Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Sci Signal ; 15(732): eabk3067, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35503863

RESUMO

Cyclic GMP-AMP synthase (cGAS) binds to microbial and self-DNA in the cytosol and synthesizes cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING) and downstream mediators to elicit an innate immune response. Regulation of cGAS activity is essential for immune homeostasis. Here, we identified the E3 ubiquitin ligase MARCH8 (also known as MARCHF8, c-MIR, and RNF178) as a negative regulator of cGAS-mediated signaling. The immune response to double-stranded DNA was attenuated by overexpression of MARCH8 and enhanced by knockdown or knockout of MARCH8. MARCH8 interacted with the enzymatically active core of cGAS through its conserved RING-CH domain and catalyzed the lysine-63 (K63)-linked polyubiquitylation of cGAS at Lys411. This polyubiquitylation event inhibited the DNA binding ability of cGAS, impaired cGAMP production, and attenuated the downstream innate immune response. Furthermore, March8-deficient mice were less susceptible than their wild-type counterparts to herpes simplex virus 1 (HSV-1) infection. Together, our findings reveal a mechanism underlying the functional regulation of cGAS and the fine-tuning of the innate immune response.


Assuntos
Herpes Simples , Nucleotidiltransferases/metabolismo , Ubiquitina-Proteína Ligases , Animais , DNA/metabolismo , Herpes Simples/imunologia , Imunidade Inata , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Small Methods ; 6(5): e2101548, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35388986

RESUMO

The reproducibility issue is one of the major challenges for the commercialization of large-area organic electronic devices. It involves both the device-to-device variation and opto-electronic properties in different positions of a single thin film. Herein, the molecular weight effects in polymeric semiconductors with three widely used photovoltaic donor materials P3HT, PBDB-T, and PM6 are systematically investigated. A simple but effective method is proposed to evaluate the uniformity of large-area devices by adopting the micron-level grid electrodes in organic thin films. An interesting phenomenon is observed that the device is gradually improved uniformly with the Mw range lower than 100 kg mol-1 . In neat films, both the mobility and energetic disorder values of hole carriers exhibit relatively lower coefficient of variation (cv ) in high molecular-weight systems. After blending with the electron-accepting materials, their bulk heterojunction films also enjoy more uniform hole transfer rates, fluorescence lifetimes, and power conversion efficiencies in single and different devices. This work not only proposes a facile approach to evaluate the electrical properties of large-area organic thin films, but also demonstrates the relationship between molecular weight and device reproducibility in polymer solar cells. This contribution provides a new insight into the commercial large-scale production of organic electronics.

3.
Small ; 18(19): e2201387, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35417057

RESUMO

Solution-processing hybrid solar cells with organics and colloidal quantum dots (CQDs) have drawn substantial attention in the past decade. Nevertheless, hybrid solar cells based on the recently developed directly synthesized CQD inks are still unexplored. Herein, a facile polymer blending strategy is put forward to enable directly synthesized CQD/polymer hybrid solar cells with a champion efficiency of 13%, taking advantage of the conjugated polymer blends with finely optimized aggregation behaviors. The spectroscopic and electrical investigations on carrier transport and recombination indicate that polymer blends can endow fast carrier transport and less recombination over the single counterparts. Moreover, the blending strategy offers a "dilution effect" for top-notch photovoltaic polymers with excessively strong aggregation tendency, resulting in moderate feature domain size and surface roughness, which afford fast hole transport and therefore high photovoltaic performance. The effectiveness of this strategy is successfully validated using two pairs of photovoltaic polymers. Accordingly, the relationships between polymer morphology, carrier transport, and photovoltaic performance are established to advance the progress of CQD/polymer hybrid solar cells. Such progress stresses that the utilization of aggregation-suppressed polymer blends is a facile approach toward the fabrication of high-efficiency organic-inorganic hybrid solar cells.

4.
EMBO J ; : e109272, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35438208

RESUMO

Double-stranded DNA is recognized as a danger signal by cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), triggering innate immune responses. Palmitoylation is an important post-translational modification (PTM) catalyzed by DHHC-palmitoyl transferases, which participate in the regulation of diverse biological processes. However, whether palmitoylation regulates cGAS function has not yet been explored. Here, we found that palmitoylation of cGAS at C474 restricted its enzymatic activity in the presence of double-stranded DNA. cGAS palmitoylation was catalyzed mainly by the palmitoyltransferase ZDHHC18 and double-stranded DNA promoted this modification. Mechanistically, palmitoylation of cGAS reduced the interaction between cGAS and double-stranded DNA, further inhibiting cGAS dimerization. Consistently, ZDHHC18 negatively regulated cGAS activation in human and mouse cell lines. In a more biologically relevant model system, Zdhhc18-deficient mice were found to be resistant to infection by DNA viruses, in agreement with the observation that ZDHHC18 negatively regulated cGAS mediated innate immune responses in human and mouse primary cells. In summary, the negative role of ZDHHC18-mediated cGAS palmitoylation may be a novel regulatory mechanism in the fine-tuning of innate immunity.

5.
Adv Mater ; : e2104113, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451528

RESUMO

Owing to the rapid developments to improve the accuracy and efficiency of both experimental and computational investigative methodologies, the massive amounts of data generated have led the field of materials science into the fourth paradigm of data-driven scientific research. This transition requires the development of authoritative and up-to-date frameworks for data-driven approaches for material innovation. This review presents a critical discussion on the current advances in the data-driven discovery of materials with a focus on frameworks, machine-learning algorithms, material-specific databases, descriptors, and targeted applications in the field of inorganic materials. Frameworks for rationalizing data-driven material innovation are described, and a critical review of essential sub-disciplines is presented, including (i) advanced data-intensive strategies and machine-learning algorithms; (ii) material databases and related tools and platforms for data generation and management; (iii) commonly used molecular descriptors used in data-driven processes. Furthermore, an in-depth discussion on the broad applications of material innovation, such as energy conversion and storage, environmental decontamination, flexible electronics, optoelectronics, superconductors, metallic glasses, and magnetic materials, is provided. Finally, how these sub-disciplines (with insights into the synergy of materials science, computational tools, and mathematics) support data-driven paradigms is outlined, and the opportunities and challenges in data-driven material innovation are highlighted. This article is protected by copyright. All rights reserved.

6.
RSC Adv ; 12(20): 12590-12599, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480379

RESUMO

A facile two-step strategy to prepare flexible graphene electrodes has been developed for supercapacitors using thermal reduction of graphene oxide (GO) and thermally reduced graphene oxide (TRGO) composite films. The tunable porous structure of the GO/TRGO film provided channels to release the high pressure generated by CO2 gas. The graphene electrode obtained from reduced-GO/TRGO (1 : 1 in mass ratio) film showed great flexibility and high film density (0.52 g cm-3). Using the EMI-BF4 electrolyte with a working voltage of 3.7 V, the as-fabricated free-standing reduced-GO/TRGO (1 : 1) film achieved a great gravimetric capacitance of 180 F g-1 (delivering a gravimetric energy density of 85.6 W h kg-1), a volumetric capacitance of 94 F cm-3 (delivering a volumetric energy density of 44.7 W h L-1), and a 92% retention after 10 000 charge/discharge cycles. In addition, the solid state flexible supercapacitor with the free-standing reduced-GO/TRGO (1 : 1) film as the electrodes and the EMI-BF4/poly (vinylidene fluoride hexafluopropylene) (PVDF-HFP) gel as the electrolyte also demonstrated a high gravimetric capacitance of 146 F g-1 with excellent mechanical flexibility, bending stability, and electrochemical stability. The strategy developed in this study provides great potentials for the synthesis of flexible graphene electrodes for supercapacitors.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35463063

RESUMO

Background: Dragon's blood is a natural medicine with hemostatic and blood-activating effects and is used to promote wound healing. Dracorhodin perchlorate (DP) is a stable form of dracarhod and is used as a substitute for cochinchinenin. DP promotes the proliferation of rat fibroblasts and promotes wound healing in rats. Methods: DP ointment (0.2 mg/mL) was applied to the skin wounds of nondiabetic and diabetic rats, and the skin of the wound was collected. Wound healing rate, H&E staining, Masson staining, TLR4 pathway, related inflammatory factors, nitric oxide synthase, and so forth were detected. Results: DP treatment alleviated the prolonged inflammatory cell infiltration time and the increase in the TLR4 pathway and inflammatory factors caused by diabetes. DP also promoted wound healing by increasing eNOS protein expression and NO content in the later stage of wound healing. Conclusion: DP promotes wound healing in diabetic rats by regulating the TLR4 pathway and related inflammatory factors. Therefore, adjuvant treatment of DP can be developed for diabetic wound healing.

8.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458305

RESUMO

A simple wide-bandgap conjugated polymer based on indoloquinoxaline unit (PIQ) has been newly designed and synthesized via cheap and commercially available starting materials. The basic physicochemical properties of the PIQ have been investigated. PIQ possesses a broad and strong absorption band in the wavelength range of 400~660 nm with a bandgap of 1.80 eV and lower-lying highest occupied molecular orbital energy level of -5.58 eV. Polymer solar cells based on PIQ and popular acceptor Y6 blend display a preliminarily optimized power conversion efficiency of 6.4%. The results demonstrate indoloquinoxaline is a promising building unit for designing polymer donor materials for polymer solar cells.

9.
J Magn Reson ; 339: 107215, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421711

RESUMO

Very-low field magnetic resonance imaging (VLF-MRI, B0 < 0.1T) has an essential application in medical imaging diagnosis because of its light weight and low cost. For single-channel RF coil VLF-MRI system, a planar spiral LC-resonator placed on the surface of samples was designed to improve the local SNR. First, an equivalent circuit model was established to evaluate the boosting effects on radiofrequency (RF) magnetic field and SNR. Second, the relationship between the resonant capacitance and the transmission coefficient was deduced according to the circuit model, and the appropriate resonant capacitance was obtained. Then, the influence of the diameter and the number of turns of the LC-resonator on the SNR is considered, and the structure of the LC-resonator was optimized to maximize the SNR. Finally, a phantom MRI experiment was carried out with our home-built 54.6 mT MRI system to compare the SNR of the experiment with the calculation, the SNR enhancement trend of the two was consistent. Additional experiments were conducted using orange and chicken leg to demonstrate the SNR enhancement abilities of the LC-resonator. The enhancement of SNR reached up to 1.8-fold and 2.2-fold depending on the distance between the sample and LC-resonator. For comparison, we conducted imaging experiments on surface receiving coil with the same parameters, and the results show that the SNR of the LC resonator is comparable to that of the surface coil. The reported LC-resonator provide a low-cost local enhancement method for VLF-MRI.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35432571

RESUMO

Objective: The objective of this study was to observe the protective effect of Rhodiola wallichiana drops in a rat model of fine particulate matter (PM2.5) lung injury. Methods: Forty male Wistar rats were randomly divided into blank control (NC), normal saline (NS), PM2.5-infected (PM), and Rhodiola wallichiana (RW) groups. Rats in the NC group were not provided any interventions, whereas those in the NS and PM groups were administered normal saline and PM2.5 suspension by trachea drip once a week for four weeks. Rats in the RW group were intraperitoneally administered Rhodiola wallichiana for 14 days and then administered PM2.5 suspension by trachea drip 7 days after drug delivery. The levels of inflammatory factors such as interleukin-6, interleukin-1ß, and tumor necrosis factor-alpha and oxidative stress biomarkers such as 8-hydroxy-2'-deoxyguanosine, 4-hydroxynonenal, and protein carbonyl content were determined in the serum and bronchoalveolar lavage fluid by ELISA. The level of 4-hydroxynonenal in the lung was also determined using Western blotting and immunohistochemical staining. Results: Levels of inflammatory factors and oxidative stress biomarkers were all increased in the PM group but decreased in the RW group. Western blotting revealed increased 4-hydroxynonenal levels in the PM group but decreased levels in the RW group. Immunohistochemical staining also provided similar results. Conclusion: Rhodiola wallichiana could protect rats from inflammation and oxidative stress injury caused by PM2.5.

11.
Nanomaterials (Basel) ; 12(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35407327

RESUMO

This study synthesized ultra-fine nanometer-scaled ruthenium oxide (RuO2) quantum dots (QDs) on reduced graphene oxide (rGO) surface by a facile and rapid microwave-assisted hydrothermal approach. Benefiting from the synergistic effect of RuO2 and rGO, RuO2/rGO nanocomposite electrodes showed ultra-high capacitive performance. The impact of different RuO2 loadings in RuO2/rGO nanocomposite on their electrochemical performance was investigated by various characterizations. The composite RG-2 with 38 wt.% RuO2 loadings exhibited a specific capacitance of 1120 F g-1 at 1 A g-1. In addition, it has an excellent capacity retention rate of 84 % from 1A g-1 to 10 A g-1, and excellent cycling stability of 89% retention after 10,000 cycles, indicating fast ion-involved redox reactions on the nanocomposite surfaces. These results illustrate that RuO2/rGO composites prepared by this facile process can be an ideal candidate electrode for high-performance supercapacitors.

12.
Mol Carcinog ; 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35384084

RESUMO

Glioma is the most common primary malignant intracranial tumor in humans, and glioblastoma (GBM) has been associated with a more aggressive histology and poorer prognosis. There is growing evidence that circular RNAs (circRNAs) are involved in the progression of various malignancies; however, the role and molecular mechanism of circRNAs in glioma remain elusive. In the present study, we screened for differentially expressed circRNAs in gliomas by using a bioinformatics method. Significant upregulation in glioma tissues was verified by quantitative real-time polymerase chain reaction (qRT-PCR), and the prognostic value was evaluated. The potential oncogenic role of circular RNA TCF25 (circTCF25) in glioma was assessed both in vivo and in vitro. Bioinformatics analysis and luciferase reporter assays confirmed the interaction among circTCF25, microRNA-206 (miR-206), and its target gene Cyclophilin B (CypB). circTCF25 was predominantly located in the cytoplasm; the combination of mir-206 and circTCF25 reverses the effects of knockdown of circTCF25 on the proliferation, migration, invasion, and tumorigenesis of glioma cells. Competitive binding between circTCF25 and miR-206 mainly upregulates target gene CypB expression by preventing its inhibition of the Jak2/p-stat3 pathway. In addition, knockdown of circTCF25 reduced CypB expression by inhibiting JAK2/p-stat3, which was rescued by treatment with a miR-206 inhibitor. In summary, our findings demonstrate that the circTCF25/miR-206/CypB axis plays a vital role in glioma progression, migration, invasion, and tumorigenesis.

13.
Angew Chem Int Ed Engl ; : e202201209, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35332979

RESUMO

An organic small molecule, 1-bromo-4-(methylsulfinyl)benzene (BBMS), was utilized to reduce the energy disorder of a Sn-Pb alloyed perovskite film via hydrogen bonding and coordination bonding interactions, and the resultant BBMS-treated device showed a high efficiency of over 22 % as well as outstanding long-term stability.

14.
Chemosphere ; 297: 134171, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35247447

RESUMO

Diesel vehicle emissions generally deteriorate with vehicle mileage due to the wear and deterioration of vehicle parts. Most of the experimental studies on vehicle emission durability were carried out based on the standard operation cycles of engine or vehicle, few research investigated vehicle emission deterioration characteristics under real driving conditions. In this research, the real driving emission (RDE) test method was used to investigate and evaluate the emission deterioration characteristics of two China-V diesel vehicles equipped with DOC and SCR systems. The experimental results show the emissions of CO and NOx from the N2 and N3 diesel vehicles increase with the vehicle mileage, showing the tendency of emission deterioration. The calculated deterioration factors of N2 and N3 diesel vehicle CO and NOx emissions are greater than the recommended values in China standard HJ 438-2008, which means experimental study on the vehicle emissions durability is necessary. The vehicle emissions deterioration depends on real driving conditions and the vehicle usage over vehicle lifetime.

15.
Front Cell Dev Biol ; 10: 809747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309945

RESUMO

Bladder cancer (BC) is a highly prevalent cancer form of the genitourinary system; however, the effective biomarkers are still ambiguous and deserve deeper investigation. Long non-coding RNA (lncRNA) occupies a prominent position in tumor biology and immunology, and ferroptosis-related genes participate in regulatory processes of cancer. In this study, 538 differentially expressed ferroptosis-related lncRNAs were identified from the The Cancer Genome Atlas database through co-expression method and differential expression analysis. Then, the samples involved were equally and randomly divided into two cohorts for the construction of gene model and accuracy verification. Subsequently, a prediction model containing five ferroptosis-related lncRNAs was constructed by LASSO and Cox regression analysis. Furthermore, in terms of predictive performance, consistent results were achieved in the training set, testing set, and entire set. Kaplan-Meier curve, receiver operating characteristic area under the curve, and principal component analysis results verified the good predictive ability of model, and the gene model was confirmed as an independent prognostic indicator. To further investigate the mechanism, we explored the upstream of five lncRNAs and found that they may be modified by m6A to increase or decrease their expression in BC. Importantly, the low-risk group displayed higher mutation burden of tumors and lower Tumor Immune Dysfunction and Exclusion score, which may be predicted to have a higher response rate to immunotherapy. Interestingly, the patients in the high-risk group appeared to have a higher sensitivity to traditional chemotherapeutic agents through pRRophetic analysis. In general, our research established a five-ferroptosis-related lncRNA signature, which can be served as a promising prognostic biomarker for BC.

16.
Adv Healthc Mater ; : e2200030, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35182455

RESUMO

As a core hallmark of cancer, metabolic reprogramming alters the metabolic networks of cancer cells to meet their insatiable appetite for energy and nutrient. Tumor-associated metabolites, the products of metabolic reprogramming, are valuable in evaluating tumor occurrence and progress timely and accurately because their concentration variations usually happen earlier than the aberrances demonstrated in tissue structure and function. As an optical spectroscopic technique, surface-enhanced Raman scattering (SERS) offers advantages in imaging tumor-associated metabolites, including ultrahigh sensitivity, high specificity, multiplexing capacity, and uncompromised signal intensity. This review first highlights recent advances in the development of stimuli-responsive SERS probes. Then the mechanisms leading to the responsive SERS signal triggered by tumor metabolites are summarized. Furthermore, biomedical applications of these responsive SERS probes, such as the image-guided tumor surgery and liquid biopsy examination for tumor molecular typing, are summarized. Finally, the challenges and prospects of the responsive SERS probes for clinical translation are also discussed.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120953, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35131621

RESUMO

We explore the mechanism specifically on quantum yields difference of 2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-3-hydroxybenzonitrile (1-CN) and 4-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-3-hydroxybenzonitrile (3-CN) by density functional theory and time-dependent density functional theory within the Tamm-Dancoff approximation. The structures optimization and the potential energy curves scanning of singlet excited state directly prove that the excited state intramolecular proton transfer (ESIPT) can take place in 1-CN and 3-CN molecules. The calculated spectra show that the fluorescence peaks of two molecules come from the emission of keto* configuration. The non-covalent interaction and the atomic dipole moment corrected Hirshfeld charge are also analyzed. Through the comparison of emission oscillator strength between 1-CN and 3-CN molecules suggests that the radiative transition process is not the main reason for the difference on quantum yields. Internal conversion process is also excluded on account of the large energy gap between S0 and S1. Considering the interaction between singlet and triplet states, both molecules can undergo intersystem crossing. The prominent difference is that, compared with 3-CN, the larger spin-orbit coupling constant and smaller energy level difference promote the intersystem crossing process of 1-CN. This provides direct evidence for the fluorescence quantum yield of 1-CN is lower than that of 3-CN. We envision that the present work can provide help for the synthesis and application of ESIPT compounds with high quantum yields.

18.
STAR Protoc ; 3(1): 101061, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35005643

RESUMO

Toll-like receptor 8 (TLR8) is a pattern recognition receptor that senses RNA degradation products and initiates immune responses. TLR8 overactivation is associated with autoimmune diseases. Herein, we describe the evaluation and validation of TLR8 antagonists in HEK-Blue cells via secreted embryonic alkaline phosphatase (SEAP) assay, WST assay, ITC and immunoblotting. These assays can facilitate the development of TLR8 antagonists; this protocol can also be adapted to analyze agonists and antagonists for other TLRs. For complete details on the use and execution of this protocol, please refer to Hu et al. (2018).


Assuntos
Fosfatase Alcalina , Receptor 8 Toll-Like , Linhagem Celular , Humanos , Receptor 8 Toll-Like/antagonistas & inibidores
19.
Mol Neurobiol ; 59(2): 1262-1272, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981417

RESUMO

Resistance to temozolomide (TMZ) chemotherapy is the main reason for treatment failure in patients with glioblastoma (GBM). In the present study, we investigated biochanin A (BCA) a potent sensitizer of TMZ in GBM. We observed that BCA significantly enhanced cell sensitivity to TMZ in vitro and in vivo. Mechanistically, the specific chemosensitizing effect of BCA is mediated by autophagy inhibition. Moreover, by performing a molecular docking analysis, we demonstrated that BCA interacts with AMPK residues and impairs autophagy by regulating the AMPK/ULK1 pathway. These results suggest that BCA is a potential therapeutic agent that sensitizes GBM to TMZ and provide new insight into its therapeutic potential in chemoresistant GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Genisteína , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Simulação de Acoplamento Molecular , Transdução de Sinais , Temozolomida/farmacologia , Temozolomida/uso terapêutico
20.
Research (Wash D C) ; 2022: 9820585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35098138

RESUMO

High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piezoelectric, pyroelectric, and ferroelectric effects but also photoelectric conversion efficiency in OPVs, carrier mobility in OFETs, and charge density in charge-trapping memories. Herein, we report an ultralong persistence length (l p ≈ 41 nm) effect of spiro-fused organic nanopolymers on dielectric properties, together with excitonic and charge carrier behaviors. The state-of-the-art nanopolymers, namely, nanopolyspirogrids (NPSGs), are synthesized via the simple cross-scale Friedel-Crafts polygridization of A2B2-type nanomonomers. The high dielectric constant (k = 8.43) of NPSG is firstly achieved by locking spiro-polygridization effect that results in the enhancement of dipole polarization. When doping into a polystyrene-based dielectric layer, such a high-k feature of NPSG increases the field-effect carrier mobility from 0.20 to 0.90 cm2 V-1 s-1 in pentacene OFET devices. Meanwhile, amorphous NPSG film exhibits an ultralow energy disorder (<50 meV) for an excellent zero-field hole mobility of 3.94 × 10-3 cm2 V-1 s-1, surpassing most of the amorphous π-conjugated polymers. Organic nanopolymers with high dielectric constants open a new way to break through the bottleneck of efficiency and multifunctionality in the blueprint of the fourth-generation semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...