Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32240577

RESUMO

RNA interference (RNAi) techniques have emerged as powerful tools that facilitate development of novel management strategies for insect pests, such as Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae), which is a major pest of solanaceous plants in Asia. In this study, the potential of oral delivery of in vitro-synthesized and bacterially expressed dsHvlwr to manage of H. vigintioctopunctata was investigated. Our results showed that the H. vigintioctopunctata lesswright (lwr) gene (Hvlwr) had a 480-bp open reading frame and encoded a 160-amino acid protein. Hvlwr expression levels were greater in the fat body than other tissue types. Hvlwr silencing led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent, likely as a result of the number of hemocytes increasing with dsRNA concentration, but decreasing with time. Bacterially expressed dsHvlwr that was applied to leaf discs caused 88%, 66%, and 36% mortality in 1st instars, 3rd instars, and adults after 10, 10, and 14 days, respectively; when applied to living plants, there was greater mortality in 1st and 3rd instars, but there was no effect on adults. Furthermore, dsHvlwr led to improved plant protection against H. vigintioctopunctata. Our study shows an effective dietary RNAi response in H. vigintioctopunctata and that Hvlwr is a promising RNAi target gene for control of this pest species. This article is protected by copyright. All rights reserved.

2.
Nat Commun ; 11(1): 1427, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188862

RESUMO

Anthropogenic environments have been implicated in enrichment and exchange of antibiotic resistance genes and bacteria. Here we study the impact of confined and controlled swine farm environments on temporal changes in the gut microbiome and resistome of veterinary students with occupational exposure for 3 months. By analyzing 16S rRNA and whole metagenome shotgun sequencing data in tandem with culture-based methods, we show that farm exposure shapes the gut microbiome of students, resulting in enrichment of potentially pathogenic taxa and antimicrobial resistance genes. Comparison of students' gut microbiomes and resistomes to farm workers' and environmental samples revealed extensive sharing of resistance genes and bacteria following exposure and after three months of their visit. Notably, antibiotic resistance genes were found in similar genetic contexts in student samples and farm environmental samples. Dynamic Bayesian network modeling predicted that the observed changes partially reverse over a 4-6 month period. Our results indicate that acute changes in a human's living environment can persistently shape their gut microbiota and antibiotic resistome.

3.
Carbohydr Polym ; 235: 115953, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122489

RESUMO

Adhesion loss of hydrocolloid wound dressings is ubiquitous clinical problem, which seriously reduces the therapeutic efficiency and patient experience. In order to address this problem, the clarification on adhesion loss mechanism and the development of effective alternatives of commercial hydrocolloid dressings are urgent and inevitable. Herein, adhesion loss mechanism of hydrocolloid dressings was investigated using sodium carboxymethyl cellulose (CMC)-filled hydrocolloid dressings exposing to physiological environment as model. The adhesion mechanism and contact angle tests were combined to obtain surface energy of dressings. The results indicated that the dissolution, swelling and exudation of CMC occurred successively (concentration reached 1.607 g/L after 10 h). The effused CMC led to the dramatic increase in surface energy (from 14.5-80.7 mN/m) and adhesion loss appeared. This work explored the origin of adhesion loss of hydrocolloid wound dressings and might promote the designing of hydrocolloid dressings with both excellent humidity control and sustained self-adhesiveness.

4.
Can J Cardiol ; 36(4): 589.e5-589.e7, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32220388

RESUMO

We report an interesting case of coronary arteritis and periaortitis in a 62-year-old man with a history of biopsy-proven IgG4-related pulmonary disease. After 2 years of immune-suppressive therapy, the perivascular tissue surrounding all coronary arteries and the abdominal aorta was significantly attenuated, except that the luminal stenosis was aggravated to 70% in the left anterior descending coronary artery. Treatment with aspirin, atorvastatin, and ezetimibe was added. The patient was discharged under strict lesion surveillance at follow-up.

5.
J Hazard Mater ; 392: 122322, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32097856

RESUMO

Flotation is an effective and clean separation technology to realize the recovery of metal in waste printed circuit boards (WPCBs). The flotation kinetic of metal and non-metal components was concerned in this study. In addition, the loading of bubbles, the collision and shedding of particles and bubbles were used to assist in proving the particle dynamics results. By analyzing the force on the particles, the load of bubbles on particles was analyzed, and the appropriate volume ratio of bubbles to particles was 1.5-8.0, depending on the particle density. Moreover, Clift model and Schiller-Naumann model has high fitting accuracy for the final bubble velocity. In addition, metal particles have greater settling velocity, which results in shorter collision time with bubbles. In the process of bubble-particle rising, the shedding probability gradually decreases, and the shedding probability of metal particles is much higher than that of non-metal particles. The results of flotation kinetics show that the removal of impurity particles represented by silicon mainly occurs in the initial stage of flotation process. The loss of copper increases with flotation time and collector dosage. This study reveals the flotation kinetics of particles from the perspectives of bubble loading, bubble-particle collision and shedding.

6.
ACS Nano ; 14(1): 828-834, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31834768

RESUMO

Porous metal foams have been one of the most sought-after materials owing to their combination of bulk metallic characteristics (e.g., thermal/electrical conductivity and ductility) and nanometric size-effect properties (e.g., catalytic reactivity, plasmonic behavior, and high surface area). Traditional sol-gel approaches, though one of the most frequently used method to produce mesoporous metal foams, were hindered for scalable production and wide applications because of its tedious multistep procedure, time-consuming gelation time, and polydisperse pore sizes. Herein, by depositing biological nanofibrils (chitin, cellulose, and silk) on commercial filtration membranes, we report a facile approach to sieve and recycle sub-6 nm nanoparticles of noble metals (Au and Pt) via nonclogging filtration into three-dimensional (3D) networks with interconnected mesopores. The porous networks could withstand air-drying, in contrast to freezing/supercritical drying conventionally used for mesoporous foams preparation. This approach was also applicable to both mesoporous monometallic (Au, Pt) and bimetallic (Au-Pt) foams. Moreover, the resultant mesoporous metallic foams show high porosity up to 90%, homogeneous mesoporous structure, and metallic conductivity up to 104 S/cm. Thus, this rapid and scalable sieving procedure not only offers a possibility of sieving noncloggingly for efficient recovery of metal nanoparticles but also starts a pathway to produce conductive and flexible mesoporous foams applicable in broad fields such as continuous flow catalysis and smart actuating.

7.
Surg Endosc ; 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823047

RESUMO

BACKGROUND: Previous retrospective studies have shown that laparoscopic spleen-preserving D2 total gastrectomy (LSTG) for advanced upper third gastric cancer (AUTGC) is safe. However, all previous studies were underpowered. We therefore conducted a prospective, multicenter study to evaluate the technical safety and feasibility of LSTG for patients with AUTGC. METHODS: Patients diagnosed with AUTGC (cT2-4a, N-/+, M0) underwent LSTG at 19 institutions between September 2016 and October 2017 were included. The number of No. 10 lymph node (LN) dissections, metastasis rates, intraoperative and postoperative complications were investigated. RESULTS: A total of 251 patients were enrolled in the study, and 242 patients were eligible for the per protocol analysis. The average numbers of No. 10 LN dissections and metastases were 2.4 and 0.1, respectively. Eighteen patients (7.4%) had No. 10 LN metastases, and among patients with advanced gastric cancer, the rate of No. 10 LN metastasis was 8.1% (18/223). pN3 status was an independent risk factor for No. 10 LN metastasis. Intraoperative complications occurred in 7 patients, but no patients required conversion to open surgery or splenectomy. The overall postoperative complication rate was 13.6% (33/242). The major complication and mortality rates were 3.3% (8/242) and 0.4% (1/242), respectively. The number of retrieved No. 10 LNs, No. 10 LN metastasis and TNM stage had no significant influence on postoperative complication rates. CONCLUSION: LSTG for AUTGC was safe and effective when performed by very experienced surgeons, this technique could be used in patients who needed splenic hilar lymph node dissection.

8.
Huan Jing Ke Xue ; 40(6): 2582-2594, 2019 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854649

RESUMO

From May 3 to 5, 2017, a special heavy pollution event occurred in Beijing. The meteorological conditions associated with the heavy pollution were relatively special, so the pollution forms and causes were studied. The general characteristics of this pollution event were obtained based on data from 35 environmental monitoring stations in Beijing. Matching characteristics of PM10 and PM2.5 concentrations with ground wind field data from automatic weather stations closest to the environmental monitoring stations were analyzed. By using MODIS and CALIPSO data, the spatial distribution in the horizontal and vertical directions was obtained, and the transport paths and pollutant categories of the pollution were elucidated. The causes of the pollution were analyzed by using ECMWF ERA-Interim data and Wind Profiler radar data. It was hoped that the special morphological characteristics and influencing factors of the pollution could be obtained by means of ground-space monitoring technology combined with meteorological conditions. The results showed that pollution characteristics and constraints could be better reflected by stereo observations and comprehensive analyses based on the above multi-source data. The pollution started abruptly and dropped sharply, and the pollution process lasted for about 30 hours. The whole process was divided into the following three stages:the first half, intermittent period, and second half. The concentrations of PM10 and PM2.5 were high throughout the whole process, reaching to 600-1000 µg·m-3 and 200-700 µg·m-3, respectively. The causes of pollution in the first half and second half and the resulting PM10 and PM2.5 concentrations were different in terms of the spatial distribution. In the first half, the dominant wind direction was northwest wind, and the wind speed was small. The spatial difference of PM10 concentrations was also small, with concentrations more than 800 µg·m-3; meanwhile, the spatial difference of PM2.5 concentrations was great. The concentration of PM2.5 was high in the south and urban areas, reaching to 600-700 µg·m-3, and it was low in other places, reaching to 350-500 µg·m-3. During the intermission, the wind direction in the lower layer shifted from northwest wind to south wind, and the upper layer maintained northwest wind. The concentration of PM10 in the south and urban area decreased obviously to 650 µg·m-3, and the concentration of PM10 in the north remained at 800 µg·m-3. At this time, the concentration of PM2.5 in the north even dropped to 200 µg·m-3. The dominant wind returned to northwest wind in the latter half, and the wind speed increased sharply. At this time, the spatial difference of PM2.5 concentrations was small and the concentration of PM2.5 at the same station was less than that in the former half, ranging from 250 to 500 µg·m-3. The PM10 concentrations returned to the level of 800 µg·m-3. The pollution process involved mixed pollution consisting of haze and sand. Under the influence of westerly winds, the main contribution to Beijing pollution was dust-type PM10, while under southerly flows, the contribution to Beijing pollution was not only dust, but also PM2.5. Heavy pollution was accompanied by high wind speeds. The vertical motion of the atmosphere converged at an altitude of about 2-3 km, which resulted in the accumulation of pollutants at this altitude.

9.
Huan Jing Ke Xue ; 40(10): 4523-4531, 2019 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854820

RESUMO

Based on the seasonal characteristics of groundwater hydrochemistry and the carbon isotopes (δ13C) of dissolved inorganic carbon (DIC) in the Hongjiadu Basin, Guizhou Province, this paper discusses the natural processes and anthropogenic factors affecting the characteristics of δ13CDIC in karst groundwaters under different land use types. The results show that the main sources of DIC in groundwater are carbonate weathering and soil CO2. In winter, the δ13CDIC values for groundwater ranged from -14.8‰ to -4.1‰ with an average of -10.1‰ and, in summer, ranged from -14.5‰ to -6.3‰ with an average of -10.2‰. Sulfuric acid from sulfide oxidation in coal-bearing strata and acid rain is involved in carbonate weathering, resulting in the enrichment of groundwater with heavy carbon isotopes. Due to the soil CO2 effect, the δ13CDIC values of woodland groundwater experiencing less disturbance from human activities are lower in summer than in winter. The degradation of organic matter input from residential areas is a significant contributor of DIC to groundwater. The average values of δ13CDIC in winter and summer were -11.9‰ and -11.6‰, respectively, and the seasonal difference was relatively small in residential areas. During different seasons and for different types of land use, human activities could lead to differences in groundwater δ13CDIC values and hydrochemistry. Therefore, δ13CDIC can reflect the impact of human activities on karst aquifers, which has important ecological significance.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Carbono , Isótopos de Carbono , Carbonatos , Humanos
10.
Artigo em Inglês | MEDLINE | ID: mdl-31881762

RESUMO

The advance of electronic commerce has resulted in successful e-travel services. Through the development of e-travel information, consumers can plan their trip without time and space limitations. This study proposes a model regarding the formation of the relationship quality (customer satisfaction and trust), information system quality, perceived value, and customers' intention to continue in the e-tourism environment. The study is based on 351 e-travel users in Taiwan. The result shows that customer satisfaction has a positive effect on continuance intention. Information system quality has a positive relationship with customer satisfaction, trust, and customer continuance intention. Furthermore, the perceived value has an effect on customer satisfaction and trust. However, the perceived value is partially related to customer continuance intention through customer satisfaction. The managerial implications of this study are discussed.

11.
Math Biosci Eng ; 17(1): 606-626, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31731367

RESUMO

A computational hemodynamics method was employed to investigate how the morphotype and functional state of aortic valve would affect the characteristics of blood flow in aortas with pathological dilation, especially the intensity and distribution of flow turbulence. Two patient-specific aortas diagnosed to have pathological dilation of the ascending segment while differential aortic valve conditions (i.e., one with a stenotic and regurgitant RL bicuspid aortic valve (RL-BAV), whereas the other with a quasi-normal tricuspid aortic valve (TAV)) were studied. When building the computational models, in addition to in vivo data-based reconstruction of geometrical model and boundary condition setting, the large eddy simulation method was adopted to quantify potential flow turbulence in the aortas. Obtained results revealed the presence of complex flow patterns (denoted by time-varying changes in vortex structure), flow turbulence (indicated by high turbulent eddy viscosity (TEV)), and regional high wall shear stress (WSS) in the ascending segment of both aortas. Such hemodynamic characteristics were significantly augmented in the aorta with RL-BAV. For instance, the space-averaged TEV in late systole and the wall area exposed to high time-averaged WSS (judged by WSS> two times of the mean WSS in the entire aorta) in the ascending aortic segment were increased by 176% and 465%, respectively. Relatively, flow patterns in the descending aortic segment were less influenced by the aortic valve disease. These results indicate that aortic valve disease has profound impacts on flow characteristics in the ascending aorta, especially the distribution and degree of high WSS and flow turbulence.

12.
Sci Rep ; 9(1): 16466, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712564

RESUMO

Recently, gold-coated magnetic nanoparticles have drawn the interest of researchers due to their unique magneto-plasmonic characteristics. Previous research has found that the magneto-optical Faraday effect of gold-coated magnetic nanoparticles can be effectively enhanced because of the surface plasmon resonance of the gold shell. Furthermore, gold-coated magnetic nanoparticles are ideal for biomedical applications because of their high stability and biocompatibility. In this work, we synthesized Fe3O4@Au core-shell nanoparticles and coated streptavidin (STA) on the surface. Streptavidin is a protein which can selectively bind to biotin with a strong affinity. STA is widely used in biotechnology research including enzyme-linked immunosorbent assay (ELISA), time-resolved immunofluorescence (TRFIA), biosensors, and targeted pharmaceuticals. The Faraday magneto-optical characteristics of the biofunctionalized Fe3O4@Au nanoparticles were measured and studied. We showed that the streptavidin-coated Fe3O4@Au nanoparticles still possessed the enhanced magneto-optical Faraday effect. As a result, the possibility of using biofunctionalized Fe3O4@Au nanoparticles for magneto-optical biomedical assays should be explored.

13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(5): 1617-1621, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31607322

RESUMO

OBJECTIVE: To investigate the curative effect of simply hormone and combined gamma globulin and thrombopoietin(TPO) on primary immune thrombocytopenia(PITP). METHODS: 100 patients with PITP were divided into simply drug groups, and combined drug group each for 50 cases. The patients in single drug group were given simply hormone therapy, the patients in combined drug group were given gamma globulin and thrombopoietin. The levels of TPO, platelet activating factor (PAF) were detected by DAS-ELISA. The differences of clinical curative effect, clinical indicators, biochemical indexes and adverse reactions between the two groups were compared. RESULTS: The total effective rate of combined drug group (90.00%) was obviously higher than that in single drug group (66.00%)(P<0.05). Amount of platelet infusion in combined drug group was obviously less than that in single drug group, platelet recovery time and effect onset time in combined drug group were significantly shorter than those in single drug group, and the maintaining time in combined drug group was obviously longer than that in single drug group. At the same time, the platelet peak in combined drug group was higher than that in single drug group (P<0.05). The levels of TPO, PAF between the two groups did not show statisticall significant differences before treatment (P>0.05), however, the above-mentioned indexes of two groups after treatment were lower than those before treatment (P<0.05), among them, the indexes in combined drug group were obviously lower ttan those in sigle drug group (P<0.05). The adverse reaction and mortality rate between the two groups did not show statistically significant differences(P>0.05), the recurrence rate in combined drug group(2%) was obviously lower than that in single group(14.00%) (P<0.05). CONCLUSION: The curative effect of hormone, as well as gamma globulin combined with TPO to treat PITP are satisfying, can obviously improve the levels of TPO, PAF, and the drug safety is higher. but the efficacy of combined drug is surperior to single drug.


Assuntos
Púrpura Trombocitopênica Idiopática , Humanos , Imunoglobulinas Intravenosas , Trombopoetina , gama-Globulinas
14.
Sci Data ; 6(1): 204, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615988

RESUMO

Sesame is naturally adapted to arid environments but highly susceptible to waterlogging stress. A few hours of waterlogging (lasting over 36 h) are detrimental to the crop growth, yield and survival. To better understand the molecular mechanisms underlying sesame responses to waterlogging and recovery, it is essential to design a high-resolution time-series experiment. In this study, we reported the RNA-seq profiling of two contrasting genotypes under waterlogging and recovery. The plants were grown in pots and subjected to waterlogging treatment at the flowering stage for 36 h and subsequently, 12 h drainage. Root samples were collected in triplicate at 22 time points under waterlogging/drainage treatments and at 10 time points in the control condition. This represents a total of 195 biological samples and the RNA-seq yielded over eight billion reads. Basic data analyses demonstrated a clear separation of transcriptomes from control, waterlogging and drainage treatments. Overall, the generated high-quality and comprehensive RNA-seq resources will undoubtedly advance our understanding of waterlogging/drainage responses in a non-model sensitive crop.

15.
BMC Genomics ; 20(1): 748, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619177

RESUMO

BACKGROUND: The homeodomain-leucine zipper (HD-Zip) gene family is one of the plant-specific transcription factor families, involved in plant development, growth, and in the response to diverse stresses. However, comprehensive analysis of the HD-Zip genes, especially those involved in response to drought and salinity stresses is lacking in sesame (Sesamum indicum L.), an important oil crop in tropical and subtropical areas. RESULTS: In this study, 45 HD-Zip genes were identified in sesame, and denominated as SiHDZ01-SiHDZ45. Members of SiHDZ family were classified into four groups (HD-Zip I-IV) based on the phylogenetic relationship of Arabidopsis HD-Zip proteins, which was further supported by the analysis of their conserved motifs and gene structures. Expression analyses of SiHDZ genes based on transcriptome data showed that the expression patterns of these genes were varied in different tissues. Additionally, we showed that at least 75% of the SiHDZ genes were differentially expressed in responses to drought and salinity treatments, and highlighted the important role of HD-Zip I and II genes in stress responses in sesame. CONCLUSIONS: This study provides important information for functional characterization of stress-responsive HD-Zip genes and may contribute to the better understanding of the molecular basis of stress tolerance in sesame.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Sesamum/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Proteínas de Homeodomínio/química , Zíper de Leucina , Família Multigênica , Especificidade de Órgãos , Pressão Osmótica , Filogenia , Proteínas de Plantas/química , Salinidade , Sesamum/classificação , Sesamum/fisiologia , Fatores de Transcrição/química
16.
Nat Commun ; 10(1): 3514, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383861

RESUMO

Liquid metal (LM) droplets show the superiority in coalescing into integral liquid conductors applicable in flexible and deformable electronics. However, the large surface tension, oxide shells and poor compatibility with most other materials may prevent spontaneous coalescence of LM droplets and/or hybridisation into composites, unless external interventions (e.g., shear and laser) are applied. Here, we show that biological nanofibrils (NFs; including cellulose, silk fibroin and amyloid) enable evaporation-induced sintering of LM droplets under ambient conditions into conductive coating on diverse substrates and free-standing films. The resultants possess an insulating NFs-rich layer and a conductive LM-rich layer, offering flexibility, high reflectivity, stretchable conductivity, electromagnetic shielding, degradability and rapid actuating behaviours. Thus this sintering approach not only extends fundamental knowledge about sintering LM droplets, but also starts a new scenario of producing flexible coating and free-standing composites with flexibility, conductivity, sustainability and degradability, and applicable in microcircuits, wearable electronics and soft robotics.


Assuntos
Eletrônica , Desenho de Equipamento , Metais/química , Nanofibras/química , Compostos Organometálicos/química , Biopolímeros/química , Condutividade Elétrica , Resistência à Flexão , Lasers , Teste de Materiais
17.
Int J Mol Sci ; 20(16)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412539

RESUMO

Sesame is a source of a healthy vegetable oil, attracting a growing interest worldwide. Abiotic stresses have devastating effects on sesame yield; hence, studies have been performed to understand sesame molecular responses to abiotic stresses, but the core abiotic stress-responsive genes (CARG) that the plant reuses in response to an array of environmental stresses are unknown. We performed a meta-analysis of 72 RNA-Seq datasets from drought, waterlogging, salt and osmotic stresses and identified 543 genes constantly and differentially expressed in response to all stresses, representing the sesame CARG. Weighted gene co-expression network analysis of the CARG revealed three functional modules controlled by key transcription factors. Except for salt stress, the modules were positively correlated with the abiotic stresses. Network topology of the modules showed several hub genes predicted to play prominent functions. As proof of concept, we generated over-expressing Arabidopsis lines with hub and non-hub genes. Transgenic plants performed better under drought, waterlogging, and osmotic stresses than the wild-type plants but did not tolerate the salt treatment. As expected, the hub gene was significantly more potent than the non-hub gene. Overall, we discovered several novel candidate genes, which will fuel investigations on plant responses to multiple abiotic stresses.


Assuntos
Adaptação Biológica/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sesamum/genética , Estresse Fisiológico/genética , Transcriptoma , Biologia Computacional/métodos , Redes Reguladoras de Genes , Modelos Biológicos
18.
Planta ; 250(5): 1461-1474, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31321496

RESUMO

MAIN CONCLUSION: Sesame harbors a large diversity in root morphological and anatomical traits and a high root biomass improves the plant aboveground biomass as well as the seed yield. Sesame provides one of the most nutritious and healthy vegetable oils, sparking an increasing demand of its seeds. However, with the low yield and productivity of sesame, there is still a huge gap between the seed demand and supply. Improving the root system has a high potential to increase crop productivity, but information on the diversity of the sesame root systems is still lacking. In this study, 40 diverse sesame varieties were grown in soil and hydroponics systems and the diversity of the root system was investigated. The results showed that sesame holds a large root morphological and anatomical diversity, which can be harnessed in breeding programmes. Based on the clustering of the genotypes in hydroponics and soil culture systems, we found that similar genotypes were commonly clustered either in the small-root or in the big-root group, indicating that the hydroponics system can be employed for a large-scale root phenotyping. Our results further revealed that the root biomass positively contributes to increased seed yield in sesame, based on multi-environmental trials. By comparing the root transcriptome of two contrasting genotypes, 2897 differentially expressed genes were detected and they were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, flavonoid biosynthesis, suggesting that these pathways are crucial for sesame root growth and development. Overall, this study sheds light on the diversity of sesame root system and offers the basis for improving root traits and increasing sesame seed yield.


Assuntos
Sesamum/genética , Transcriptoma , Biomassa , Genótipo , Fenótipo , Óleos Vegetais/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Sesamum/anatomia & histologia , Sesamum/crescimento & desenvolvimento
19.
Cancer Biomark ; 26(3): 303-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31322543

RESUMO

Glutamate dehydrogenase (GDH) is a key enzyme in glutaminolysis and can regulate allosteric functions. Immunohistochemical study found that GDH expressed in gastric cancer cell cytoplasm and membrane, and a few located in the nucleus, ranging from light yellow to tan to sepia. According to the analysis by Kaplan Meier survival curve and the Log-Rank test, the median survival of GDH high expression in patients was 51.7 months with 95% confidence intervals (CI) was 41.138-55.262. The expression level of GDH was significantly reduced after silencing GDH gene in gastric cancer cells and tissues. Further, after silencing GDH gene, gastric cancer cell migration and invasion ability were decreased significantly. Protein expression of. In addition, tumor growth was significantly reduced after silencing GDH gene. In vivo and in vitro experiments suggest that GDH can decrease gastric cancer cell migration and invasion, thus inhibiting tumor growth.

20.
Front Physiol ; 10: 833, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333491

RESUMO

Low progesterone level is always linked with pre-term birth. Therefore, maintaining of progesterone level is vital during pregnancy. Aldo-keto reductase family one member C1 (AKR1C1) catalyzes the reduction of progesterone to its inactive form of 20-alpha-hydroxy-progesterone and thus limits the biological effect of progesterone. In our effort to identify the natural compound that would specifically inhibit AKR1C1, liquiritin was found to be a selective and potent inhibitor of AKR1C1. Kinetic analyses in the S-(+)-1,2,3,4-tetrahydro-1-naphthol (s-tetralol) catalyzed by AKR1C1 in the presence of the inhibitors suggest that liquiritin is a competitive inhibitor by targeting the residues Ala-27, Val-29, Ala-25, and Asn-56 of AKR1C1. In HEC-1-B cells, treatment with liquiritin results in 85.00% of reduction in progesterone metabolism, which is mediated by AKR1C1 enzymatic activity. Overall, our study not only identify liquiritin as an inhibitor against AKR1C1, but also reveal that liquiritin may be served as a potential intervention strategy for preventing pre-term birth caused by low progesterone level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA