Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
1.
Talanta ; 221: 121493, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076098

RESUMO

The non-specific adsorption of protein has caused many problems in the application of materials. In this paper, a tri-block copolymer PEO-PNIPAAm-PSPMAP with double effects were obtained via atom transfer radical copolymerization (ATRP). The double-effect copolymer is covalently bonded to the hydrophobic material through a photosensitizer to achieve surface modification and applied to analytical chemistry. Sufficient hydratable groups (for instance, ether bonds, amide groups, and sulfonic acid groups) in the copolymer provides a basis for the anti-protein adsorption. At the same time, the interaction of the hydrophilic group and isopropyl group with temperature changes provides the possibility of elastic self-cleaning of the material, which is instrumental in extending the circulate lifetime of materials. Therefore, it is an environmentally friendly coating material. Besides, the effective antifouling performance and elastic self-cleaning function of the coating have been confirmed by the dynamic adsorption experiment of a fluorescent protein. The coating is used in capillary electrophoresis (CE), and its excellent protein separation spectrum verifies the practicality of the coating.

2.
Int J Neurosci ; : 1-8, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33153335

RESUMO

OBJECTIVE: The purpose of the present study was to investigate the remodeling pattern of the extracranial occluded internal carotid artery (OICA) by vessel wall magnetic resonance imaging (VWI). METHODS: Thirty-nine atherosclerotic OICAs from 32 consecutive cases underwent 3-Tesla VWI to acquire pre- and post-contrast T1-weighted two-dimensional fluid-attenuated inversion recovery fast spin echo sequences. 25 symptomatic CAs exhibited ipsilateral downstream cerebral ischemia or ophthalmic artery embolism within last three months. The 14 remaining CAs were asymptomatic. Twenty-four CAs from 22 patients with atherosclerosis but no stenosis were recruited as control group. The outer wall area (OWA) was calculated based on the outer contour of the carotid artery drawn on the pre-contrast VWI. Negative remodeling was defined as a lower OWA compared to that of control group. RESULTS: Clinical characteristics including age, sex and vascular risk factors showed no significant difference between the occluded and control group. However, the OWA was lower in the occluded group than in the control group (0.63 versus 0.90 cm2, p = 0.004). For all OICAs, the OWA was larger in symptomatic cases than asymptomatic cases (0.71 versus 0.49cm2, p = 0.025). Using a cutoff value of 0.44, the sensitivity and specificity of OWA for detecting symptomatic OICA were 0.88 and 0.57, respectively. Heterogeneous signal intensity and enhancement were more often observed at the proximal than the distal segment of occlusion (p < 0.001). The inter-observer agreement regarding the evaluation of VWI characteristics was desirable (κ = 0.805 ∼ 0.847). CONCLUSIONS: Negative remodeling is prevalent in OICA, especially in asymptomatic cases.

3.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(11): 1143-1148, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33172545

RESUMO

Pharmacogenomics is an emerging tool to improve the efficacy and safety of drug treatment through the DNA analysis in the genes related to drug concentrations (pharmacokinetics) and drug actions (pharmacodynamics). Clinicians need to integrate the genomic data in their benefit-risk assessment and then provide the right drug to the right patient at the right time. This tool can help to prevent an ineffective treatment, select right dose and reduce adverse drug reactions that are common in the current practice under the trial-observation-adjustment model. Pharmacogenomics may have extensive impacts on unique paediatric patients to enhance a better relationship between medical professionals and affected children or their guardians and to improve the drug compliance. Clinicians should embrace the advancements in pharmacogenomics and actively participate in clinical research to identify the ancestor-related alleles and develop the population-specific gene panel. It will allow patients to enjoy more achievements in pharmacogenomics by implementing it in first line clinical practice.

4.
Biosensors (Basel) ; 10(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198131

RESUMO

Proper ventilation of a patient with an endotracheal tube (ETT) requires proper placement of the ETT. We present a sensitive, noninvasive, operator-free, and cost-effective optical sensor, called Opt-ETT, for the real-time assessment of ETT placement and alerting of the clinical care team should the ETT become displaced. The Opt-ETT uses a side-firing optical fiber, a near-infrared light-emitting diode, two photodetectors with an integrated amplifier, an Arduino board, and a computer loaded with a custom LabVIEW program to monitor the position of the endotracheal tube inside the windpipe. The Opt-ETT generates a visual and audible warning if the tube moves over a distance set by the operator. Displacement prediction is made using a second-order polynomial fit to the voltages measured from each detector. The system is tested on ex vivo porcine tissues, and the accuracy is determined to be better than 1.0 mm. In vivo experiments with a pig are conducted to test the performance and usability of the system.

5.
Pharm Biol ; 58(1): 1115-1122, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33191819

RESUMO

CONTEXT: Nephrolithiasis is a major public health problem worldwide and Fu-Fang-Jin-Qian-Cao granules (FFJQC) is a traditional Chinese herbal formula that is used to treat nephrolithiasis. The main component of nephrolithiasis is calcium oxalate (CaOx) and the epithelial-mesenchymal transition (EMT) shown to play a crucial role in CaOx-induced kidney injury. However, the mechanism underlying the therapeutic effect of FFJQC on the CaOx-induced renal EMT is unknown. OBJECTIVE: This study explores the therapeutic benefits and mechanism of FFJQC in oxalate-induced kidney injury. MATERIALS AND METHODS: 60 male C57BL/6 mice were used in this experiment and divided into 6 groups. A mouse kidney stone model was created by intraperitoneal injection of glyoxylate at a dose of 100 mg/kg for 6 days. The standardized FFJQC was used to treat mouse crystal kidney injury by gavage at 1.35 and 2.7 g/kg, respectively. Western blotting and immunostaining for E-cadherin, cytokeratin 18 (CK18), vimentin, smooth muscle α-actin (α-SMA) and transforming growth factor ß (TGF-ß)/Smad pathway were conducted on renal tissues. RESULTS: Following CaOx-induced kidney injury, the levels of E-cadherin and CK18 in kidney decreased, while vimentin and α-SMA levels increased. The FFJQC treatment increased the levels of E-cadherin and CK18 and decreased vimentin and α-SMA levels in varying degrees. What's more, the FFJQC reduced the expression of CaOx-induced fibrosis marker collagen II. CONCLUSION: FFJQC alleviated the CaOx-induced renal EMT and fibrosis by regulating TGF-ß/smad pathway. Therefore, the FFJQC is an important traditional Chinese medicine for the treatment of CaOx-induced renal injury and fibrosis.

6.
Biomed Res Int ; 2020: 1395304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224970

RESUMO

Purpose: ß-Defensin 118 (DEFB118) is a novel host defense peptide (HDP) identified in humans. To evaluate its potentials for future utilization, the DEFB118 gene was expressed in Escherichia coli (E. coli) and the recombinant protein was fully characterized. Methods: The DEFB118 protein was obtained by heterologous expression using E. coli Rosetta (DE3). Antibacterial activity of DEFB118 was determined by using various bacterial strains. IPEC-J cells challenged by E. coli K88 were used to determine its influences on inflammatory responses. Results: The E. coli transformants yielded more than 250 µg/mL DEFB118 protein after 4 h induction by 1.0 mM IPTG. The DEFB118 was estimated by SDS-PAGE to be 30 kDa, and MALDI-TOF analysis verified that it is a human ß-defensin 118. Importantly, the DEFB118 showed antimicrobial activities against both Gram-negative bacteria (E. coli K88 and E. coli DH5α) and Gram-positive bacteria (S. aureus and B. subtilis), with a minimum inhibitory concentration (MIC) of 4 µg/mL. Hemolytic assays showed that DEFB118 had no detrimental impact on cell viability. Additionally, DEFB118 was found to elevate the viability of IPEC-J2 cells upon E. coli K88 challenge. Moreover, DEFB118 significantly decreased cell apoptosis in the late apoptosis phase and downregulated the expression of inflammatory cytokines such as IL-1ß and TNF-α in IPEC-J2 cell exposure to E. coli K88. Conclusions: These results suggested a novel function of the mammalian defensins, and the antibacterial and anti-inflammatory properties of DEFB118 may allow it as a potential substitute for conventionally used antibiotics or drugs.

7.
Inorg Chem ; 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33135414

RESUMO

Transition metal chalcogenide quantum dots (TMC QDs) represent promising light-harvesting antennas because of their fascinating physicochemical properties including quantum confinement effect and suitable energy band structures. However, TMC QDs generally suffer from poor photoactivities and photostability due to deficiency of active sites and ultrafast recombination rate of photoinduced charge carriers. Here, we demonstrate how to rationally arouse the charge transfer kinetic of TMC QDs by close monolayered graphene (GR) encapsulation via a ligand-dominated layer-by-layer (LbL) assembly utilizing oppositely charged TMC QDs and GR nanosheets as the building blocks. The assembly units were spontaneously and intimately integrated in an alternate integration mode, thereby resulting in the multilayered three-dimensional (3D) TMC QDs/GR ensembles. It was unveiled that multifarious photoactivities of TMC QDs/GR nanocomposites toward versatile photoredox organic catalysis including photocatalytic aromatic alcohols oxidation to aldehydes and nitroaromatics reduction to amino derivatives under visible light irradiation are conspicuously boosted because of spatially multilayered monolayered GR encapsulation which are superior to those of TMC QDs counterparts. The substantially enhanced photoactivities of TMC QDs/GR nanocomposites arise from reasons including improved light absorption and enhanced charge separation efficacy because of GR encapsulation together with unique stacking mode between TMC QDs and GR endowed by LbL assembly. Our work would provide a promising and efficacious route to smartly accelerate the charge transfer kinetic of TMC QDs for solar energy conversion.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33185791

RESUMO

Antibiotics are widely used to treat various inflammatory bowel diseases caused by enterotoxigenic Escherichia coli (ETEC). However, continuous use of antibiotics may lead to drug resistance. In this study, we investigated the role of human ß-defensin 118 (DEFB118) in regulating the ETEC-induced inflammation and intestinal injury. ETEC-challenged or non-challenged mice were treated by different concentrations of DEFB118. We show that ETEC infection significantly increased fecal score (P < 0.05) and serum concentrations of interlukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Moreover, the concentrations of D-lactic acid, C-reactive protein (CRP), creatinine (CREA), and urea (P < 0.05) were both increased in the ETEC-challenged mice. However, DEFB118 significantly decreased their concentrations in the serum (P < 0.05). DEFB118 not only alleviated tissue damage in spleen upon ETEC challenge, but also increased the villus height in duodenum and ileum (P < 0.05). Moreover, DEFB118 improved the localization and abundance of tight junction protein ZO-1 in jejunal epithelium. Interestingly, DEFB118 decreased the expression levels of critical genes involving in mucosal inflammatory responses (NF-κB, TLR4, IL-1ß, and TNF-α) and the apoptosis (caspase3) upon ETEC challenge (P < 0.05), whereas DEFB118 significantly upregulated the expression of mucosa functional genes such as the mucin1 (MUC1) and sodium-glucose transporter-1 (SGLT-1) in the ETEC-challenged mice (P < 0.05). These results indicated a novel function of the DEFB118. The anti-inflammatory effect of DEFB118 should make it an attractive candidate to prevent various bacteria-induced inflammatory bowel diseases.

9.
Food Funct ; 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33196069

RESUMO

Daidzein (DAI) is a kind of natural isoflavonic phytoestrogen with estrogenic activity. However, little is known about its influence on early fetal growth in mammalian animals. The current study aimed to explore the characteristics of amniotic fluid exposure to dietary DAI using 1H NMR-based metabolomics and biochemical analysis. Here, we found that DAI supplementation at a dose of 200 mg kg-1 significantly enhanced the number of viable embryos at the early gestation stage (P < 0.05). DAI significantly elevated the concentrations of estrogen (E) and insulin-like growth factor-I (IGF-I) in the amniotic fluid (P < 0.05). Moreover, DAI tended to increase the concentration of progesterone, but decrease the concentration of tumor necrosis factor α (TNF-α) in the amniotic fluid (0.05 < P < 0.10). Interestingly, the activity of glutathione peroxidase (GSH-Px) was higher in the DAI group than in the CON group (P < 0.05). An 1H NMR-based metabolomics analysis identified and quantified more than 30 compounds in the amniotic fluid, and some critical metabolites such as arginine, creatine, and citrate were found to be significantly elevated upon DAI supplementation (P < 0.05). Importantly, the metabolic pathways involved in arginine and proline metabolisms were found to be significantly affected by DAI. Collectively, dietary DAI may improve embryo survival by improving hormones, antioxidant capacity, and metabolic profiles in the maternal amniotic fluid.

10.
J Org Chem ; 85(22): 14744-14752, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33136392

RESUMO

A metal-free and base-free procedure for the phosphorylation of imidazo[1,2-a]pyridines with phosphine oxides under the irradiation of visible light at room temperature in green solvent was reported, featuring mild and sustainable conditions, convenient operation, as well as good functional group compatibility.

11.
Food Funct ; 11(11): 9599-9612, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33151222

RESUMO

To explore the protective effect of Fructooligosaccharides (FOS) against Enterotoxigenic Escherichia coli (ETEC)-induced inflammation and intestinal injury, twenty-four weaned pigs were randomly assigned into three groups: (1) non-challenge (CON, fed with basal diet), (2) ETEC-challenge (ECON, fed with basal diet), and (3) ETEC challenge + FOS treatment (EFOS, fed with basal diet plus 2.5 g kg-1 FOS). On day 19, the CON group was orally infused with sterilized culture while pigs in the ECON group and EFOS group were orally infused with ETEC (2.5 × 1011 colony-forming units). After 3 days, pigs were slaughtered for sample collection. We showed that ETEC challenge significantly reduced average daily gain (ADG); however, FOS improved the ADG (P < 0.05), apparent digestibility of crude protein (CP), gross energy (GE), and ash and reduced the diarrhea incidence (P < 0.05). FOS reduced plasma concentrations of IL-1ß and TNF-α and down-regulated (P < 0.05) the mRNA expression of IL-6 and TNF-α in the jejunum and ileum as well as IL-1ß and TNF-α in the duodenum. The concentrations of plasma immunoglobulin A (IgA), immunoglobulin M (IgM) and secreted IgA (SIgA) in the jejunum (P < 0.05) were elevated. Interestingly, FOS elevated the villus height in the duodenum, and elevated the ratio of villus height to crypt depth in the duodenum and ileum in the EFOS group pigs (P < 0.05). Moreover, FOS increased lactase activity in the duodenum and ileum (P < 0.05). The activities of sucrase and alkaline phosphatase (AKP) were higher in the EFOS group than in the ECON group (P < 0.05). Importantly, FOS up-regulated the expressions of critical genes in intestinal epithelium function such as zonula occludens-1 (ZO-1), L-type amino acid transporter-1 (LAT1), and cationic amino acid transporter-1 (CAT1) in the duodenum and the expressions of ZO-1 and glucose transporter-2 (GLUT2) in the jejunum (P < 0.05). FOS also up-regulated the expressions of occludin, fatty acid transporter-4 (FATP4), sodium glucose transport protein 1 (SGLT1), and GLUT2 in the ileum (P < 0.05). FOS significantly increased the concentrations of acetic acid, propionic acid and butyric acid in the cecal digesta. Additionally, FOS reduced the populations of Escherichia coli, but elevated the populations of Bacillus and Bifidobacterium in the caecal digesta (P < 0.05). These results suggested that FOS could improve the growth performance and intestinal health in weaned pigs upon ETEC challenge, which was associated with suppressed inflammatory responses and improved intestinal epithelium functions and microbiota.

12.
J Anim Sci ; 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33205812

RESUMO

The present experiment was conducted to investigate the effects of exogenously infused with short-chain fatty acids (SCFAs) on the growth development and intestinal functions in a germ-free (GF) pig model. Twelve hysterectomy-derived newborn piglets were reared in six sterile isolators. All piglets were hand-fed Co60-γ-irradiated sterile milk powder for 21 days, then were switched to sterile feed for another 21 days. During the second 21-days period, GF piglets (n = 6) were orally infused with 25 mL/kg sterile saline per day, SCFA piglets (n = 6) were orally infused with 25 mL/kg SCFAs mixture (acetic, propionic, and butyric acids, 45, 15, and 11 mM, respectively) per day. We observed the concentrations of SCFAs in serum and intestine, and the mRNA abundance of GPR43 in ileum was increased (P < 0.05) in the SCFA group. Meanwhile, oral infusion of SCFAs enhanced (P < 0.05) the contents of GLP-2 in jejunum and serum, tended to increase the villi height in ileum (P < 0.10). Besides, the activities of lipase, trypsin, sucrase, lactase, and Na +-K +-ATPase (P < 0.05) and Ca 2+-Mg 2+-ATPase (P < 0.10) were stimulated and the mRNA expressions of SLC7A1 and REG-ΙΙΙ Î³ in jejunum (P < 0.05) were upregulated in the SCFA group. Additionally, SCFAs infusion downregulated the mRNA abundances of IL-1ß and IL-6 in jejunum, ileum, or colon (P < 0.05), and increased the counts of WBC, NEUT, and LY in the blood (P < 0.05). Collectively, exogenous infusion of SCFAs might improve intestinal health through promoting intestinal development and absorption function, and enhancing intestinal immune function, and was occur independently of the gut microbiota.

13.
Nat Commun ; 11(1): 5182, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057025

RESUMO

Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry.


Assuntos
Afro-Americanos/genética , Loci Gênicos , Doença Pulmonar Obstrutiva Crônica/genética , Fenômenos Fisiológicos Respiratórios/genética , Sequenciamento Completo do Genoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Proteínas de Ligação ao Cálcio/genética , Estudos de Viabilidade , Feminino , Seguimentos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteínas Inibidoras de STAT Ativados/genética , Doença Pulmonar Obstrutiva Crônica/etnologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-33100199

RESUMO

Aims & Objective: Dendrobine is a major alkaloid present mainly in dendrobium nobile Lindl. It has been reported to have analgesic, antipyretic, lower heart rate and blood pressure and other pharmacologic activities. Despite its critical pharmacological function, its metabolite profiling is still unclear. METHODS: In this study, the in vivo metabolite profiling of dendrobine in rats was investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). The metabolites were predicted using MetabolitePilotTM software with mass defect filter (MDF) technique. These predicted metabolites were further analyzed by MS2 spectra, and compared with the detailed fragmentation pathway of the dendrobine standard and literature data. RESULTS: total of 59 metabolites were identified for the first time in rat plasma and urine after oral administration of dendrobine. Demethylated, dehydrogenated, hydroxylated, ketonizated and glucuronide were the major metabolic pathways. CONCLUSIONS: This research provides scientific and reliable support for full understanding of the metabolic fate of dendrobine in vivo.

15.
Am J Hum Genet ; 107(5): 849-863, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33031748

RESUMO

Variation in levels of the human metabolome reflect changes in homeostasis, providing a window into health and disease. The genetic impact on circulating metabolites in Hispanics, a population with high cardiometabolic disease burden, is largely unknown. We conducted genome-wide association analyses on 640 circulating metabolites in 3,926 Hispanic Community Health Study/Study of Latinos participants. The estimated heritability for 640 metabolites ranged between 0%-54% with a median at 2.5%. We discovered 46 variant-metabolite pairs (p value < 1.2 × 10-10, minor allele frequency ≥ 1%, proportion of variance explained [PEV] mean = 3.4%, PEVrange = 1%-22%) with generalized effects in two population-based studies and confirmed 301 known locus-metabolite associations. Half of the identified variants with generalized effect were located in genes, including five nonsynonymous variants. We identified co-localization with the expression quantitative trait loci at 105 discovered and 151 known loci-metabolites sets. rs5855544, upstream of SLC51A, was associated with higher levels of three steroid sulfates and co-localized with expression levels of SLC51A in several tissues. Mendelian randomization (MR) analysis identified several metabolites associated with coronary heart disease (CHD) and type 2 diabetes. For example, two variants located in or near CYP4F2 (rs2108622 and rs79400241, respectively), involved in vitamin E metabolism, were associated with the levels of octadecanedioate and vitamin E metabolites (gamma-CEHC and gamma-CEHC glucuronide); MR analysis showed that genetically high levels of these metabolites were associated with lower odds of CHD. Our findings document the genetic architecture of circulating metabolites in an underrepresented Hispanic/Latino community, shedding light on disease etiology.

16.
ACS Appl Mater Interfaces ; 12(45): 50236-50247, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124426

RESUMO

Infections caused by pathogenic microorganisms have always been the Achilles heel in the clinic. In this work, to overcome this conundrum, we proposed an injectable multifunctional hydrogel material with outstanding antibacterial properties and self-healing properties and no adverse effects on health. The cross-linked hydrogel with three-dimensional (3D) networks was quickly formed via the dynamic Schiff base between amino-modified poly-tetrahydropyrimidine (PTHP-NH2) and multiple vanillin polymer P(DMA-VA) in 30 s. This hydrogel composite presents effective defense against both Gram-positive and Gram-negative bacteria, especially for the pyogenic Staphylococcus aureus. Moreover, the hydrogel showed almost no hemolysis and cytotoxicity. In vivo investigations indicated that hydrogels effectively killed S. aureus and protected against deterioration of inflammation. Besides, bioimaging of mice demonstrated that the hydrogel could be completely metabolized within 16 h. In a nutshell, given its outstanding antibacterial property and biocompatibility, the novel hydrogel could be an ideal candidate for the subcutaneous infection application.

17.
Drug Deliv ; 27(1): 1474-1490, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33100061

RESUMO

The emergence of nanomaterials for drug delivery provides the opportunity to avoid the side effects of systemic drug administration and injury caused by the removal of tumors, delivering great promise for future cancer treatments. However, the efficacy of current nano drugs is not significantly better than that of the original drug treatments. The important reason is that nano drugs enter the tumor vasculature, remaining close to the blood vessels and unable to enter the tumor tissue or tumor cells to complete the drug delivery process. The low efficiency of drug penetration into tumors has become a bottleneck restricting the development of nano-drugs. Herein, we present a systematic overview of recent advances on the design of nano-drug carriers in drug delivery systems for enhancing drug penetration into tumors. The review is organized into four sections: The drug penetration process in tumor tissue includes paracellular and transcellular transport, which is summarized first. Strategies that promote tumor penetration are then introduced, including methods of remodeling the tumor microenvironment, charge inversion, dimensional change, and surface modification of ligands which promote tissue penetration. Conclusion and the prospects for the future development of drug penetration are finally briefly illustrated. The review is intended to provide thoughts for effective treatment of cancer by summarizing strategies for promoting the endocytosis of nano drugs into tumor cells.

18.
Nat Commun ; 11(1): 5405, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106493

RESUMO

Epstein-Barr virus (EBV) is a γ-herpesvirus associated with the occurrence of several human malignancies. BBRF2 and BSRF1 are two EBV tegument proteins that have been suggested to form a hetero-complex and mediate viral envelopment, but the molecular basis of their interaction and the functional mechanism of this complex remains unknown. Here, we present crystal structures of BBRF2 alone and in complex with BSRF1. BBRF2 has a compact globular architecture featuring a central ß-sheet that is surrounded by 10 helices, it represents a novel fold distinct from other known protein structures. The central portion of BSRF1 folds into two tightly associated antiparallel α-helices, forming a composite four-helix bundle with two α-helices from BBRF2 via a massive hydrophobic network. In vitro, a BSRF1-derived peptide binds to BBRF2 and reduces the number of viral genome copies in EBV-positive cells. Exogenous BBRF2 and BSRF1 co-localize at the Golgi apparatus. Furthermore, BBRF2 binds capsid and capsid-associated proteins, whereas BSRF1 associates with glycoproteins. These findings indicate that the BBRF2-BSRF1 complex tethers EBV nucleocapsids to the glycoprotein-enriched Golgi membrane, facilitating secondary envelopment.


Assuntos
Herpesvirus Humano 4/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Genoma Viral , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crescimento & desenvolvimento , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice
19.
Biomater Sci ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107517

RESUMO

In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results. Because of the unique characteristics of liposomes, there are many materials that can be loaded in many types of liposome, such as biologically active substances. Liposomes are made of lipid bilayers, which are very similar to cell membranes. They have many biological and technical advantages and have even been used in clinical practice because of their unique structure. As liposomes have hydrophobic cavities and hydrophilic cavities, they can simultaneously load hydrophobic and hydrophilic drugs. This causes an increase in the drug loading efficiency and therapeutic capability. Different therapeutic effects are achieved by different methods such as placing the biological materials in the bilayer structure of the liposome or encapsulating them in the liposome. By these methods, bio-simulated liposomes can achieve considerable cancer treatment effects. Now liposomes have become an independent platform and play an important role in many facets. In this review, we focus on the use of liposomes composed of biomaterials for the treatment of cancer. These include liposomes that mimic mammalian cells, bacteria, and viruses.

20.
BMC Vet Res ; 16(1): 392, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066774

RESUMO

BACKGROUND: Early-life antibiotic administration is known to affect gut microbiota and host adiposity, but the effects of antibiotic exposure on skeletal muscle properties remain unknown. The present study evaluated the changes in skeletal muscle properties including myofiber characteristics and composition, as well as intramuscular fat (IMF) content in skeletal muscle of piglets when exposed to a tylosin-containing diet. RESULTS: A total of 18 piglets (28 days of age) were randomly allocated into two groups: control basal diet (Control) and Control + 100 mg tylosin phosphate/kg of feed (Antibiotic). The trial lasted for 39 days. High-throughput amplicon sequencing revealed that no significant difference in initial gut microbiota composition was existed between Control and Antibiotic groups. Antibiotic administration increased body weight and growth rate and decreased feed to gain ratio of pigs (P < 0.05). The carcass lean and fat volumes of pigs were increased by the tylosin administration (P < 0.05). Antibiotic treatment increased myofiber density and the expression of genes related to type I and type IIb myofibers in longissimus muscle (P < 0.05). The IMF content in longissimus muscle was increased by antibiotic exposure (P < 0.05). Antibiotic administration increased expression of genes related to fatty acid uptake and de novo synthesis, and decreased expression of genes related to triglyceride hydrolysis (P < 0.05). Tylosin administration affected taxonomic distribution and beta diversity of the caecal and colonic microbiota of piglets. CONCLUSION: These results confirm that the growth performance, myofiber composition and muscle lipid metabolism are affected by antibiotic administration, which may be associated with an altered gut microbiota, suggesting that the gut microbiota could be served as a potential target for modulating skeletal muscle properties of host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA