Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.315
Filtrar
1.
Front Public Health ; 9: 697068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485227

RESUMO

Introduction: Social capital, the effective functioning of social groups through networks of relationships, can affect mental health and may be affected by COVID-19. We aimed to examine the changes in social capital before and after the COVID-19 lockdown among the Chinese youth. Methods: A national convenience sample of 10,540 high school, undergraduate, and graduate students, from the COVID-19 Impact on Lifestyle Change Survey (COINLICS), reported their demographic and social capital information before and after the COVID-19 lockdown. Social capital was retrospectively measured at four levels: individual (ISC), family (FSC), community (CSC), and society (SSC). The changes of social capital were also compared across three educational levels. Results: Overall, ISC and CSC scores generally decreased after lockdown (15.1 to 14.8 and 13.4 to 13.1, respectively), while FSC and SSC scores increased significantly (12.7 to 13.0 and 7.1 to 7.2, respectively). At the individual level, most participants showed a constant perceived social capital; more of the remaining participants showed decreased than increased ISC (30.5% vs. 17.0%) and CSC scores (28.4% vs. 19.1%), while more participants showed increased than decreased FSC (21.7% vs. 9.2%) and SSC scores (10.3% vs. 3.9%). Heterogeneities in social capital changes existed across educational levels. Conclusions: Our findings would provide health professionals and policy-makers solid evidence on the changes in social capital of youths after lockdowns, and therefore help the design of future interventions to rebuild or improve their social capital after epidemics/disasters.


Assuntos
COVID-19 , Capital Social , Adolescente , China , Controle de Doenças Transmissíveis , Humanos , Estilo de Vida , Estudos Retrospectivos , SARS-CoV-2
2.
Vaccine ; 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34521552

RESUMO

The development of an effective vaccine to control the global coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus- 2 (SARS-CoV-2) is of utmost importance. In this study, a synthetic DNA-based vaccine candidate, known as pSV10-SARS-CoV-2, expressing the SARS-CoV-2 spike protein was designed and tested in 39 BALB/c mice with BC01, an adjuvant derived from unmethylated CpG motif-containing DNA fragments from the Bacillus Calmette-Guerin genome. Mice vaccinated with pSV10-SARS-CoV-2 with BC01 produced early neutralizing antibodies and developed stronger humoral and cellular immune responses compared to mice that received the DNA vaccine only. Moreover, sera from mice vaccinated with pSV10-SARS-CoV-2 with BC01 can neutralize certain variants, including 614G, 614G + 472 V, 452R, 483A, 501Y.V2, and B.1.1.7. The results of this study demonstrate that the addition of BC01 to a DNA-vaccine for COVID-19 could elicit more effective neutralizing antibody titers for disease prevention.

3.
Talanta ; 235: 122793, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517651

RESUMO

The flavour analysis of volatile compounds remains challenging not only because of their diversity in properties and dynamic range, but also due to the high background noise from food matrix constituents. To improve sensitivity and specificity for a multiclass range of compounds, a combination of solid phase micro-extraction (SPME) devices and low energy electron ionisation (LE-EI) was proposed for the analysis of 36 volatile compounds, using coffee as a model matrix. From a pre-evaluation of devices and extraction modes, the combined use of direct immersion-stir bar sorptive extraction and headspace-thin-film SPME (SBSE-TFSPME) was selected to increase compound recovery, and further optimised for extraction temperature (88 °C) and time (110 min). Furthermore, to complement sample preparation by improving method specificity, a LE-EI technique was developed by evaluating the effect of ionisation energy, source temperature, and emission current on the formation of the diagnostic molecular ions and their preservation. This LE-EI method (15 eV, 150 °C, 0.3 µA) was validated with SBSE-TFSPME as a complete workflow in coffee matrices, and was found to possess good repeatability (intra-day RSD: 1.6-7.3 %), intermediate precision (inter-day RSD: 4.1-12.2 %), and linearity (R2 > 0.98). Even for complex coffee samples, the method detection limit reached the pg/mL range (e.g. 2,4,5-trimethylthiazole was detected at 15 pg/mL). In conclusion, this study provided insights on the potential of SPME and LE-EI to improve the sensitivity and specificity of analysis for a range of volatile compounds from food and other complex matrices.

4.
Food Res Int ; 148: 110607, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34507751

RESUMO

Changes in non-traditional indices of maturity, such as flavonoids and volatile compounds, during maturation were studied in Navel orange. Navel oranges were obtained at four stages of maturation, and non-volatile and volatile compounds in the peel and juice were analysed using liquid chromatography coupled with a quadrupole time-of-flight detector (LC-QTOF/MS) and gas chromatography with mass spectrometry and a flame ionisation detector (GC-MS/FID), respectively. Twenty-eight non-volatile and 62 volatile compounds in the peel as well as 22 non-volatile and 11 volatile compounds in the juice were found to have significant changes (p < 0.05) in abundances during maturation. Notably, most flavonoids (e.g. narirutin) and limonoids (e.g. nomilin) showed decreasing abundances during maturation. For volatile compounds, majority of detected alcohols peaked in abundances during middle maturation stages, while almost all detected aldehydes peaked at full maturity. Most terpenes peaked at earlier maturation stages in juice extracts compared to peel oil extracts. This comprehensive study could facilitate selection of Navel oranges for the extraction of valuable bioactive or flavour contributing compounds that are of interest to fragrance, flavour and nutraceutical industries.

5.
Mater Sci Eng C Mater Biol Appl ; 128: 112309, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474860

RESUMO

Recently, black phosphorus (BP) has garnered great attention as one of newly emerging two-dimensional nanomaterials. Especially, the degraded platelets of BP in the physiological environment were shown to be nontoxic phosphate anions, which are a component of bone tissue and can be used for mineralization. Here, our study presents the potential of BP as biofunctional and biocompatible nanomaterials for the application to bone tissue engineering and regeneration. An ultrathin layer of BP nanodots (BPNDs) was created on a glass substrate by using a flow-enabled self-assembly process, which yielded a highly uniform deposition of BPNDs in a unique confined geometry. The BPND-coated substrates represented unprecedented favorable topographical microenvironments and supportive matrices suitable for the growth and survival of MC3T3-E1 preosteoblasts. The prepared substrates promoted the spontaneous osteodifferentiation of preosteoblasts, which had been confirmed by determining alkaline phosphatase activity and extracellular calcium deposition as early- and late-stage markers of osteogenic differentiation, respectively. Furthermore, the BPND-coated substrates upregulated the expression of some specific genes (i.e., RUNX2, OCN, OPN, and Vinculin) and proteins, which are closely related to osteogenesis. Conclusively, our BPND-coating strategy suggests that a biologically inert surface can be readily activated as a cell-favorable nanoplatform enabled with excellent biocompatibility and osteogenic ability.


Assuntos
Osteoblastos , Osteogênese , Diferenciação Celular , Fósforo , Engenharia Tecidual
6.
Eur J Pharmacol ; 910: 174485, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34487706

RESUMO

Intimal hyperplasia-induced restenosis is a common response to vascular endothelial damage caused by mechanical force or other stimulation, and is closely linked to vascular remodeling. Curcumin, a traditional Chinese medicine, exhibits potent protective effects in cardiovascular diseases; for example, it attenuates vascular remodeling. Although the suppressive effects of curcumin on diseases caused by vascular narrowing have been investigated, the underlying mechanisms remain unknown. Long non-coding RNAs (lncRNAs) regulate various pathological processes and affect the action of drugs. In the present study, we found that the curcumin remarkably downregulated the expression of lncRNA H19 and thereby inhibited intimal hyperplasia-induced vascular restenosis. Furthermore, the inhibition of the expression of H19 by curcumin resulted in the inactivation of the Wnt/ß-catenin signaling. Overall, we show that curcumin suppresses intimal hyperplasia via the H19/Wnt/ß-catenin pathway, implying that H19 is a critical molecule in the suppression of intimal hyperplasia after balloon injury by curcumin. These insights should be useful for potential application of curcumin as a therapeutic intervention in vascular stenosis.

7.
J Mater Chem B ; 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505861

RESUMO

Ferroptosis, distinct from apoptosis, is a regulated form of cell death caused by lipid peroxidation that has attracted extensive research interest since it was first defined in 2012. Over the past five years, an increasing number of studies have revealed the close relationship between ferroptosis and materials chemistry, in particular nanobiotechnology, and have concluded that nanotechnology-triggered ferroptosis is an efficient and promising antitumor strategy that provides an alternative therapeutic approach, especially for apoptosis-resistant tumors. In this review, we summarize recent advances in ferroptosis-induced tumor therapy at the intersection of materials chemistry, redox biology, and tumor biology. The biological features and molecular mechanisms of ferroptosis are first outlined, followed by a summary of the feasible strategies to induce ferroptosis using nanomaterials and the applications of ferroptosis in combined tumor therapy. Finally, the existing challenges and future development directions in this emerging field are discussed, with the aim of promoting the progress of ferroptosis-based oncotherapy in materials science and nanoscience and enriching the antitumor arsenal.

8.
Pharmacol Ther ; : 107966, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34403682

RESUMO

Phosphorylation is a reversible post-translational modification regulated by phosphorylase and dephosphorylase to mediate important cellular events. Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by PTPN11 is the first identified oncogenic protein in protein tyrosine phosphatases family. Serving as a convergent node, SHP2 is involved in multiple cascade signaling pathways including Ras-Raf-MEK-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 pathways. Especially, the double-edged roles of SHP2 based on the substrate specificity in various biological contexts dramatically increase the effect complexity in different SHP2-associated diseases. Evidences suggest that by collaborating with other mutations in associated pathways, dysregulation of SHP2 contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer treatment. SHP2 can either act as oncogenic factor or tumor suppressor in different diseases, and both the conserved catalytic dephosphorylation mechanism and the unique allosteric regulation mechanism of SHP2 provide opportunities for the development of SHP2 inhibitors and activators. To date, several small-molecule SHP2 inhibitors have advanced into clinical trials for mono- or combined therapy of cancers. Moreover, SHP2 activators and proteolysis-targeting chimera (PROTAC)-based degraders also display therapeutic promise. In this review, we comprehensively summarize the overall structures, regulation mechanisms, double-edged roles of SHP2 in both physiological and carcinogenic pathways, and SHP2 inhibitors in clinical trials. SHP2 activators and degraders are also briefly discussed. This review aims to provide in-depth understanding of the biological roles of SHP2 and highlight therapeutic potential of targeting SHP2.

9.
mSystems ; : e0069421, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34427511

RESUMO

Misuse and overuse of antibiotics drive the selection and spread of antibiotic-resistant bacteria. Although genetic mutations have been well defined for different types of antibiotic resistance, ways to revert antibiotic resistance are largely unexplored. Here, we adopted a proteomics approach to investigate the mechanism underlying ciprofloxacin resistance in Edwardsiella tarda, a representative pathogen that infects both economic animal species and human beings. By comparing the protein expression profiles of ciprofloxacin-sensitive and -resistant E. tarda, a total of 233 proteins of differential abundance were identified, where 53 proteins belong to the functional categories of metabolism, featuring a disrupted pyruvate cycle and decreased energy metabolism but increased fatty acid biosynthesis. The altered pyruvate cycle and energy metabolism were confirmed by gene expression and biochemical assays. Furthermore, the role of fatty acid biosynthesis and quinolone resistance were explored. The expression level and enzymatic activity of acetyl coenzyme A (acetyl-CoA) carboxylase, the first step of fatty acid biosynthesis, were increased in ciprofloxacin-resistant E. tarda. Treatment of ciprofloxacin-resistant E. tarda with acetyl-CoA carboxylase and 3-oxoacyl-[acyl carrier protein] synthase II inhibitors, 2-aminooxazole and triclosan, respectively, reduced the expression of fatty acid biosynthesis and promoted quinolone-mediated killing efficacy to antibiotic-resistant bacteria. Similar results were obtained in clinically isolated E. tarda strains. Our study suggests that energy metabolism has been reprogramed in ciprofloxacin-resistant bacteria that favor the biosynthesis of fatty acid, presenting a novel target to tackle antibiotic-resistant bacteria. IMPORTANCE Edwardsiella tarda is the causative agent of edwardsiellosis, which imposes huge challenges on clinics and aquaculture. Due to the overuse of antibiotics, the emergence and spread of antibiotic-resistant E. tarda threaten human health and animal farming. However, the mechanism of ciprofloxacin resistance in E. tarda is still lacking. Here, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomics was performed to identify a differential proteome between ciprofloxacin-sensitive and -resistant E. tarda. The fluctuated pyruvate cycle and reduced energy metabolism and elevated fatty acid biosynthesis are metabolic signatures of ciprofloxacin resistance. Moreover, inhibition of biosynthesis of fatty acids promotes quinolone-mediated killing efficacy in both lab-evolved and clinically isolated strains. This study reveals that a ciprofloxacin resistance mechanism is mediated by the elevated biosynthesis of fatty acids and the depressed pyruvate metabolism and energy metabolism in E. tarda. These findings provide a novel understanding for the ciprofloxacin resistance mechanism in E. tarda.

10.
Medicine (Baltimore) ; 100(32): e26881, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34397905

RESUMO

ABSTRACT: Radix Isatidis (Banlangen) is a well-known traditional Chinese medicine for the treatment of different diseases and prevention of many body disorders. Besides, it also plays a pivotal role in novel coronavirus pneumonia, coronavirus disease 2019 (COVID-19). However, few researchers know its active ingredients and mechanism of action for COVID-19. To find whether Banlangen has a pharmacological effect on COVID-19. In this research, we systematically analyze Banlangen and COVID-19 through network pharmacology technology. A total of 33 active ingredients in Banlangen, 92 targets of the active ingredients, and 259 appropriate targets of COVID-19 were obtained, with 11 common targets. The analysis of the biological process of gene ontology and the enrichment of Kyoto Encyclopedia of Genes and Genomes signaling pathway suggests that Banlangen participated in the biological processes of protein phosphatase binding, tetrapyrrole binding, the apoptotic process involving cysteine-type endopeptidase activity, etc. The COVID-19 may be treated by regulating advanced glycation end products/a receptor for advanced glycation end products signaling pathway, interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, sphingolipid signaling pathway, and p53 signaling pathway. Banlangen has a potential pharmacological effect on COVID-19, which has the value of further exploration in the following experiment and clinical application.


Assuntos
COVID-19/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/normas , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Mapeamento de Interação de Proteínas/métodos
11.
Clin Nutr ; 40(8): 4980-4987, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34364237

RESUMO

BACKGROUND: Body composition profiles influence the prognosis of several types of cancer; however, the role of body composition in patients with locally advanced gastric cancer (LAGC) after neoadjuvant treatment (NT) has not been well characterized. PATIENTS AND METHODS: A total of 213 patients with LAGC who underwent gastrectomy after NT at a high-volume institution from southern China were comprehensively evaluated for primary analysis. Additionally, 170 and 77 patients from Western China and Italy, respectively, were reviewed for external validation. The skeletal muscle index (SMI), skeletal muscle radiodensity (SMD), and the subcutaneous as well as the visceral adiposity index were assessed from clinically acquired CT scans at diagnosis and preoperatively. RESULTS: Overall, none of the body composition parameters significantly changed after NT. The pre-NT skeletal muscle radiodensity (SMD) and change in SMI (ΔSMI) were both significantly lower in the patients with poor response (tumor regression <50%; mean SMD: 43.5 vs 46.5, P = 0.003; mean ΔSMI: -1.0 vs 2.2, P < 0.001), and the cutoff values were calculated according to the Youden index as 43.7 and 1.2, respectively. Based on these 2 parameters, a novel model, the Skeletal Muscle Score (SMS), was proposed to predict the pathological response (AUC = 0.764 alone and = 0.822 in combination with the radiological response). Moreover, patients with an SMI loss >1.2 had a significantly prolonged drainage tube removal time (mean: 10.0 vs 8.2, P = 0.003) and postoperative hospital stay (mean: 11.1 vs 9.8, P = 0.048), as well as a significantly higher rate of postoperative complications (30.9% vs 16.7%, P = 0.015). In the multivariate analysis, SMI loss >1.2 independently predicted poor overall survival (HR: 1.677, 95% CI 1.040-2.704, P = 0.034) and recurrence-free survival (HR: 1.924, 95% CI 1.165-3.175, P = 0.011). ΔSMI was also significantly associated with pathological response, surgical outcomes, and survival in the 2 external cohorts (P all < 0.05). CONCLUSIONS: For LAGC, the pre-NT SMD and ΔSMI could accurately predict the pathological response after NT. An SMI loss >1.2 is closely associated with poorer outcomes and may indicate the need more supportive treatment.

12.
Comput Biol Med ; 136: 104676, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34375902

RESUMO

Analysis and prediction of drug-target interactions (DTIs) play an important role in understanding drug mechanisms, as well as drug repositioning and design. Machine learning (ML)-based methods for DTIs prediction can mitigate the shortcomings of time-consuming and labor-intensive experimental approaches, while providing new ideas and insights for drug design. We propose a novel pipeline for predicting drug-target interactions, called DNN-DTIs. First, the target information is characterized by a number of features, namely, pseudo-amino acid composition, pseudo position-specific scoring matrix, conjoint triad composition, transition and distribution, Moreau-Broto autocorrelation, and structural features. The drug compounds are subsequently encoded using substructure fingerprints. Next, eXtreme gradient boosting (XGBoost) is used to determine the subset of non-redundant features of importance. The optimal balanced set of sample vectors is obtained by applying the synthetic minority oversampling technique (SMOTE). Finally, a DTIs predictor, DNN-DTIs, is developed based on a deep neural network (DNN) via a layer-by-layer learning scheme. Experimental results indicate that DNN-DTIs achieves better performance than other state-of-the-art predictors with ACC values of 98.78%, 98.60%, 97.98%, 98.24% and 98.00% on Enzyme, Ion Channels (IC), GPCR, Nuclear Receptors (NR) and Kuang's datasets. Therefore, the accurate prediction performance of DNN-DTIs makes it a favored choice for contributing to the study of DTIs, especially drug repositioning.

14.
J Proteomics ; 248: 104351, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411762

RESUMO

Ocular surface changes may develop in patients with chronic renal failure (CRF) undergoing hemodialysis. In recent years, an association of CRF with dry eye syndrome has been emphasized. However, tear proteomics of CRF patients has not been analyzed. Here, we performed systematic profiling of the tear film proteins in CRF patients through use of isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS, aiming to identify associations between dry eye symptoms and expression of tear proteomic changes in patients with CRF undergoing hemodialysis. Twenty CRF patients and ten healthy subjects underwent a series of ophthalmic examinations. Tear samples from the participants were analyzed by iTRAQ approach. A total of 1139 tear proteins were screened, and 212 differentially expressed proteins were identified. The pattern changes included 77 whose expression levels were upregulated (fold increase >1.2) whereas 135 others that were downregulated (fold decrease <1/1.2). Bioinformatics analysis showed that these proteins were significantly enriched in lipid metabolism, inflammatory, and immune response pathways. Furthermore, APOA1, APOA4, APOB, APOE, S100A8, S100A9, S100A4, HSP90B and other molecules were significantly changed. Our study elucidated the characteristics of tear dynamics and protein markers in CRF patients undergoing hemodialysis. Significance: Despite the association of chronic renal failure (CRF) with dry eye disease, there are no reports describing potentially important differentially expressed tear proteins in CRF patients undergoing hemodialysis. It is still a challenge to obtain a comprehensive description of the pathogenesis of dry eye in CRF patients which hinders establishing a patient specific therapeutic scheme. Our study is the first iTRAQ proteomics analysis of the tears of patients with CRF, which reveals the changes in the protein expression profile in CRF patients afflicted with dry eye disease. The identity was verified of some relevant differentially expressed proteins, and they may be candidate diagnostic markers of dry eye disease in patients with CRF. These tear film protein constituents found in hemodialysis patients can be of important clinical significance in treating this condition. SIGNIFICANCE: Despite the association of chronic renal failure (CRF) with dry eye disease, there are no reports describing potentially important differentially expressed tear proteins in CRF patients undergoing hemodialysis. It is still a challenge to obtain a comprehensive description of the pathogenesis of dry eye in CRF patients which hinders establishing a patient specific therapeutic scheme. Our study is the first iTRAQ proteomics analysis of the tears of patients with CRF, which reveals the changes in the protein expression profile in CRF patients afflicted with dry eye disease. The identity was verified of some relevant differentially expressed proteins, and they may be candidate diagnostic markers of dry eye disease in patients with CRF. These tear film protein constituents found in hemodialysis patients can be of important clinical significance in treating this condition.

15.
Aging (Albany NY) ; 13(15): 19260-19271, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341185

RESUMO

SBF2-AS1 is an oncogenic long non-coding RNA (lncRNA). However, its role and mechanism in hepatocellular carcinoma (HCC) is still not completely clear. The HepG2, Hep3B, Bel-7402 and HL-7702 cell lines were used in our experiments. The CCK-8 kit and EdU staining were applied to detect cell viability and multiplication. The wound healing and Boyden chamber cell migration assays were employed to test the migration ability of cells. The levels of TGF-ß1 mRNA, lncRNA SBF2-AS1, and miR-361-5p were assessed by real-time PCR. TGF-ß1 protein levels were evaluated by western blotting. The direct interaction between miR-361-5p and TGF-ß1 was determined by luciferase reporter assays. A xenograft mouse model (XMM) was established to comprehensively study the effect and mechanisms of lncRNA SBF2-AS1. lncRNA SBF2-AS1 concentration in HCC cells exceeded that in a normal hepatocyte cell line. The downregulation of lncRNA SBF2-AS1 upregulated miR-361-5p levels in HCC cells. And, miR-361-5p negatively regulate TGF-ß1 expression in HCC cells. The suppression of miR-361-5p attenuated the influence of lncRNA SBF2-AS1 downregulation on the viability, proliferation, and migration capability of HCC cells. Further, the downregulation of lncRNA SBF2-AS1 inhibited neoplasm growth in an XMM of HCC. Simultaneously, miR-361-5p was upregulated and TGF-ß1 was downregulated after lncRNA SBF2-AS1 knocked down. In conclusion, downregulation of lncRNA SBF2-AS1 inhibits HCC proliferation and migration through the regulation of the miR-361-5p/TGF-ß1 signaling pathway.

16.
Inorg Chem ; 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34337951

RESUMO

We report the construction of a porphyrin and imidazolium-ionic liquid (IL)-decorated and quinoline-linked covalent organic framework (COF, abbreviated as COF-P1-1) via a three-component one-pot Povarov reaction. After post-synthetic metallization of COF-P1-1 with Co(II) ions, the metallized COF-PI-2 is generated. COF-PI-2 is chemically stable and displays highly selective CO2 adsorption and good visible-light-induced photothermal conversion ability (ΔT = 26 °C). Furthermore, the coexistence of Co(II)-porphyrin and imidazolium-IL within COF-PI-2 has guaranteed its highly efficient activity for CO2 cycloaddition. Of note, the needed thermal energy for the reactions is derived from the photothermal conversion of the Co(II)-porphyrin COF upon visible-light irradiation. More importantly, the CO2 cycloaddition herein is a "window ledge" reaction, and it can proceed smoothly upon natural sunlight irradiation. In addition, a scaled-up CO2 cycloaddition can be readily achieved using a COF-PI-2@chitosan aerogel-based fixed-bed model reactor. Our research provides a new avenue for COF-based greenhouse gas disposal in an eco-friendly and energy- and source-saving way.

17.
BMC Musculoskelet Disord ; 22(1): 682, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384390

RESUMO

BACKGROUND: Little information was obtained from the published papers about the kinematic coupling effect between tarsal bones during Ponseti manipulation. The aim was to explore the kinematic coupling effect of the joints around talus, to investigate the kinematic rhythm and coupling relationship of tarsal joints; to clarify the pulling effect on medial ligament of the ankle during the process of Ponseti manipulation. METHODS: The model of foot and ankle was reconstructed from the Chinese digital human girl No.1 (CDH-G1) image database. Finite element analysis was applied to explore the kinematic coupling effect of the joints around talus. The distal tibia and fibula bone and the head of talus were fixed in all six degrees of freedom; outward pressure was added to the first metatarsal head to simulate the Ponseti manipulation. Kinematic coupling of each tarsal joint was investigated using the method of whole model splitting, and medial ligament pulling of the ankle was studied by designing the model of medial ligament deletion during the Ponseti manipulation. RESULTS: All the tarsal joints produced significant displacement in kinematic coupling effect, and the talus itself produced great displacement in the joint of ankle. Quantitative analysis revealed that the maximum displacement was found in the joints of talonavicular (12.01mm), cuneonavicular (10.50mm), calcaneocuboid (7.97mm), and subtalar(6.99mm).The kinematic coupling rhythm between talus and navicular, talus and calcaneus, calcaneus and cuboid, navicular and cuneiform 1 were 1:12, 1:7, 1:2 and 1:1.6. The results of ligaments pulling showed that the maximum displacement was presented in the ligaments of tibionavicular (mean 27.99mm), talonavicular (21.03mm), and calcaneonavicular (19.18 mm). CONCLUSIONS: All the tarsal joints around talus were involved in the process of Ponseti manipulation, and the strongest kinematic coupling effect was found in the joints of talonavicular, subtalar, calcaneocuboid, and cuneonavicular. The ligaments of tibionavicular, talonavicular, and calcaneonavicular were stretched greatly. It was suggested that the method of Ponseti management was a complex deformity correction processes involved all the tarsal joints. The present study contributed to better understanding the principle of Ponseti manipulation and the pathoanatomy of clubfoot. Also, the importance of cuneonavicular joint should be stressed in clinical practice.


Assuntos
Tálus , Articulações Tarsianas , Articulação do Tornozelo , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Humanos
18.
J Phys Chem Lett ; : 8121-8128, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410136

RESUMO

Nitrate (NO3-) reduction reaction (NtRR) is considered as a green alternative method for the conventional method of NH3 synthesis (Haber-Bosch process), which is known as a high energy consuming and large CO2 emitting process. Herein, the copper nanodendrites (Cu NDs) grown along with the {200} facet as an efficient NtRR catalyst have been successfully fabricated and investigated. It exhibited high Faradaic efficiency of 97% at low potential (-0.3 V vs RHE). Furthermore, the 15NO3- isotope labeling method was utilized to confirm the formation of NH3. Both experimental and theoretical studies showed that NtRR on the Cu metal nanostructure is a facet dependent process. Dissociation of NO bonding is supposed to be the rate-determining step as NtRR is a spontaneously reductive and protonation process for all the different facets of Cu. Density functional theory (DFT) calculations revealed that Cu{200} and Cu{220} offer lower activation energy for dissociation of NO compared to that of Cu{111}.

19.
J Biomed Inform ; : 103872, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34411709

RESUMO

OBJECTIVE: We aim to build an accurate machine learning-based system for classifying tumor attributes from cancer pathology reports in the presence of a small amount of annotated data, motivated by the expensive and time-consuming nature of pathology report annotation. An enriched labeling scheme that includes the location of relevant information along with the final label is used along with a corresponding hierarchical method for classifying reports that leverages these enriched annotations. MATERIALS AND METHODS: Our data consists of 250 colon cancer and 250 kidney cancer pathology reports from 2002-2019 at the University of California, San Francisco. For each report, we classify attributes such as procedure performed, tumor grade, and tumor site. For each attribute and document, an annotator trained by an oncologist labeled both the value of that attribute as well as the specific lines in the document that indicated the value. We develop a model that uses these enriched annotations that first predicts the relevant lines of the document, then predicts the final value given the predicted lines. We compare our model to multiple state-of-the-art methods for classifying tumor attributes from pathology reports. RESULTS: Our results show that across colon and kidney cancers and varying training set sizes, our hierarchical method consistently outperforms state-of-the-art methods. Furthermore, performance comparable to these methods can be achieved with approximately half the amount of labeled data. CONCLUSION: Document annotations that are enriched with location information are shown to greatly increase the sample efficiency of machine learning methods for classifying attributes of pathology reports.

20.
Hum Immunol ; 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34412918

RESUMO

Growth differentiation factor-15 (GDF-15), a member of the TGF-ß superfamily, plays multiple roles in a wide variety of cellular processes. It is expressed at low levels under normal conditions but is highly expressed in tumor and tumor microenvironment (TME)-related cells, such as fibroblasts and immune cells. The TME consists of the noncancerous cells present in the tumor, including immune cells, fibroblasts, blood vessel signaling molecules and extracellular matrix, which play a key role in tumor development. GDF-15 affects both stromal cells and immune cells in the TME. It also acts on immune checkpoints, such as PD-1/PDL-1 that regulate stemness of cancer cells, indicating that GDF-15 plays a prominent role in cancer, exhibiting both protumorigenic and antitumorigenic effects, although the latter are reported much less often than the former. The present review addresses novel ideas regarding communication between GDF-15 and stromal cells, immune cells, and cancer cells in the TME. In addition, it discusses the possibility of GDF-15's clinical application as a diagnostic biomarker and therapeutic target in cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...