Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 472: 108-118, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837443

RESUMO

Despite the common application and considerable efforts to achieve precision radiotherapy (RT) in several types of cancer, RT has not yet entered the era of precision medicine; the ability to predict radiosensitivity and treatment responses in tumors and normal tissues is lacking. Therefore, development of genome-based methods for individual prognosis in radiation oncology is urgently required. Traditional DNA sequencing requires tissue samples collected during invasive operations; therefore, repeated tests are nearly impossible. Intra- and inter-tumoral heterogeneity may undermine the predictive power of a single assay from tumor samples. In contrast, analysis of circulating tumor DNA (ctDNA) allows for non-invasive and near real-time sampling of tumors. By investigating the genetic composition of tumors and monitoring dynamic changes during treatment, ctDNA analysis may potentially be clinically valuable in prediction of treatment responses prior to RT, surveillance of responses during RT, and evaluation of residual disease following RT. As a biomarker for RT response, ctDNA profiling may guide personalized treatments. In this review, we will discuss approaches of tissue DNA sequencing and ctDNA detection and summarize their clinical applications in both traditional RT and in combination with immunotherapy.

2.
Clin Cancer Res ; 25(16): 5015-5026, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31085721

RESUMO

PURPOSE: Immune checkpoint inhibitors (ICI) have revolutionized cancer management. However, molecular determinants of response to ICIs remain incompletely understood. EXPERIMENTAL DESIGN: We performed genomic profiling of 78 patients with non-small cell lung cancer (NSCLC) who underwent anti-PD-(L)1 therapies by both whole-exome and targeted next-generation sequencing (a 422-cancer-gene panel) to explore the predictive biomarkers of ICI response. Tumor mutation burden (TMB), and specific somatic mutations and copy-number alterations (CNA) were evaluated for their associations with immunotherapy response. RESULTS: We confirmed that high TMB was associated with improved clinical outcomes, and TMB quantified by gene panel strongly correlated with WES results (Spearman's ρ = 0.81). Compared with wild-type, patients with FAT1 mutations had higher durable clinical benefit (DCB, 71.4% vs. 22.7%, P = 0.01) and objective response rates (ORR, 57.1% vs. 15.2%, P = 0.02). On the other hand, patients with activating mutations in EGFR/ERBB2 had reduced median progression-free survival (mPFS) compared with others [51.0 vs. 70.5 days, P = 0.0037, HR, 2.47; 95% confidence interval (CI), 1.32-4.62]. In addition, copy-number loss in specific chromosome 3p segments containing the tumor-suppressor ITGA9 and several chemokine receptor pathway genes, were highly predictive of poor clinical outcome (survival rates at 6 months, 0% vs. 31%, P = 0.012, HR, 2.08; 95% CI, 1.09-4.00). Our findings were further validated in two independently published datasets comprising multiple cancer types. CONCLUSIONS: We identified novel genomic biomarkers that were predictive of response to anti-PD-(L)1 therapies. Our findings suggest that comprehensive profiling of TMB and the aforementioned molecular markers could result in greater predictive power of response to ICI therapies in NSCLC.

4.
Nat Commun ; 8: 15518, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28548091

RESUMO

Noonan syndrome (NS) is caused by mutations in RAS/ERK pathway genes, and is characterized by craniofacial, growth, cognitive and cardiac defects. NS patients with kinase-activating RAF1 alleles typically develop pathological left ventricular hypertrophy (LVH), which is reproduced in Raf1L613V/+ knock-in mice. Here, using inducible Raf1L613V expression, we show that LVH results from the interplay of cardiac cell types. Cardiomyocyte Raf1L613V enhances Ca2+ sensitivity and cardiac contractility without causing hypertrophy. Raf1L613V expression in cardiomyocytes or activated fibroblasts exacerbates pressure overload-evoked fibrosis. Endothelial/endocardial (EC) Raf1L613V causes cardiac hypertrophy without affecting contractility. Co-culture and neutralizing antibody experiments reveal a cytokine (TNF/IL6) hierarchy in Raf1L613V-expressing ECs that drives cardiomyocyte hypertrophy in vitro. Furthermore, postnatal TNF inhibition normalizes the increased wall thickness and cardiomyocyte hypertrophy in vivo. We conclude that NS-cardiomyopathy involves cardiomyocytes, ECs and fibroblasts, TNF/IL6 signalling components represent potential therapeutic targets, and abnormal EC signalling might contribute to other forms of LVH.


Assuntos
Citocinas/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Interleucina-6/metabolismo , Miócitos Cardíacos/patologia , Síndrome de Noonan/patologia , Proteínas Proto-Oncogênicas c-raf/genética , Fator de Necrose Tumoral alfa/metabolismo , Alelos , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Técnicas de Introdução de Genes , Humanos , Hipertrofia Ventricular Esquerda/genética , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/genética , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-raf/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
5.
J Biol Chem ; 291(30): 15641-52, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27226556

RESUMO

RAS-like protein expressed in many tissues 1 (RIT1) is a disease-associated RAS subfamily small guanosine triphosphatase (GTPase). Recent studies revealed that germ-line and somatic RIT1 mutations can cause Noonan syndrome (NS), and drive proliferation of lung adenocarcinomas, respectively, akin to RAS mutations in these diseases. However, the locations of these RIT1 mutations differ significantly from those found in RAS, and do not affect the three mutational "hot spots" of RAS. Moreover, few studies have characterized the GTPase cycle of RIT1 and its disease-associated mutants. Here we developed a real-time NMR-based GTPase assay for RIT1 and investigated the effect of disease-associated mutations on GTPase cycle. RIT1 exhibits an intrinsic GTP hydrolysis rate similar to that of H-RAS, but its intrinsic nucleotide exchange rate is ∼4-fold faster, likely as a result of divergent residues near the nucleotide binding site. All of the disease-associated mutations investigated increased the GTP-loaded, activated state of RIT1 in vitro, but they could be classified into two groups with different intrinsic GTPase properties. The S35T, A57G, and Y89H mutants exhibited more rapid nucleotide exchange, whereas F82V and T83P impaired GTP hydrolysis. A RAS-binding domain pulldown assay indicated that RIT1 A57G and Y89H were highly activated in HEK293T cells, whereas T83P and F82V exhibited more modest activation. All five mutations are associated with NS, whereas two (A57G and F82V) have also been identified in urinary tract cancers and myeloid malignancies. Characterization of the effects on the GTPase cycle of RIT1 disease-associated mutations should enable better understanding of their role in disease processes.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Síndrome de Noonan , Neoplasias Urológicas , Proteínas ras , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Substituição de Aminoácidos , Linhagem Celular , Guanosina Trifosfato/química , Humanos , Hidrólise , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Domínios Proteicos , Neoplasias Urológicas/genética , Neoplasias Urológicas/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo
6.
Hum Mutat ; 36(11): 1080-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26173643

RESUMO

The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain.


Assuntos
Estudos de Associação Genética , Mutação , Síndrome de Noonan/genética , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Son Of Sevenless/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Análise Mutacional de DNA , Exoma , Facies , Feminino , Genótipo , Humanos , Masculino , Modelos Moleculares , Síndrome de Noonan/diagnóstico , Fenótipo , Conformação Proteica , Proteínas Son Of Sevenless/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA