Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
Mol Pain ; 16: 1744806920919568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32349612

RESUMO

BACKGROUND: Chemokine receptor CXCR4 has been found to be associated with spinal neuron and glial cell activation during bone cancer pain. However, the underlying mechanism remains unknown. Furthermore, the RhoA/ROCK2 pathway serves as a downstream pathway activated by CXCR4 during bone cancer pain. We first validated the increase in the expressions of CXCR4, p-RhoA, and p-ROCK2 in the spinal dorsal horn of a well-characterized tumor cell implantation-induced cancer pain rat model and how these expressions contributed to the pain behavior in tumor cell implantation rats. We hypothesized that spinal blockade of the CXCR4-RhoA/ROCK2 pathway is a potential analgesic therapy for cancer pain management. METHODS: Adult female Sprague-Dawley rats (body weight of 180-220 g) and six- to seven-week old female Sprague-Dawley rats (body weight of 80-90 g) were taken. Ascitic cancer cells were extracted from the rats (body weight of 80-90 g) with intraperitoneally implanted Walker 256 mammary gland carcinoma cells. Walker 256 rat mammary gland carcinoma cells were then injected (tumor cell implantation) into the intramedullary space of the tibia to establish a rat model of bone cancer pain. RESULTS: We found increased expressions of CXCR4, p-RhoA, and p-ROCK2 in the neurons in the spinal cord. p-RhoA and p-ROCK2 were co-expressed in the neurons and promoted by overexpressed CXCR4. Intrathecal delivery of CXCR4 inhibitor Plerixafor (AMD3100) or ROCK2 inhibitor Fasudil abrogated tumor cell implantation-induced pain hypersensitivity and tumor cell implantation-induced increase in p-RhoA and p-ROCK2 expressions. Intrathecal injection of stromal-derived factor-1, the principal ligand for CXCR4, accelerated p-RhoA expression in naive rats, which was prevented by postadministration of CXCR4 inhibitor Plerixafor (AMD3100) or ROCK2 inhibitor Fasudil. CONCLUSIONS: Collectively, the spinal RhoA/ROCK2 pathway could be a critical downstream target for CXCR4-mediated neuronal sensitization and pain hypersensitivity in bone cancer pain, and it may serve as a potent therapeutic target for pain treatment.

2.
Int J Nanomedicine ; 15: 2841-2858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425521

RESUMO

Introduction: Osthole (Ost) is a coumarin compound that strengthens hippocampal neurons and neural stem cells against Aß oligomer-induced neurotoxicity in mice, and is a potential drug for the treatment of Alzheimer's disease (AD). However, the effectiveness of the drug is limited by its solubility and bioavailability, as well as by the low permeability of the blood-brain barrier (BBB). In this study, a kind of transferrin-modified Ost liposomes (Tf-Ost-Lip) was constructed, which could improve the bioavailability and enhance brain targeting. Methods: Tf-Ost-Lip was prepared by thin-film hydration method. The ability of liposomal formulations to translocate across BBB was investigated using in vitro BBB model. And the protective effect of Tf-Ost-Lip was evaluated in APP-SH-SY5Y cells. In addition, we performed pharmacokinetics study and brain tissue distribution analysis of liposomal formulations in vivo. We also observed the neuroprotective effect of the varying formulations in APP/PS-1 mice. Results: In vitro studies reveal that Tf-Ost-Lip could increase the intracellular uptake of hCMEC/D3 cells and APP-SH-SY5Y cells, and increase the drug concentration across the BBB. Additionally, Tf-Ost-Lip was found to exert a protective effect on APP-SH-SY5Y cells. In vivo studies of pharmacokinetics and the Ost distribution in brain tissue indicate that Tf-Ost-Lip prolonged the cycle time in mice and increased the accumulation of Ost in the brain. Furthermore, Tf-Ost-Lip was also found to enhance the effect of Ost on the alleviation of Alzheimer's disease-related pathology. Conclusion: Transferrin-modified liposomes for delivery of Ost has great potential for AD treatment.

3.
J Am Soc Nephrol ; 31(6): 1157-1165, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32345702

RESUMO

BACKGROUND: Some patients with COVID-19 pneumonia also present with kidney injury, and autopsy findings of patients who died from the illness sometimes show renal damage. However, little is known about the clinical characteristics of kidney-related complications, including hematuria, proteinuria, and AKI. METHODS: In this retrospective, single-center study in China, we analyzed data from electronic medical records of 333 hospitalized patients with COVID-19 pneumonia, including information about clinical, laboratory, radiologic, and other characteristics, as well as information about renal outcomes. RESULTS: We found that 251 of the 333 patients (75.4%) had abnormal urine dipstick tests or AKI. Of 198 patients with renal involvement for the median duration of 12 days, 118 (59.6%) experienced remission of pneumonia during this period, and 111 of 162 (68.5%) patients experienced remission of proteinuria. Among 35 patients who developed AKI (with AKI identified by criteria expanded somewhat beyond the 2012 Kidney Disease: Improving Global Outcomes definition), 16 (45.7%) experienced complete recovery of kidney function. We suspect that most AKI cases were intrinsic AKI. Patients with renal involvement had higher overall mortality compared with those without renal involvement (28 of 251 [11.2%] versus one of 82 [1.2%], respectively). Stepwise multivariate binary logistic regression analyses showed that severity of pneumonia was the risk factor most commonly associated with lower odds of proteinuric or hematuric remission and recovery from AKI. CONCLUSIONS: Renal abnormalities occurred in the majority of patients with COVID-19 pneumonia. Although proteinuria, hematuria, and AKI often resolved in such patients within 3 weeks after the onset of symptoms, renal complications in COVID-19 were associated with higher mortality.

4.
Genes (Basel) ; 11(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331274

RESUMO

The meat quality of animal products is closely related to the intramuscular fat content. Aquaglyceroporin (AQP) defines a class of water/glycerol channels that primarily facilitate the passive transport of glycerol and water across biological membranes. In this study, the AQP3 protein of the AQP family was mainly studied in the adipogenic function of intramuscular adipocytes in pigs. Here, we found that AQP3 was increased at both mRNA and protein levels upon adipogenic stimuli in porcine intramuscular adipocytes in vitro. Western blot results showed knockdown of AQP3 by siRNA significantly suppressed the expression of adipogenic genes (PPARγ, aP2, etc.), repressed Akt phosphorylation, as well as reducing lipid accumulation. Furthermore, deletion of AQP3 by siRNA significantly downregulated expression of cell cycle genes (cyclin D, E), and decreased the number of EdU-positive cells as well as cell viability. Collectively, our data indicate that AQP3 is of great importance in both adipogenic differentiation and proliferation in intramuscular adipocytes, providing a potential target for modulating fat infiltration in skeletal muscles.

5.
Alcohol Clin Exp Res ; 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32311102

RESUMO

BACKGROUND AND PURPOSE: Binge drinking is a serious problem among adolescents and young adults despite its adverse consequences on the brain and behavior. One area that remains poorly understood concerns the impact of chronic intermittent ethanol (CIE) exposure on incentive learning. METHODS: Here, we examined the effects of CIE exposure during different developmental stages on conditioned approach and conditioned reward learning in rats experiencing acute or protracted withdrawal from alcohol. Two or 21 days after adolescent or adult CIE exposure, male rats were exposed to pairings of a light stimulus (CS) and food pellets for 3 consecutive daily sessions (30 CS-food pellet pairings per session). This was followed by conditioned approach testing measuring responses (food trough head entries) to the CS-only presentations and by conditioned reward testing measuring responses on a lever producing the CS and on another producing a tone. We then measured behavioral sensitization to repeated injections of heroin (2 mg/kg/d for 9 days). RESULTS: Adolescent and adult alcohol-treated rats showed significantly impaired conditioned reward learning regardless of withdrawal period (acute or prolonged). We found no evidence of changes to conditioned approach learning after adolescent or adult exposure to CIE. Finally, in addition to producing long-term impairments in incentive learning, CIE exposure enhanced locomotor activity in response to heroin and had no effect on behavioral sensitization to heroin regardless of age and withdrawal period. CONCLUSIONS: Our work sets a framework for identifying CIE-induced alterations in incentive learning and inducing susceptibility to subsequent opioid effects.

6.
Kidney Int ; 97(5): 829-838, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32247631

RESUMO

In December 2019, a coronavirus 2019 (COVID-19) disease outbreak occurred in Wuhan, Hubei Province, China, and rapidly spread to other areas worldwide. Although diffuse alveolar damage and acute respiratory failure were the main features, the involvement of other organs needs to be explored. Since information on kidney disease in patients with COVID-19 is limited, we determined the prevalence of acute kidney injury (AKI) in patients with COVID-19. Further, we evaluated the association between markers of abnormal kidney function and death in patients with COVID-19. This was a prospective cohort study of 701 patients with COVID-19 admitted in a tertiary teaching hospital that also encompassed three affiliates following this major outbreak in Wuhan in 2020 of whom 113 (16.1%) died in hospital. Median age of the patients was 63 years (interquartile range, 50-71), including 367 men and 334 women. On admission, 43.9% of patients had proteinuria and 26.7% had hematuria. The prevalence of elevated serum creatinine, elevated blood urea nitrogen and estimated glomerular filtration under 60 ml/min/1.73m2 were 14.4, 13.1 and 13.1%, respectively. During the study period, AKI occurred in 5.1% patients. Kaplan-Meier analysis demonstrated that patients with kidney disease had a significantly higher risk for in-hospital death. Cox proportional hazard regression confirmed that elevated baseline serum creatinine (hazard ratio: 2.10, 95% confidence interval: 1.36-3.26), elevated baseline blood urea nitrogen (3.97, 2.57-6.14), AKI stage 1 (1.90, 0.76-4.76), stage 2 (3.51, 1.49-8.26), stage 3 (4.38, 2.31-8.31), proteinuria 1+ (1.80, 0.81-4.00), 2+∼3+ (4.84, 2.00-11.70), and hematuria 1+ (2.99, 1.39-6.42), 2+∼3+ (5.56,2.58- 12.01) were independent risk factors for in-hospital death after adjusting for age, sex, disease severity, comorbidity and leukocyte count. Thus, our findings show the prevalence of kidney disease on admission and the development of AKI during hospitalization in patients with COVID-19 is high and is associated with in-hospital mortality. Hence, clinicians should increase their awareness of kidney disease in patients with severe COVID-19.


Assuntos
Lesão Renal Aguda , Infecções por Coronavirus , Mortalidade Hospitalar , Pandemias , Pneumonia Viral , Lesão Renal Aguda/complicações , Lesão Renal Aguda/etiologia , Betacoronavirus , China , Comorbidade , Infecções por Coronavirus/complicações , Infecções por Coronavirus/mortalidade , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/complicações , Pneumonia Viral/mortalidade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Proteinúria , Fatores de Risco
7.
J Nurs Manag ; 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286718

RESUMO

OBJECTIVE: To translate and psychometrically validate the Emotional Labour Scale (ELS) for nurses in China. BACKGROUND: Emotional labour is an indispensable component of nursing practice. We currently lack a standard instrument to assess nurses' emotional labour that fits the nursing context in China. METHOD: Using convenience sampling, 561 nurses were recruited from five tertiary comprehensive hospitals. Internal consistency reliability, retest reliability, split-half reliability, face validity, content validity, criterion validity and construct validity were used to evaluate the psychometric attributes of the scale. RESULTS: Exploratory factor analysis verified a three-factor scale structure with a cumulative variance contribution of the factors of 61.281%. The three factors were "emotional control effort in profession," "patient-focused emotional suppression" and "emotional pretense by norms." Cronbach's alpha values were 0.881, 0.807 and 0.764, respectively. Confirmatory factor analysis results indicated that the three factors were consistent with the original scale structure. CONCLUSION: The C-ELS for nurses is a reliable and valid instrument with satisfactory psychometric properties. Future studies should recruit a more representative sample of nurses in China to verify the applicability of the scale. IMPLICATIONS FOR NURSING MANAGEMENT: A reliable and quantitative instrument is available for leaders to evaluate clinical nurses' emotional labour and establish effective emotional labour management strategies based on the measurement results.

8.
J Biol Chem ; 295(15): 4937-4949, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32152230

RESUMO

Mammalian skeletal muscles comprise different types of muscle fibers, and this muscle fiber heterogeneity is generally characterized by the expression of myosin heavy chain (MyHC) isoforms. A switch in MyHC expression leads to muscle fiber-type transition under various physiological and pathological conditions, but the underlying regulator coordinating the switch of MyHC expression remains largely unknown. Experiments reported in this study revealed the presence of a skeletal muscle-specific antisense transcript generated from the intergenic region between porcine MyHC IIa and IIx and is referred to here as MyHC IIA/X-AS. We found that MyHC IIA/X-AS is identified as a long noncoding RNA (lncRNA) that is strictly expressed in skeletal muscles and is predominantly distributed in the cytoplasm. Genetic analysis disclosed that MyHC IIA/X-AS stimulates cell cycle exit of skeletal satellite cells and their fusion into myotubes. Moreover, we observed that MyHC IIA/X-AS is more enriched in fast-twitch muscle and represses slow-type gene expression and thereby maintains the fast phenotype. Furthermore, we found that MyHC IIA/X-AS acts as a competing endogenous RNA that sponges microRNA-130b (miR-130b) and thereby maintains MyHC IIx expression and the fast fiber type. We also noted that miR-130b was proved to down-regulate MyHC IIx by directly targeting its 3'-UTR. Together, the results of our study uncovered a novel pathway, which revealed that lncRNA derived from the skeletal MyHC cluster could modulate local MyHC expression in trans, highlighting the role of lncRNAs in muscle fiber-type switching.

9.
J Clin Monit Comput ; 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32189165

RESUMO

We studied the application of a mobile terminal application program in endotracheal tube (ETT) cuff pressure measurement to improve the implementation rate of scientific ETT cuff pressure measurement and to ensure that the pressure falls within the recommended range. A pre-post controlled study lasting for 18 months was undertaken in a 40-bed general intensive care unit (GICU). This included a 6-month baseline period (baseline group) and a 6-month intervention period (intervention group). The mobile terminal application program was applied to monitor the cuff pressure of endotracheal intubation as an intervention measure during the intervention period. ETT pressure was the main outcome measure, while gender, age, causes for ICU admission, sedation score, duration of prior intubation, size of ETT, and number of VAP patients were secondary outcomes. ETT cuff pressure was monitored 742 times in both the baseline group and the intervention group. A total of 56.9% of the cuff pressure measurements in the baseline group were within the recommended range, while 78.4% of measurements in the intervention group were within the recommended range, reflecting a statistically significant difference (P < 0.05). The application of the mobile terminal application program used for ETT cuff pressure measurement could improve the percentage of ETT cuff pressure measurements falling within the recommended range.

10.
Chemosphere ; 251: 126440, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32169699

RESUMO

Carbon dots (CDs) are an emerging fluorescent nano-imaging probe due to their unique characteristics, such as good conductivity, carbon-based chemical composition, and photochemical stability, which sets up the potential of outperforming the classic metal-based quantum dots (QDs). It is a timely effort to proactively investigate the biocompatibility feature of CDs with a view to safely utilize this emerging nanomaterial in biological systems. In this study, we assessed the safety profile of an in-house synthesized CDs in hepatocyte-like Hepa 1-6 cells, which represents an important target organ for CDs exposure through either particle uptake and/or accumulation and elimination from primary exposure sites post particle administration. We not only demonstrated a dose- and time-dependent compromised cell viability, but also observed the induction of autophagy at high concentration (i.e. 400 µg mL-1), authenticated by the conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II. We attributed these changes as the protective mechanism by which the cells used to compensate for CDs-induced apoptosis and cytotoxicity. The involvement of autophagy was further confirmed because the cytotoxicity profile can be increased or reduced by the use of 3-MA (autophagy inhibitor) and NAC (ROS inhibitor), respectively. Collectively, our findings revealed dose-dependent moderate cytotoxicity in Hepa 1-6 cells. Mechanistic understanding of autophagy during the cellular process revealed the homeostasis when liver cells deal with CDs as an external insult.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32149491

RESUMO

Black liquor has caused a tremendous degree of pollution and waste. Exploring the utilization of lignin, which is the major component of black liquor, has become a key factor in dealing with the problem. In this study, lignin derived from black liquor was used as a raw material to prepare carbon materials through different activation methods including KOH, H3PO4, and steam activation. The structure and properties of obtained samples were characterized as well as electrochemical performance when applied on a lithium-oxygen battery. Results of N2 adsorption/desorption showed that all obtained samples possessed high surface area of over 1000 m2/g. XRD, Raman, and XPS also indicated that obtained samples possessed a large defect area and many functional groups. Electrochemical measurements illustrated that all obtained samples exhibited a high discharge capacity over 2.8 mAh/cm2 at 0.02 mA/cm2, while LKAC exhibited the highest discharge capacity of 7.2 mAh/cm2. Cycling tests of all obtained samples indicated a long cycle life of at least 300 cycles. LSAC maintained a 100% retention rate of capacity and stable terminal voltage even after 800th cycle, and its cycling performance was investigated further by XRD and EIS. This study demonstrated excellent performance for lignin-based carbon materials, and provided alternative materials for positive electrode of lithium-oxygen battery.

12.
BMC Plant Biol ; 20(1): 100, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32138670

RESUMO

BACKGROUND: Fenclorim (Fen) can effectively protect rice from pretilachlor (Pre) injury, but its effects on rice have not been formally evaluated; thus, the Fen mode of action for alleviating the phytotoxicity caused by Pre in rice is not clear. This study aimed to examine the biochemical and physiological effects of Fen on rice and to determine the changes induced by Fen at the transcriptome level. RESULT: The chlorophyll content of rice plants was significantly affected by Pre but not by Fen. The activity of oxidative stress enzymes showed that Fen did not elicit any changes in oxidative stress; however, it reduced lipid peroxidation and oxidative damage induced by Pre. Fen did not affect the uptake of Pre but did affect its persistence in rice. In a transcriptome experiment, Fen upregulated genes in a detoxification pathway. Overall, 25 genes related to detoxification were identified, including P450, GST, and GT. Moreover, qRT-PCR analysis showed that four P450 genes, CYP71Y83, CYP71K14, CYP734A2 and CYP71D55, and two GST genes, GSTU16 and GSTF5, were upregulated by Fen and/or Pre. CONCLUSION: Our work indicates that Fen acts in antioxidative defense in addition to enhancing the metabolism of herbicides in rice.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32150812

RESUMO

A hybrid membrane bioreactor (HMBR) employing activated sludge and biofilm simultaneously is proved to represent a good performance on membrane fouling control compared to conventional membrane bioreactor (CMBR) by reducing extracellular polymeric substances (EPS), especially bound EPS (B-EPS). In order to better understand the mechanism of membrane fouling control by the HMBR in regard of microbial community composition, a pilot scale HMBR operated to treat domestic wastewater for six months, and a CMBR operated at the same time as control group. Results showed that HMBR can effectively control membrane fouling. When transmembrane pressure reached 0.1 MPa, the membrane module in the HMBR operated for about 26.7% longer than that in the CMBR. In the HMBR, the quantity of EPS was significantly lower than that in the CMBR. In this paper, soluble EPS was also found to have a close relationship with cake layer resistance. The species richness and diversity in the HMBR were higher than those in the CMBR, and a certain difference between the compositions of microbial communities in the two reactors was confirmed. Therefore, the difference in microbial community compositions may be the direct reason why EPS in the HMBR was lower than that in the CMBR.

14.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138326

RESUMO

The tuberous sclerosis complex (Tsc) proteins regulate the conserved mTORC1 growth regulation pathway. We identified that loss of the Tsc2 gene in mouse inner medullary collecting duct (mIMCD) cells induced a greater than two-fold increase in extracellular vesicle (EV) production compared to the same cells having an intact Tsc axis. We optimized EV isolation using a well-established size exclusion chromatography method to produce high purity EVs. Electron microscopy confirmed the purity and spherical shape of EVs. Both tunable resistive pulse sensing (TRPS) and dynamic light scattering (DLS) demonstrated that the isolated EVs possessed a heterogenous size distribution. Approximately 90% of the EVs were in the 100-250 nm size range, while approximately 10% had a size greater than 250 nm. Western blot analysis using proteins isolated from the EVs revealed the cellular proteins Alix and TSG101, the transmembrane proteins CD63, CD81, and CD9, and the primary cilia Hedgehog signaling-related protein Arl13b. Proteomic analysis of EVs identified a significant difference between the Tsc2-intact and Tsc2-deleted cell that correlated well with the increased production. The EVs may be involved in tissue homeostasis and cause disease by overproduction and altered protein content. The EVs released by renal cyst epithelia in TSC complex may serve as a tool to discover the mechanism of TSC cystogenesis and in developing potential therapeutic strategies.

15.
Sci Adv ; 6(4): eaaz1722, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010792

RESUMO

In the current clinical boron neutron capture therapy (BNCT), p-boronophenylalanine (BPA) has been the most powerful drug owing to its ability to accumulate selectively within cancers through cancer-related amino acid transporters including LAT1. However, the therapeutic success of BPA has been sometimes compromised by its unfavorable efflux from cytosol due to their antiport mechanism. Here, we report that poly(vinyl alcohol) (PVA) can form complexes with BPA through reversible boronate esters in aqueous solution, and the complex termed PVA-BPA can be internalized into cancer cells through LAT1-mediated endocytosis, thereby enhancing cellular uptake and slowing the untoward efflux. In in vivo study, compared with clinically used fructose-BPA complexes, PVA-BPA exhibited efficient tumor accumulation and prolonged tumor retention with quick clearance from bloodstream and normal organs. Ultimately, PVA-BPA showed critically enhanced antitumor activity in BNCT. The facile technique proposed in this study offers an approach for drug delivery focusing on drug metabolism.

16.
Am J Clin Nutr ; 111(5): 1087-1099, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942927

RESUMO

BACKGROUND: Indoxyl sulfate (IS) and p-cresyl sulfate (pCS), 2 important protein-bound uremic toxins, are independent risk factors for cardiovascular disease in patients with end-stage renal disease. Indole and p-cresol are gut microbiome-generated precursors of IS and pCS. OBJECTIVE: The aim of the present study was to determine whether inulin-type fructans (ITFs) reduce the production of indole and p-cresol by altering their producing bacteria in patients with peritoneal dialysis. METHODS: Patients receiving peritoneal dialysis for >3 mo without diabetes and not using antibiotics were recruited to a randomized, double-blind, placebo-controlled, crossover trial of ITF intervention over 36 wk (12-wk washout). The primary outcomes were gut microbiome, fecal indole and p-cresol, indole-producing bacteria, p-cresol-producing bacteria, and serum IS and pCS. The secondary outcomes were fecal pH, 24-h urine, and dialysis removal of IS and pCS. RESULTS: Of 21 individuals randomly assigned, 15 completed the study. The daily nutrient intakes, including protein, tryptophan, and tyrosine, were isostatic during the prebiotic, washout, and placebo intervention. There were no baseline differences in the outcomes of interest between treatments. For fecal indole, its concentrations did not change significantly in either treatment. However, there was a trend toward the treatment-by-time effect (P = 0.052), with a quantitative reduction in the ITF treatment and an increase in the control. The difference in the changes between the 2 treatments was significant (-10.07 ± 7.48 µg/g vs +13.35 ± 7.66 µg/g; P = 0.040). Similar to Bacteroides thetaiotaomicron, there was a difference over time between the 2 treatments, with a significant treatment and time interaction effect (P = 0.047). There were no treatment, time, or interaction effects for fecal p-cresol, serum IS and pCS, 24-h urine, and dialysis removal of IS and pCS. CONCLUSIONS: Our results suggested that ITFs restricted the increase in gut microbiome-generated indole in patients with peritoneal dialysis. This trial was registered at http://www.chictr.org.cn/showproj.aspx?proj=21228 as ChiCTR-INR-17013739.

17.
Chem Rev ; 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31990183

RESUMO

Tremendous efforts are being made to develop electrode materials, electrolytes, and separators for energy storage devices to meet the needs of emerging technologies such as electric vehicles, decarbonized electricity, and electrochemical energy storage. However, the sustainability concerns of lithium-ion batteries (LIBs) and next-generation rechargeable batteries have received little attention. Recycling plays an important role in the overall sustainability of future batteries and is affected by battery attributes including environmental hazards and the value of their constituent resources. Therefore, recycling should be considered when developing battery systems. Herein, we provide a systematic overview of rechargeable battery sustainability. With a particular focus on electric vehicles, we analyze the market competitiveness of batteries in terms of economy, environment, and policy. Considering the large volumes of batteries soon to be retired, we comprehensively evaluate battery utilization and recycling from the perspectives of economic feasibility, environmental impact, technology, and safety. Battery sustainability is discussed with respect to life-cycle assessment and analyzed from the perspectives of strategic resources and economic demand. Finally, we propose a 4H strategy for battery recycling with the aims of high efficiency, high economic return, high environmental benefit, and high safety. New challenges and future prospects for battery sustainability are also highlighted.

18.
Chemosphere ; 246: 125629, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31927360

RESUMO

In this study, a metabolomic analysis was used to reveal the neurotoxicity of the CdTe/ZnS QDs via microglia polarization. A gas chromatography-mass spectrometer (GC-MS) was applied to uncover the metabonomic changes in microglia (BV-2 cell line) after exposure to 1.25 µM CdTe/ZnS QDs. 11 annotated metabolic pathways (KEGG database) were significantly changed in all exposed groups (3 h, 6 h, 12 h), 3 of them were related to glucose metabolism. The results of the Seahorse XFe96 Analyzer indicated that the CdTe/ZnS QDs increased the glycolysis level of microglia by 86% and inhibited the aerobic respiration level by 54% in a non-hypoxic environment. In vivo study, 3 h after the injection of CdTe/ZnS QDs (2.5 mM) through the tail vein in mice, the concentration of the CdTe/ZnS QDs in hippocampus reached the peak (1.25 µM). The polarization level of microglia (Iba-1 immunofluorescence) increased 2.7 times. In vitro study, the levels of the extracellular TNF-α, IL-1ß and NO of BV-2 cells were all increased significantly after a 6 h or 12 h exposure. According to the results of the Cell Counting Kit-8, after a 6 h or 12 h exposure to the CdTe/ZnS QDs, the exposed microglia could significantly decrease the number of neurons (HT-22 cell line). This study proved that CdTe/ZnS QDs could polarize microglia in the brain and cause secondary inflammatory damage to neurons. There are potential risks in the application of the CdTe/ZnS QDs in brain tissue imaging.


Assuntos
Metabolômica/métodos , Microglia/efeitos dos fármacos , Pontos Quânticos/toxicidade , Animais , Compostos de Cádmio , Polaridade Celular/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Glicólise/efeitos dos fármacos , Hipocampo/patologia , Camundongos , Síndromes Neurotóxicas/etiologia , Pontos Quânticos/química , Sulfetos , Telúrio , Compostos de Zinco
19.
Chemosphere ; 238: 124638, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31466006

RESUMO

In this study, we reported on the recycling of carbon materials from spent commercial supercapacitors and its application as low-cost adsorbent for high-efficiency removal of Ag(I) and Cr(VI) ions from aqueous solutions. Adsorption kinetics and isotherms, and effects of initial pH were carried out to investigate the adsorption performance of the recycled supercapacitor activated carbon (RSAC), whereas a series of characterizations such as SEM, EDX, BET, XPS, XRD and FTIR were employed to detailedly analyse the adsorption mechanism. The RSAC showed maximal adsorption capacity for Ag(I) and Cr(VI) of 104.0 and 96.3 mg g-1, respectively, with adsorbent dosage of 2 g L-1 and initial ions concentration of ∼2000 mg L-1 at room temperature (23 ±â€¯1 °C), and the adsorption was rapid and influenced by the initial pH value. The outstanding adsorption performance of RSAC was attributed to the high specific surface area (1403 m2 g-1) and abundant multifarious oxygenic groups which could participate in the electrostatic attraction and reduction reaction of Ag(I) and Cr(VI) during the adsorption process. Furthermore, the predominate species of the adsorbed toxic Ag(I) and Cr(VI) on the surface of RSAC was metallic silver particle (about 2 µm) and harmless Cr(III), respectively, thus it was possible for further recycling and disposal.


Assuntos
Carvão Vegetal/química , Cromo/isolamento & purificação , Reciclagem/métodos , Prata/isolamento & purificação , Águas Residuárias/química , Purificação da Água/métodos , Adsorção , Íons , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
20.
Soft Matter ; 16(4): 1029-1033, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31854429

RESUMO

A novel approach for the detection and separation of toxic ions was successfully developed via the introduction of competitive reactions into a long-alkyl-chained acylhydrazone-based coumarin supramolecular polymer, chemosensor OGC (3%, n-BuOH/H2O), which showed sequential detection and separation of CN-, Fe3+ and S2-, Ag+ in the gel state with high selectivity and sensitivity. Moreover, the ion-responsive films were prepared for the convenient and continuous detection of CN-, Fe3+ and S2-, Ag+ in water solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA