Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Enzyme Microb Technol ; 150: 109867, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489026


The main problem for submerged fermentation of filamentous fungi is the nutrition limitation with high cell density or cell leakage by the uncontrollable hyphae, clusters, or pellets. There are several techniques such as microparticle, immobilization, pH shifting, substrate limitation etc. for controlling filamentous fungi growth on submerged fermentation. In this research, FDM (Fused Deposition Modelling) based 3D printed cubes is used for growth control agent of recombinant Aspergillus sojae for the first time. Lattice structure sizes, number of cubes and pH were chosen to be main factors of fermentation in order to study the combine effect of the factors on A. sojae fermentation. The results revealed that specific activity values are improved from 2045.96 U/mg (the highest control activity) to 3291.67 U/mg with lower pellet sizes and controllable growth. FDM based 3D printed cubes was successfully controlled the recombinant Aspergillus sojae fermentation and enhanced ß-mannanase production. In addition, this research was also showed that FDM based 3D printed cubes also have the potential to be used as immobilization materials like SLS based 3D printed products in further research.

Fungos , Impressão Tridimensional , Aspergillus , Contagem de Células , Fermentação
3 Biotech ; 7(1): 77, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28455720


Mannanases, one of the important enzyme group for industry, are produced by numerous filamentous fungi, especially Aspergillus species with different fermentation methods. The aim of this study was to show the best fermentation method of ß-mannanase production for fungal growth in fermenter. Therefore, different fermentation strategies in fed-batch fermentation (suspended, immobilized cell, biofilm and microparticle-enhanced bioreactor) were applied for ß-mannanase production from glucose medium (GM) and carob extract medium (CEM) by using recombinant Aspergillus sojae. The highest ß-mannanase activities were obtained from microparticle-enhanced bioreactor strategy. It was found to be 347.47 U/mL by adding 10 g/L of Al2O3 to GM and 439.13 U/mL by adding 1 g/L of talcum into CEM. The maximum ß-mannanase activities for suspended, immobilization, and biofilm reactor remained at 72.55 U/mL in GM, 148.81 U/mL in CEM, and 194.09 U/mL in GM, respectively. The reason for that is the excessive, and irregular shaped growth and bulk formation, inadequate oxygen transfer or substrate diffusion in bioreactor. Consequently, the enzyme activity was significantly enhanced by addition of microparticles compared to other fed-batch fermentation strategies. Also, repeatable ß-mannanase activities were obtained by controlling of the cell morphology by adding microparticle inside the fermenter.

Bioprocess Biosyst Eng ; 39(9): 1391-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27129457


ß-mannanase was produced mainly by Aspergillus species and can degrade the ß-1,4-mannose linkages of galactomannans. This study was undertaken to enhance mannanase production using talcum and aluminum oxide as the microparticles, which control cell morphology of recombinant Aspergillus sojae in glucose and carob extract medium. Both microparticles improved fungal growth in glucose and carob pod extract medium. Aluminum oxide (1 g/L) was the best agent for glucose medium which resulted in 514.0 U/ml. However, the highest mannanase activity was found as 568.7 U/ml with 5 g/L of talcum in carob extract medium. Increase in microparticle concentration resulted in decreasing the pellet size diameter. Furthermore, more than 10 g/L of talcum addition changed the filamentous fungi growth type from pellet to pellet/mycelium mixture. Results showed that right type and concentration of microparticle in fermentation media improved the mannanase activity and production rate by controlling the growth morphology.

Aspergillus/metabolismo , beta-Manosidase/biossíntese , Meios de Cultura , Glucose/metabolismo
Biotechnol Prog ; 32(2): 393-403, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26749037


Lignocellulosic materials that are the most abundant plant biomass in the world have the potential to become sustainable sources of the produced value added products. Tea processing waste (TPW) is a good lignocellulosic source to produce the value added products from fermentable sugars (FSs). Therefore, the present study is undertaken to produce FSs by using ultrasound-assisted dilute acid (UADA) and dilute acid (DA) hydrolysis of TPW followed by enzymatic hydrolysis. UADA hydrolysis of TPW was optimized by response surface methodology (RSM) at maximum power (900 W) for 2 h. The optimum conditions were determined as 50°C, 1:6 (w/v) solid:liquid ratio, and 1% (w/v) DA concentration, which yielded 20.34 g/L FS concentration. Furthermore, its DA hydrolysis was also optimized by using RSM for comparison and the optimized conditions were found as 120°C, 1:8 solid:liquid ratio, and 1% acid concentration, which produced 25.3 g/L FS yield. Even though the produced sugars with UADA hydrolysis are slightly less, but it can provide significant cost saving due to the lower temperature requirement and less liquid consumption. Besides, enzymatic hydrolysis applied after pretreatments of TPW were very more economic than the conventional enzymatic hydrolysis in the literature due to shorter time requiring. In conclusion, ultrasound-assisted is a promising technology that can be successfully applied for hydrolysis of biomass and can be an alternative to the other hydrolysis procedures and also TPW can be considered as suitable carbon source for the production of value-added products like biofuels, organic acids, and polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:393-403, 2016.

Ácidos/química , Biotecnologia , Carboidratos/biossíntese , Fermentação , Chá/metabolismo , Ultrassom , Resíduos , Carboidratos/química , Hidrólise , Chá/química