrestrial orbital response transition coincided with a similar transition in the marine benthic δ18O record for global ice volume and deep-sea temperature variations. The dramatic reorganization of the Asian climate system coincident with Oi-1 was, thus, a response to coeval atmospheric CO2 decline and continental-scale Antarctic glaciation.

8.
Math Biosci Eng ; 17(3): 2310-2329, 2020 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-32233537

RESUMO

Diabetes mellituse has been one of the major diseases in the world due to the high percentage of diabetics in the global population and the increasing growth rate of its onset. Identifying individual physiological characteristics, e.g., insulin sensitivity and glucose effectiveness and others, is extremely important in developing effective drugs and investigating genetic pathways causing the defects in these physiological responses. Intravenous glucose tolerance test (IVGTT) is such a protocol to determine an individual insulin sensitivity and glucose effectiveness indices. In this paper, we propose a stochastic delay differential equation model for the IVGTT protocol attempting to develop a method to increase the accuracy of parameter estimation. We first study the existence and uniqueness of the global positive solution and its asymptotic behavior of the stochastic path close to the steady state of the corresponding deterministic model. Then we develop a maximum likelihood estimation method to estimate the parameters involved in the proposed model. Our simulation studies numerically confirm our theoretical findings and demonstrate that the proposed model with estimated parameters can improve the fitness of clinical data.


Assuntos
Resistência à Insulina , Insulina , Glicemia , Glucose , Teste de Tolerância a Glucose , Humanos , Modelos Biológicos
9.
Front Microbiol ; 11: 433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265874

RESUMO

Mycobacterium bovis is the causative agent of bovine tuberculosis, has been identified a serious threat to human population. It has been found that sodium butyrate (NaB), the inhibitor of histone deacetylase, can promote the expression of cathelicidin (LL37) and help the body to resist a variety of injuries. In the current study, we investigate the therapeutic effect of NaB on the regulation of host defense mechanism against M. bovis infection. We found an increased expression of LL37 in M. bovis infected THP-1 cells after NaB treatment. In contrast, NaB treatment significantly down-regulated the expression of Class I HDAC in THP-1 cells infected with M. bovis. Additionally, NaB reduced the expression of phosphorylated P65 (p-P65) and p-IκBα, indicating the inhibition of nuclear factor-κB (NF-κB) signaling. Furthermore, we found that NaB treatment reduced the production of inflammatory cytokines (IL-1ß, TNF-α, and IL-10) and a key anti-apoptotic marker protein Bcl-2 in THP-1 cell infected with M. bovis. Notably, mice showed high resistance to M. bovis infection after NaB treatment. The reduction of viable M. bovis bacilli indicates that NaB-induced inhibition of M. bovis infection mediated by upregulation of LL37 and inhibition of NF-κB signaling pathway. These observations illustrate that NaB mediate protective immune responses against M. bovis infection. Overall, these results suggest that NaB can be exploited as a therapeutic strategy for the control of M. bovis in animals and human beings.

10.
Nat Commun ; 11(1): 382, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959746

RESUMO

Neurogenesis, a highly orchestrated process, entails the transition from a pluripotent to neural state and involves neural progenitor cells (NPCs) and neuronal/glial subtypes. However, the precise epigenetic mechanisms underlying fate decision remain poorly understood. Here, we delete KDM6s (JMJD3 and/or UTX), the H3K27me3 demethylases, in human embryonic stem cells (hESCs) and show that their deletion does not impede NPC generation from hESCs. However, KDM6-deficient NPCs exhibit poor proliferation and a failure to differentiate into neurons and glia. Mechanistically, both JMJD3 and UTX are found to be enriched in gene loci essential for neural development in hNPCs, and KDM6 impairment leads to H3K27me3 accumulation and blockade of DNA accessibility at these genes. Interestingly, forced expression of neuron-specific chromatin remodelling BAF (nBAF) rescues the neuron/glia defect in KDM6-deficient NPCs despite H3K27me3 accumulation. Our findings uncover the differential requirement of KDM6s in specifying NPCs and neurons/glia and highlight the contribution of individual epigenetic regulators in fate decisions in a human development model.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Neurais/fisiologia , Linhagem Celular , Proliferação de Células/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/fisiologia , Epigênese Genética/fisiologia , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Histona Desmetilases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Neurogênese/genética , RNA-Seq
11.
BMC Infect Dis ; 19(1): 1031, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801478

RESUMO

BACKGROUND: Mycobacterium bovis (M. bovis) is the principal causative agent of bovine tuberculosis; however, it may also cause serious infection in human being. Type I IFN is a key factor in reducing viral multiplication and modulating host immune response against viral infection. However, the regulatory pathways of Type I IFN signaling during M. bovis infection are not yet fully explored. Here, we investigate the role of Type I IFN signaling in the pathogenesis of M. bovis infection in mice. METHODS: C57BL/6 mice were treated with IFNAR1-blocking antibody or Isotype control 24 h before M. bovis infection. After 21 and 84 days of infection, mice were sacrificed and the role of Type I IFN signaling in the pathogenesis of M. bovis was investigated. ELISA and qRT-PCR were performed to detect the expression of Type I IFNs and related genes. Lung lesions induced by M. bovis were assessed by histopathological examination. Viable bacterial count was determined by CFU assay. RESULTS: We observed an abundant expression of Type I IFNs in the serum and lung tissues of M. bovis infected mice. In vivo blockade of Type I IFN signaling reduced the recruitment of neutrophils to the lung tissue, mediated the activation of macrophages leading to an increased pro-inflammatory profile and regulated the inflammatory cytokine production. However, no impact was observed on T cell activation and recruitment in the early acute phase of infection. Additionally, blocking of type I IFN signaling reduced bacterial burden in the infected mice as compared to untreated infected mice. CONCLUSIONS: Altogether, our results reveal that Type I IFN mediates a balance between M. bovis-mediated inflammatory reaction and host defense mechanism. Thus, modulating Type I IFN signaling could be exploited as a therapeutic strategy against a large repertoire of inflammatory disorders including tuberculosis.


Assuntos
Interferon Tipo I/metabolismo , Mycobacterium bovis/patogenicidade , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Animais , Anticorpos/farmacologia , Citocinas/metabolismo , Feminino , Humanos , Interferon Tipo I/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Mycobacterium bovis/imunologia , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais/efeitos dos fármacos
12.
Int J Mol Sci ; 20(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795474

RESUMO

Mycobacterium bovis (M. bovis) is the causative agent of bovine tuberculosis in cattle population across the world. Human beings are at equal risk of developing tuberculosis beside a wide range of M. bovis infections in animal species. Autophagic sequestration and degradation of intracellular pathogens is a major innate immune defense mechanism adopted by host cells for the control of intracellular infections. It has been reported previously that the catalytic subunit of protein phosphatase 2A (PP2Ac) is crucial for regulating AMP-activated protein kinase (AMPK)-mediated autophagic signaling pathways, yet its role in tuberculosis is still unclear. Here, we demonstrated that M. bovis infection increased PP2Ac expression in murine macrophages, while nilotinib a tyrosine kinase inhibitor (TKI) significantly suppressed PP2Ac expression. In addition, we observed that TKI-induced AMPK activation was dependent on PP2Ac regulation, indicating the contributory role of PP2Ac towards autophagy induction. Furthermore, we found that the activation of AMPK signaling is vital for the regulating autophagy during M. bovis infection. Finally, the transient inhibition of PP2Ac expression enhanced the inhibitory effect of TKI-nilotinib on intracellular survival and multiplication of M. bovis in macrophages by regulating the host's immune responses. Based on these observations, we suggest that PP2Ac should be exploited as a promising molecular target to intervene in host-pathogen interactions for the development of new therapeutic strategies towards the control of M. bovis infections in humans and animals.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Macrófagos/imunologia , Mycobacterium bovis/imunologia , Proteína Fosfatase 2/imunologia , Tuberculose/veterinária , Animais , Autofagia , Bovinos , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Camundongos , Mycobacterium bovis/fisiologia , Fagocitose , Células RAW 264.7 , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose Bovina/imunologia , Tuberculose Bovina/microbiologia
13.
Zhongguo Zhong Yao Za Zhi ; 44(14): 3094-3099, 2019 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-31602858

RESUMO

To evaluate the safety of heavy metals contaminated Astragalus membranaceus,an appropriate protocol was established to study the heavy metals pollution level by health risk assessment. This study provided a detailed procedure to assess the medicinal herbs in quality control and safety evaluation,and expected to create awareness among the public on the safety of consuming of A. membranaceus or any other kinds of medicinal herbs. The heavy metals content of Cu,As,Cd,Pb and Hg in a total of 45 batches of A. membranaceus were carefully analyzed with a developed inductively coupled plasma mass spectrometry( ICP-MS). Besides,the heavy metal contamination level was further evaluated through 4 main assessment parameters,including maximum residue limit( MRL) set by International Standard Organization,estimated daily intake( EDI) set by IUPAC,target hazard quotients( THQ) and Total THQ set by USEPA and total THQs in raw herbs of A. membranaceus. In addition,the recommended MRLs of 5 main heavy metals aimed to A. membranaceus were calculated based on the regulated consumption quantity. The result showed that,under the ISO international standard of Chinese medicine-Chinese herbal medicine heavy metals,the unqualified rate was 8. 89% for A. membranaceus,which including 4 batches of A. membranaceus exceeded the MRL of As. Here,the standard THQ value of A. membranaceus was firstly proposed as 0. 02 and 0. 011 25 for adults and children,respectively,which were calculated with the recommended consumption quantity of 30 g and 9 g for adults and children. Furthermore,the values of THQ for As and total THQs in adults and children were exceeded the standard THQ in A. membranaceus,and the recommended MRLs of Pb,Cd,Hg and Cu in above medicinal materials that calculated based on health risk assessment model were higher than the regulated MRLs that set by ISO and Chinese Pharmacopeia. The research showed that the contents of heavy metals in A. membranaceus were not in the safe range and the certain non-carcinogenic risks to human body cannot be neglected. Based on above investigation result,it is easily known that the common evaluation method for raw herbs based on the comparison of MRL of heavy metals was not precise enough,and the international model of health risk assessment should be built for each medicinal herb. Above all,this study provided a more realistic research approach for safety evaluation of any other kinds of heavy metals contaminated medicinal herbs,including the establishment of heavy metals standard limit in a specified medicinal herb under recommended consumption quantity,and it is expected to create awareness among the public on the safety of consuming any other medicinal herbs.


Assuntos
Astragalus propinquus/química , Contaminação de Medicamentos , Medicamentos de Ervas Chinesas/normas , Metais Pesados/análise , Medicamentos de Ervas Chinesas/análise , Humanos , Plantas Medicinais/química , Medição de Risco
14.
Cells ; 8(5)2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060300

RESUMO

Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis (Mtb) complex causing bovine tuberculosis (TB) and imposing a high zoonotic threat to human health. Kallikreins (KLKs) belong to a subgroup of secreted serine proteases. As their role is established in various physiological and pathological processes, it is likely that KLKs expression may mediate a host immune response against the M. bovis infection. In the current study, we report in vivo and in vitro upregulation of KLK12 in the M. bovis infection. To define the role of KLK12 in immune response regulation of murine macrophages, we produced KLK12 knockdown bone marrow derived macrophages (BMDMs) by using siRNA transfection. Interestingly, the knockdown of KLK12 resulted in a significant downregulation of autophagy and apoptosis in M. bovis infected BMDMs. Furthermore, we demonstrated that this KLK12 mediated regulation of autophagy and apoptosis involves mTOR/AMPK/TSC2 and BAX/Bcl-2/Cytochrome c/Caspase 3 pathways, respectively. Similarly, inflammatory cytokines IL-1ß, IL-6, IL-12 and TNF-α were significantly downregulated in KLK12 knockdown macrophages but the difference in IL-10 and IFN-ß expression was non-significant. Taken together, these findings suggest that upregulation of KLK12 in M. bovis infected murine macrophages plays a substantial role in the protective immune response regulation by modulating autophagy, apoptosis and pro-inflammatory pathways. To our knowledge, this is the first report on expression and the role of KLK12 in the M. bovis infection and the data may contribute to a new paradigm for diagnosis and treatment of bovine TB.


Assuntos
Apoptose , Autofagia , Imunidade Inata , Calicreínas/metabolismo , Macrófagos/patologia , Mycobacterium bovis/fisiologia , Tuberculose Bovina/imunologia , Tuberculose Bovina/microbiologia , Animais , Bovinos , Citocinas/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Células RAW 264.7 , Transdução de Sinais , Tuberculose Bovina/patologia
15.
Front Immunol ; 10: 268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846986

RESUMO

Mycobacterium bovis, the causative agent of tuberculosis in cattle and humans, infects host macrophages and induces endoplasmic reticulum stress (ERS), mitochondrial damage, and interleukin (IL)-1ß production. The relationship between these phenotypes is yet to be elucidated. In this study, we investigated the role of ERS in mitochondrial damage and IL-1ß production in macrophages during infection with a virulent M. bovis strain. We found that ERS activates the inflammasome via NOD-like receptor family, pyrin domain-containing 3 (NLRP3)-caspase-8 and that IFN-inducible protein absent in melanoma 2 (AIM2) triggered mitochondrial damage. ERS increased reactive oxygen species (ROS), which promoted translocation of the inflammasome to the mitochondria. NLRP3, but not AIM2, was involved in the ERS-induced cleavage of caspase-8 and Bid, leading to mitochondrial damage, which was required for the production of mature IL-1ß. Our data suggest that ERS induces macrophages to produce mature IL-1ß during infection with virulent M. bovis through a positive feedback loop between mitochondrial damage and inflammasome activation. To the best of our knowledge, this is the first evidence of the involvement of ERS and mitochondrial damage in inflammasome activation during M. bovis infection.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Infecções por Mycobacterium/metabolismo , Mycobacterium bovis/patogenicidade , Animais , Caspases/metabolismo , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-30042930

RESUMO

The mechanism by which microRNAs (miRNAs) modulate innate immunity and autophagy has not been fully elucidated in Mycobacterium bovis (M. bovis) infections. In this study, we identified that miR-199a inhibited key innate immune responses and autophagy in murine macrophages infected with M. bovis. Using ex vivo and in vitro approaches we show that the expression of miR-199a was significantly increased during M. bovis infection. Furthermore, miR-199a suppressed autophagy and interferon-ß (IFN-ß) production by directly targeting TANK-binding kinase 1 (TBK1) mRNA in both J774a.1 and BMDM cells. Upregulation of miR-199a or TBK1 silencing (siTBK1) inhibited maturation of autophagosomes and increased M. bovis survival. Our results demonstrate that, by targeting of TBK1, miR-199a modulates innate immune responses and promote the intracellular survival and growth of M. bovis.


Assuntos
Autofagia , Imunidade Inata , Interferon beta/biossíntese , Macrófagos/imunologia , MicroRNAs/metabolismo , Mycobacterium bovis/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Regulação para Baixo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana
17.
Nat Commun ; 8(1): 672, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939884

RESUMO

Polycomb repressive complex 2 and the epigenetic mark that it deposits, H3K27me3, are evolutionarily conserved and play critical roles in development and cancer. However, their roles in cell fate decisions in early embryonic development remain poorly understood. Here we report that knockout of polycomb repressive complex 2 genes in human embryonic stem cells causes pluripotency loss and spontaneous differentiation toward a meso-endoderm fate, owing to de-repression of BMP signalling. Moreover, human embryonic stem cells with deletion of EZH1 or EZH2 fail to differentiate into ectoderm lineages. We further show that polycomb repressive complex 2-deficient mouse embryonic stem cells also release Bmp4 but retain their pluripotency. However, when converted into a primed state, they undergo spontaneous differentiation similar to that of hESCs. In contrast, polycomb repressive complex 2 is dispensable for pluripotency when human embryonic stem cells are converted into the naive state. Our studies reveal both lineage- and pluripotent state-specific roles of polycomb repressive complex 2 in cell fate decisions.Polycomb repressive complex 2 (PRC2) plays an essential role in development by modifying chromatin but what this means at a cellular level is unclear. Here, the authors show that ablation of PRC2 genes in human embryonic stem cells and in mice results in changes in pluripotency and the primed state of cells.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Ectoderma/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 2/genética , Animais , Ectoderma/citologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Técnicas de Inativação de Genes , Células-Tronco Embrionárias Humanas/citologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células-Tronco Embrionárias Murinas/citologia , Complexo Repressor Polycomb 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...