RESUMO
OBJECTIVE: We conducted a prospective study using 18F-flurodeoxyglucose (18F-FDG) and 68Ga-DOTA-FAPI-04 (fibroblast-activation protein inhibitor, 68Ga-FAPI) PET/CT to diagnose, differentiate, and stage primary extrapulmonary tumors of the thorax. METHODS: Fifty-four participants were undergoing 18F-FDG and 68Ga-FAPI PET/CT and divided into the benign, intermediate, and malignant based on pathology. The maximum standardized uptake value (SUVmax), the tumor-to-blood pool ratio, and tumor-to-liver ratio were compared for primary tumors, lymph nodes, and metastases between the two modalities by two independent samples t tests. One-way ANOVA was used to compare the uptake of 18F-FDG or 68Ga-FAPI among the three groups. RESULTS: Fifty-four participants were confirmed to have 71 primary lesions, 56 metastatic lymph nodes, and 43 metastatic lesions. 18F-FDG PET/CT could both effectively distinguish malignant lesions from non-malignant lesions, accuracies of 87.32% (p < 0.001). 68Ga-FAPI PET/CT effectively differentiated benign lesions from the non-benign, accuracy being 91.55% (p < 0.001). The accuracies of 18F-FDG and 68Ga-FAPI for detecting lymph node metastasis were 77.22% (61/79) and 87.34% (69/79) (p = 0.096). The uptake of 68Ga-FAPI in metastatic lymph nodes was significantly higher than that of the nonmetastatic (p < 0.001). The detection rate of 68Ga-FAPI PET/CT for metastatic lesions was significantly higher than that of 18F-FDG, 100% (43/43) vs. 53.49% (23/43) (p < 0.001). Compared with 18F-FDG PET/CT, 68Ga-FAPI PET/CT changed the treatment strategy of 7.4% (4/54) participants. CONCLUSION: 68Ga-FAPI PET/CT is valuable in the diagnosis and differentiation of primary extrapulmonary tumors and superior to 18F-FDG PET/CT for evaluating lymph node and distant metastasis. CLINICAL RELEVANCE STATEMENT: The application of 68Ga-FAPI PET/CT in primary extrapulmonary chest tumors is valuable, which is reflected in diagnosis, differentiation and exploration of lymph node metastasis and distant metastasis. KEY POINTS: ⢠68Ga-FAPI PET/CT is valuable in the diagnosis, differentiation, and staging of primary extrapulmonary tumors. ⢠68Ga-FAPI PET/CT is superior to 18 F-FDG PET/CT for evaluating lymph node and distant metastasis.
RESUMO
Liver steatosis is the most widespread chronic liver condition. Its global incidence is rising swiftly and is currently estimated to be 24%. Liver steatosis is strongly related with numerous metabolic syndrome characteristics, like obesity, insulin resistance, hyperlipidemia, and hypertension. The gastrointestinal tract contains about 100 trillion commensal organisms and more than 7,000 distinct bacterial strains. Fat deposition in the liver without secondary causes is known as liver steatosis. Dysregulation of the gut flora is one of the factors connected to the onset of fatty liver disease. Dietary choices may alter constitution of the microbiome and cause gut microbiome dysbiosis, particularly due to the intake of food high in fructose sugars, animal products, and saturated fats. Various gut bacteria cause nutrient metabolism in multiple ways, setting off different inflammatory cascades that encourage liver disease and pathways that help fat build up in the liver. Due to their relatively stable nature, genetic factors may not be responsible for the constant increase in liver steatosis incidence. Genetic factors set the stage for liver steatosis pathogenesis. This review will offer an overview of our present knowledge of the roles played by gut microbiota in regulating the development of liver steatosis, potential side effects, and potential treatment targets.
RESUMO
BACKGROUND: Preimplantation genetic testing for aneuploidy (PGT-A) was demonstrated to be superior to conventional IVF in reducing the incidence of miscarriage and abnormal offspring after the first embryo transfer (ET). PGT-A requires several embryo trophectoderm cells, but its negative impacts on embryo development and long-term influence on the health conditions of conceived children have always been a concern. As an alternative, noninvasive PGT-A (niPGT-A) approaches using spent blastocyst culture medium (SBCM) achieved comparable accuracy with PGT-A in several pilot studies. The main objective of this study is to determine whether noninvasive embryo viability testing (niEVT) results in better clinical outcomes than conventional IVF after the first embryo transfer. Furthermore, we further investigated whether niEVT results in higher the live birth rate between women with advanced maternal age (AMA, > 35 years old) and young women or among patients for whom different fertilization protocols are adopted. METHODS: This study will be a double-blind, multicenter, randomized controlled trial (RCT) studying patients of different ages (20-43 years) undergoing different fertilization protocols (in vitro fertilization [IVF] or intracytoplasmic sperm injection [ICSI]). We will enroll 1140 patients at eight reproductive medical centers over 24 months. Eligible patients should have at least two good-quality blastocysts (better than grade 4 CB). The primary outcome will be the live birth rate of the first embryo transfer (ET). Secondary outcomes will include the clinical pregnancy rate, ongoing pregnancy rate, miscarriage rate, cumulative live birth rate, ectopic pregnancy rate, and time to pregnancy. DISCUSSION: In this study, patients who undergo noninvasive embryo viability testing (niEVT) will be compared to women treated by conventional IVF. We will determine the effects on the pregnancy rate, miscarriage rate, and live birth rate and adverse events. We will also investigate whether there is any difference in clinical outcomes among patients with different ages and fertilization protocols (IVF/ICSI). This trial will provide clinical evidence of the effect of noninvasive embryo viability testing on the clinical outcomes of the first embryo transfer. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR) Identifier: ChiCTR2100051408. 9 September 2021.
Assuntos
Aborto Espontâneo , Coeficiente de Natalidade , Criança , Feminino , Gravidez , Humanos , Adulto , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/etiologia , Injeções de Esperma Intracitoplásmicas , Taxa de Gravidez , Aneuploidia , Fertilização In Vitro , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como AssuntoRESUMO
Parental histones, the carriers of posttranslational modifications, are deposited evenly onto the replicating DNA of sister chromatids in a process dependent on the Mcm2 subunit of DNA helicase and the Pole3 subunit of leading-strand DNA polymerase. The biological significance of parental histone propagation remains unclear. Here we show that Mcm2-mutated or Pole3-deleted mouse embryonic stem cells (ESCs) display aberrant histone landscapes and impaired neural differentiation. Mutation of the Mcm2 histone-binding domain causes defects in pre-implantation development and embryonic lethality. ESCs with biased parental histone transfer exhibit increased epigenetic heterogeneity, showing altered histone variant H3.3 and H3K27me3 patterning at genomic sites regulating differentiation genes. Our results indicate that the lagging strand pattern of H3.3 leads to the redistribution of H3K27me3 in Mcm2-2A ESCs. We demonstrate that symmetric parental histone deposition to sister chromatids contributes to cellular differentiation and development.
Assuntos
Histonas , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Histonas/genética , Células-Tronco Embrionárias , Diferenciação Celular/genética , DNA HelicasesRESUMO
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy for combating climate change. The CDR potentials of ERW have been assessed at the process and national/global levels, but the environmental and economic implications of ERW have not been fully quantified for U.S. applications with real-world supply chain considerations. This study develops an optimization-based, integrated life cycle assessment and techno-economic analysis framework for ERW, which is demonstrated by a case study applying mining waste to croplands in the Midwestern U.S. The case study explores maximum transportation distances for intermodal transportation at varied mineral CDR yields and costs, informing supply chain design for economically viable ERW. ERW costs (US$45 to 472/tonne of net CO2e captured) and cradle-to-farm gate GHG emissions (41 to 359 kg CO2e/tonne of CO2e captured) are estimated based on a range of CDR yields and by transportation distances to and from two Midwest port destinations: Chicago and Duluth. Our sensitivity analysis identifies CDR yields, and transportation modes and distances as driving factors for result variations. Our study reveals the importance of ERW supply chain design and provides an example of U.S. CDR implementation. Our framework and findings can be applied to other regional ERW projects.
Assuntos
Dióxido de Carbono , Mudança Climática , Animais , Meio-Oeste dos Estados Unidos , Chicago , Estágios do Ciclo de VidaRESUMO
The 14-3-3 protein family is a highly conservative member of the acid protein family and plays an important role in regulating a series of important biological activities and various signal transduction pathways. The role of 14-3-3 proteins in regulating starch accumulation still remains largely unknown. To investigate the properties of 14-3-3 proteins, the structures and functions involved in starch accumulation in storage roots were analyzed, and consequently, 16 Me14-3-3 genes were identified. Phylogenetic analysis revealed that Me14-3-3 family proteins are split into two groups (ε and non-ε). All Me14-3-3 proteins contain nine antiparallel α-helices. Me14-3-3s-GFP fusion protein was targeted exclusively to the nuclei and cytoplasm. In the early stage of starch accumulation in the storage root, Me14-3-3 genes were highly expressed in high-starch cultivars, while in the late stage of starch accumulation, Me14-3-3 genes were highly expressed in low-starch cultivars. Me14-3-3 I, II, V, and XVI had relatively high expression levels in the storage roots. The transgenic evidence from Me14-3-3II overexpression in Arabidopsis thaliana and the virus-induced gene silencing (VIGS) in cassava leaves and storage roots suggest that Me14-3-3II is involved in the negative regulation of starch accumulation. This study provides a new insight to understand the molecular mechanisms of starch accumulation linked with Me14-3-3 genes during cassava storage root development.
RESUMO
Holography, which can provide the information of phase as well as amplitude of a laser probe, could be a powerful method to diagnose the electron density and temperature of a plasma simultaneously. In this paper, digital holography with an ultrashort laser pulse is applied to diagnose laser-produced aluminum plasmas. Detailed analyses show that the reconstruction of the wave amplitude could be profoundly affected by the difference between the phase and group velocity of the ultrashort laser pulse in the plasma, which makes it a challenge to accurately reconstruct the amplitude in the case when ultrashort laser pulses are utilized for high-temporal resolution of holography.
RESUMO
PURPOSE: Programmed cell death protein-1/ligand-1 (PD-1/L1) blockade has been a breakthrough in the treatment of patients with non-small cell lung cancer (NSCLC), but there is still a lack of effective methods to screen patients. Here we report a novel 68 Ga-labeled nanobody [68 Ga]Ga-THP-APN09 for PET imaging of PD-L1 status in mouse models and a first-in-human study in NSCLC patients. METHODS: [68 Ga]Ga-THP-APN09 was prepared by site-specific radiolabeling, with no further purification. Cell uptake assays were completed in the human lung adenocarcinoma cell line A549, NSCLC cell line H1975 and human PD-L1 gene-transfected A549 cells (A549PD-L1). The imaging to image PD-L1 status and biodistribution were investigated in tumor-bearing mice of these three tumor cell types. The first-in-human clinical translational trial was registered as NCT05156515. The safety, radiation dosimetry, biodistribution, and correlations of tracer uptake with immunohistochemical staining and major pathologic response (MPR) were evaluated in NSCLC patients who underwent adjuvant immunotherapy combined with chemotherapy. RESULTS: Radiosynthesis of [68 Ga]Ga-THP-APN09 was achieved at room temperature and a pH of 6.0-6.5 in 10 min with a high radiochemical yield (> 99%) and 13.9-27.8 GBq/µmol molar activity. The results of the cell uptake study reflected variable levels of surface PD-L1 expression observed by flow cytometry in the order A549PD-L1 > H1975 > A549. In small-animal PET/CT imaging, H1975 and A549PD-L1 tumors were clearly visualized in an 8.3:1 and 2.2:1 ratios over PD-L1-negative A549 tumors. Ex vivo biodistribution studies showed that tumor uptake was consistent with the PET results, with the highest A549PD-L1 being taken up the most (8.20 ± 0.87%ID/g), followed by H1975 (3.69 ± 0.50%ID/g) and A549 (0.90 ± 0.16%ID/g). Nine resectable NSCLC patients were enrolled in the clinical study. Uptake of [68 Ga]Ga-THP-APN09 was mainly observed in the kidneys and spleen, followed by low uptake in bone marrow. The radiation dose is within a reliable range. Tumor uptake was positively correlated with PD-L1 expression TPS (rs = 0.8763, P = 0.019). Tumor uptake of [68 Ga]Ga-THP-APN09 (SUVmax) in MPR patients was higher than that in non-MPR patients (median SUVmax 2.73 vs. 2.10, P = 0.036, determined with Mann-Whitney U-test). CONCLUSION: [68 Ga]Ga-THP-APN09 has the potential to be transformed into a kit-based radiotracer for rapid, simple, one-step, room temperature radiolabeling. The tracer can detect PD-L1 expression levels in tumors, and it may make it possibility to predict the response of PD-1 immunotherapy combined with chemotherapy. Confirmation in a large number of cases is needed. TRIAL REGISTRATION: Clinical Trial (NCT05156515). Registered 12 December 2021.
RESUMO
The ability to automatically estimate the pose of non-human primates as they move through the world is important for several subfields in biology and biomedicine. Inspired by the recent success of computer vision models enabled by benchmark challenges (e.g., object detection), we propose a new benchmark challenge called OpenMonkeyChallenge that facilitates collective community efforts through an annual competition to build generalizable non-human primate pose estimation models. To host the benchmark challenge, we provide a new public dataset consisting of 111,529 annotated (17 body landmarks) photographs of non-human primates in naturalistic contexts obtained from various sources including the Internet, three National Primate Research Centers, and the Minnesota Zoo. Such annotated datasets will be used for the training and testing datasets to develop generalizable models with standardized evaluation metrics. We demonstrate the effectiveness of our dataset quantitatively by comparing it with existing datasets based on seven state-of-the-art pose estimation models.
RESUMO
Decisions that require taking effort costs into account are ubiquitous in real life. The neural common currency theory hypothesizes that a particular neural network integrates different costs (e.g., risk) and rewards into a common scale to facilitate value comparison. Although there has been a surge of interest in the computational and neural basis of effort-related value integration, it is still under debate if effort-based decision-making relies on a domain-general valuation network as implicated in the neural common currency theory. Therefore, we comprehensively compared effort-based and risky decision-making using a combination of computational modeling, univariate and multivariate fMRI analyses, and data from two independent studies. We found that effort-based decision-making can be best described by a power discounting model that accounts for both the discounting rate and effort sensitivity. At the neural level, multivariate decoding analyses indicated that the neural patterns of the dorsomedial prefrontal cortex (dmPFC) represented subjective value across different decision-making tasks including either effort or risk costs, although univariate signals were more diverse. These findings suggest that multivariate dmPFC patterns play a critical role in computing subjective value in a task-independent manner and thus extend the scope of the neural common currency theory.
Assuntos
Córtex Pré-Frontal , Recompensa , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomada de DecisõesRESUMO
A strategy for the synthesis of dibenz[a,j]anthracenes (DBAs) from cyclohexa-2,5-diene-1-carboxylic acids is presented. Our approach involves sequential C-H olefination, cycloaddition, and decarboxylative aromatization. In the key step for DBA skeleton construction, the bis-C-H olefination products, 1,3-dienes, are utilized as substrates for [4 + 2] cycloaddition with benzyne. This concise synthetic route allows for regioselective ring formation and functional group introduction. The structural features and photophysical properties of the resulting DBA molecules are discussed.
RESUMO
The low-temperature thermoelectric performance of Bi-rich n-type Mg3(Bi,Sb)2 was limited by the electron transport scattering at grain boundaries, while removing grain boundaries and bulk crystal growth of Mg-based Zintl phases are challenging due to the volatilities of elemental reactants and their severe corrosions to crucibles at elevated temperatures. Herein, for the first time, we reported a facile growth of coarse-grained Mg3Bi2-xSbx crystals with an average grain size of ~800 µm, leading to a high carrier mobility of 210 cm2 · V-1 · s-1 and a high z of 2.9 × 10-3 K-1 at 300 K. A [Formula: see text]T of 68 K at Th of 300 K, and a power generation efficiency of 5.8% below 450 K have been demonstrated for Mg3Bi1.5Sb0.5- and Mg3Bi1.25Sb0.75-based thermoelectric modules, respectively, which represent the cutting-edge advances in the near-room temperature thermoelectrics. In addition, the developed grain growth approach can be potentially extended to broad Zintl phases and other Mg-based alloys and compounds.
RESUMO
The global coronavirus disease 2019 (COVID-19) pandemic has had a massive impact on global social and economic development and human health. By combining traditional Chinese medicine (TCM) with modern medicine, the Chinese government has protected public health by supporting all phases of COVID-19 prevention and treatment, including community prevention, clinical treatment, control of disease progression, and promotion of recovery. Modern medicine focuses on viruses, while TCM focuses on differential diagnosis of patterns associated with viral infection of the body and recommends the use of TCM decoctions for differential treatment. This differential diagnosis and treatment approach, with its profoundly empirical nature and holistic view, endows TCM with an accessibility advantage and high application value for dealing with COVID-19. Here, we summarize the advantage of and evidence for TCM use in COVID-19 prevention and treatment to draw attention to the scientific value and accessibility advantage of TCM and to promote the use of TCM in response to public health emergencies. Please cite this article as: Huang M, Liu YY, Xiong K, Yang FW, Jin XY, Wang ZQ, Zhang JH, Zhang BL. The role and advantage of traditional Chinese medicine in the prevention and treatment of COVID-19. J Integr Med. 2023; 21(5): 407-412.
Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Medicina Tradicional Chinesa , Povo Asiático , Diagnóstico Diferencial , Pandemias/prevenção & controleRESUMO
BACKGROUND: Plant virus vectors designed for virus-mediated protein overexpression (VOX), virus-induced gene silencing (VIGS), and genome editing (VIGE) provide rapid and cost-effective tools for functional genomics studies, biotechnology applications and genome modification in plants. We previously reported that a cassava common mosaic virus (CsCMV, genus Potexvirus)-based VIGS vector was used for rapid gene function analysis in cassava. However, there are no VOX and VIGE vectors available in cassava. RESULTS: In this study, we developed an efficient VOX vector (CsCMV2-NC) for cassava by modifying the CsCMV-based VIGS vector. Specifically, the length of the duplicated putative subgenomic promoter (SGP1) of the CsCMV CP gene was increased to improve heterologous protein expression in cassava plants. The modified CsCMV2-NC-based VOX vector was engineered to express genes encoding green fluorescent protein (GFP), bacterial phytoene synthase (crtB), and Xanthomonas axonopodis pv. manihotis (Xam) type III effector XopAO1 for viral infection tracking, carotenoid biofortification and Xam virulence effector identification in cassava. In addition, we used CsCMV2-NC to deliver single guide RNAs (gMePDS1/2) targeting two loci of the cassava phytoene desaturase gene (MePDS) in Cas9-overexpressing transgenic cassava lines. The CsCMV-gMePDS1/2 efficiently induced deletion mutations of the targeted MePDS with the albino phenotypes in systemically infected cassava leaves. CONCLUSIONS: Our results provide a useful tool for rapid and efficient heterologous protein expression and guide RNA delivery in cassava. This expands the potential applications of CsCMV-based vector in gene function studies, biotechnology research, and precision breeding for cassava.
RESUMO
Obesity is a global and rising multifactorial pandemic associated with the emergence of several comorbidities that are risk factors for malignant cardiac remodeling and disease. High-intensity interval training (HIIT) has gained considerable attention due to its favorable outcomes of cardiometabolic health in individuals with overweight or obese. The primary aim of this review is to discuss the fundamental processes through which HIIT improves cardiac impairment in individuals with obesity to develop viable treatments for obesity management. In this review, a multiple database search and collection were conducted from the earliest record to January 2013 for studies included the qualitative component of HIIT intervention in humans and animals with overweight/obesity related to cardiac remodeling and fitness. We attempt to integrate the main mechanisms of HIIT in cardiac remolding improvement in obesity into an overall sequential hypothesis. This work focus on the ameliorative effects of HIIT on obesity-induced cardiac remodeling with respect to potential and pleiotropic mechanisms, including adipose distribution, energy metabolism, inflammatory response, insulin resistance, and related risk profiles in obesity. In conclusion, HIIT has been shown to reduce obesity-induced risks of cardiac remodeling, but the long-term effects of HIIT on obesity-induced cardiac injury and disease are presently unknown. Collective understanding highlights numerous specific research that are needed before the safety and effectiveness of HIIT can be confirmed and widely adopted in patient with obesity.
RESUMO
Aqueous redox flow battery (RFB) desalination is considered as an emerging technology for both freshwater production and energy storage. However, the desalination capacity of desalination RFB is constrained by the amount of redox active materials. To break through this innate limit, a tandem redox strategy is reported to boost the desalination capacity of desalination RFB through reactivating the depleted redox active materials to achieve relay desalination. Taking zinc/sodium ferrocyanide as the proof-of-concept model, the introduction of 5.6 g Prussian blue (PB) as a reactivator could boost the desalination capacity by â¼106.1%, reaching to 651.2 mAh, compared with the theoretical limit of 315.9 mAh. This system can afford the desalination of 34-47 mL seawater with 85%-91% NaCl removal and as low as 8.17 kJ/mol (2.27 Wh/L) salt energy consumption using only 15 mL of catholyte, while providing 55.6-42.5 Wh/L electrical energy for other purposes, outperforming the reported desalination RFBs so far. This study represents a paradigm shift to rational design for desalination RFB and may broaden the implications in desalination, energy storage, and other related fields.
Assuntos
Eletricidade , Água Doce , Oxirredução , Estudo de Prova de Conceito , Água do Mar , Cloreto de SódioRESUMO
Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices. Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures, additive manufacturing approaches such as direct ink writing offer convenient, on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales. However, the lack of a universal ink design strategy greatly limits the choices of printable oxides. Here, a universal, facile synthetic strategy is developed for direct ink writable polymer precursor inks based on metal-polymer coordination effect. Specifically, polyethyleneimine functionalized by ethylenediaminetetraacetic acid is employed as the polymer matrix for adsorbing targeted metal ions. Next, glucose is introduced as a crosslinker for endowing the polymer precursor inks with a thermosetting property required for 3D printing via the Maillard reaction. For demonstrations, binary (i.e., ZnO, CuO, In2O3, Ga2O3, TiO2, and Y2O3) and ternary metal oxides (i.e., BaTiO3 and SrTiO3) are printed into 3D architectures with sub-micrometer resolution by extruding the inks through ultrafine nozzles. Upon thermal crosslinking and pyrolysis, the 3D microarchitectures with woodpile geometries exhibit strong light-matter coupling in the mid-infrared region. The design strategy for printable inks opens a new pathway toward 3D-printed optoelectronic devices based on functional oxides.
RESUMO
Plant pectin methylesterases (PMEs) play crucial roles in regulating cell wall modification and response to various stresses. Members of the PME family have been found in several crops, but there is a lack of research into their presence in cassava (Manihot esculent), which is an important crop for world food security. In this research, 89 MePME genes were identified in cassava that were separated into two types (type-â and type-â ¡) according to the existence or absence of a pro-region (PMEI domain). The MePME gene members were unevenly located on 17 chromosomes, with 19 gene pairs being identified that most likely arose via duplication events. The MePMEs could be divided into ten sub-groups in type-â and five sub-groups in type-â ¡. The motif analysis revealed 11 conserved motifs in type-â and 8 in type-â ¡ MePMEs. The number of introns in the CDS region of type-â MePMEs ranged between one and two, and the number of introns in type-â ¡ MePMEs ranged between one and nine. There were 21 type-â and 31 type-â ¡ MePMEs that contained signal peptides. Most of the type-â MePMEs had two conserved "RK/RLL" and one "FPSWVS" domain between the pro-region and the PME domain. Multiple stress-, hormone- and tissue-specific-related cis-acting regulatory elements were identified in the promoter regions of MePME genes. A total of five co-expressed genes (MePME1, MePME2, MePME27, MePME65 and MePME82) were filtered from different abiotic stresses via the use of UpSet Venn diagrams. The gene expression pattern analysis revealed that the expression of MePME1 was positively correlated with the degree of cassava postharvest physiological deterioration (PPD). The expression of this gene was also significantly upregulated by 7% PEG and 14 °C low-temperature stress, but slightly downregulated by ABA treatment. The tissue-specific expression analysis revealed that MePME1 and MePME65 generally displayed higher expression levels in most tissues than the other co-expressed genes. In this study, we obtain an in-depth understanding of the cassava PME gene family, suggesting that MePME1 could be a candidate gene associated with multiple abiotic tolerance.