RESUMO
Herpes zoster (HZ) refers to the rash appearing on dermatomes due to varicella zoster virus (VZV) reactivation. The incidence of HZ is significantly higher in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients than in non-HSCT recipients. Although acyclovir prophylaxis is routinely administered to every allo-HSCT recipient for 1 year after transplantation, some individuals eventually develop late-onset HZ after completing prophylaxis. Little information is known about the clinical features of HZ after prophylactic antiviral treatment discontinuation, and an effective predictive model of late-onset HZ needs to be established. A total of 3366 patients who had received allo-HSCT from 2012 to 2017 were included in our study, among whom 201 developed HZ after 1 year (late-onset HZ). We designed a nested case-control study to identify potential predictors of late-onset HZ. Finally, we established a predictive model using binary logistic regression analysis. Age (p < .001), use of immunosuppressants at +1 year (p < .001), CD4-CD8 ratio at +1 year (p < .001), certain mental disorders (depression, anxiety, insomnia and adjustment disorder) (p < .001), engraftment time of neutrophils (p < .001), and CD8+ cell count at +30 days (p < .001) were independent predictors of late-onset HZ. A risk grading system was established based on regression coefficients. Discrimination and calibration analysis indicated that the model had good performance. We also identified several predictive factors of the incidence of HZ-related complications. This is the first scoring system for predicting the incidence of late-onset HZ after allo-HSCT. This model can be applied to identify individuals at high risk of late-onset HZ in the early period after receiving allo-HSCT.
RESUMO
Colon cancer continues to be a prevalent gastrointestinal malignancy with a bleak prognosis. The induction of ferroptosis, a new form of regulated cell death, has emerged as a potentially effective strategy for the treatment of colon cancer. However, numerous colon cancer cells display resistance to ferroptosis induced by erastin, a well-established ferroptosis inducer. Finding drugs that can enhance the susceptibility of colon cancer cells to erastin is of utmost importance. This study aimed to examine the synergistic therapeutic impact of combining erastin with a bioactive flavonoid compound luteolin on the ferroptosis-mediated suppression of colon cancer. Human colon cancer HCT116 and SW480 cells were used for the in vitro studies and a xenograft of colon cancer model in BALB/c nude mice was established for the in vivo experiments. The results showed that combinative treatment of luteolin and erastin effectively inhibited the viability and proliferation of colon cancer cells. Luteolin and erastin cotreatment synergistically induced ferroptosis, concomitant with a reduction in glutathione and an elevation in lipid peroxides. In vivo, combinative treatment of luteolin and erastin exhibited a pronounced therapeutic effect on xenografts of colon cancer, characterized by a significant induction of ferroptosis. Mechanistically, luteolin in combination with erastin synergistically reduced the expression of glutathione peroxidase 4 (GPX4), an antioxidase overexpressed in colon cancer cells. Furthermore, luteolin and erastin cotreatment significantly upregulated the expression of hypermethylated in cancer 1 gene (HIC1), a transcriptional repressor also recognized as a tumor suppressor. HIC1 overexpression notably augmented the suppression of GPX4 expression and facilitated ferroptotic cell death. In contrast, HIC1 silencing attenuated the inhibition of GPX4 expression and eliminated the ferroptosis. Conclusively, these results clearly demonstrated that luteolin acts synergistically with erastin and renders colon cancer cells vulnerable to ferroptosis through the HIC1-mediated inhibition of GPX4 expression, which may act as a promising therapeutic strategy.
RESUMO
Importance: Esophageal squamous cell carcinoma (ESCC) is a deadly disease with frequent recurrence. There are unmet needs for prognostic biomarkers for dynamically monitoring disease progression and detecting minimal residual disease. Objective: To examine whether circulating tumor DNA is clinically useful as a prognostic biomarker for ESCC recurrence and patient survival. Design, Setting, and Participants: This single-center, population-based cohort study consecutively enrolled 147 patients receiving curative (n = 74) or palliative (n = 73) treatment at the surgery and clinical oncology departments of Queen Mary Hospital in Hong Kong from August 1, 2016, to September 31, 2021. Patients were followed up for 2 years. Plasma samples were collected at different longitudinal time points for a prospective circulating tumor DNA (ctDNA) next-generation sequencing profiling study of 77 actionable genes. Intervention: Patients were treated with up-front surgery, neoadjuvant chemoradiotherapy plus surgery with or without adjuvant therapy, or palliative chemotherapy (CT). Main Outcomes and Measures: Detection of circulating tumor DNA (ctDNA), progression-free survival (PFS), and overall survival (OS). Results: A total of 478 serial plasma samples from 147 patients with locoregional or metastatic ESCC were prospectively analyzed. Among the 74 patients in the curative group (median [range] age, 66 [46-85] years; 56 [76.0%] male), 44 (59.5%) relapsed and 36 (48.6%) died. For patients receiving curative surgical treatment, a high ctDNA level (hazard ratio [HR], 7.84; 95% CI, 1.87-32.97; P = .005) and ctDNA alterations (HR, 5.71; 95% CI, 1.81-17.97; P = .003) at 6 months postoperation were independently associated with poor OS. Among patients receiving neoadjuvant chemoradiotherapy, postneoadjuvant ctDNA alterations were associated with poor PFS (HR, 3.16; 95% CI, 1.17-8.52; P = .02). In the 73 patients in the palliative group (median [range] age, 63 [45-82] years; 63 [86.0%] male), 71 (97.3%) had disease relapse and 68 (93.2%) died. Detectable pre-CT NFE2L2 alterations were independently associated with PFS (HR, 2.99; 95% CI, 1.35-6.61; P = .007) and OS (HR, 28.39; 95% CI, 7.26-111.03; P = 1.52 × 10-6), whereas high ctDNA levels (HR, 2.41; 95% CI, 1.18-4.95; P = .02) and alterations in pre-cycle III ctDNA (HR, 1.99; 95% CI, 1.03-3.85; P = .04) showed weaker associations with PFS. Alterations in pre-CT ctDNA were independently associated with OS (HR, 4.46; 95% CI, 1.86-10.69; P = 7.97 × 10-4). Conclusions and Relevance: The findings of this cohort study indicate that prognostic models incorporating ctDNA features are useful in ESCC. Both ctDNA level and NFE2L2 alterations pre-CT and before cycle III were found to be important prognostic factors in palliative groups, and ctDNA alterations after treatment and at 6 months after surgery may define high-risk groups for recurrence in the curative group. High-risk patients can benefit by a timely switch to the next therapeutic options.
RESUMO
BACKGROUND: Early detection and resection of colorectal polyps by routine colonoscopy screening can be effective in reducing the risk of colorectal cancer (CRC). OBJECTIVE: This study aimed to determine the association between diabetes mellitus (DM) and different types of colorectal polyps in the Chinese population. METHODS: A retrospective analysis was performed on inpatients admitted to the Gastroenterology Department of our hospital from January to December 2019. Clinical data, and colonoscopy and pathology findings of the subjects were collected. Bivariate analysis was used to assess factors associated with colorectal polyps. Significant variables from the bivariate evaluation were included in a stepwise multivariate logistic regression analysis to recognize independent predictors of neoplastic polyps and high-risk adenomas. RESULTS: The proportion of patients with DM was significantly higher in patients with neoplastic polyps and high-risk adenomas than in patients without polyps. Age ≥ 50 years, male gender, and a first-degree relative with a history of CRC were independent risk factors for neoplastic polyps and high-risk adenomas, even in non-smokers. An independent risk factor analysis that did not include a family history of CRC showed that age, gender, and alcohol consumption were independent risk factors for neoplastic polyps and high-risk adenomas. DM was an independent risk factor for high-risk adenomas (OR=2.902, 95% CI=1.221-6.899; p=0.016) after adjusting for age, gender, alcohol consumption, and body mass index. Thus, a history of DM significantly increases the risk of high-risk adenomas. CONCLUSION: This study demonstrated that patients with DM, age ≥ 50 years, male gender, alcohol consumption, and a first-degree relative with a history of CRC should undergo regular endoscopic screening and colonic polypectomy.
RESUMO
To investigate the response mechanisms of soil bacterial and fungal communities to the changes of preci-pitation in a desert steppe of Ningxia, we conducted a three-year precipitation control experiment following completely randomized design. There were five treatments, natural precipitation (T0), 50% less in precipitation (T1), 25% less in precipitation (T2), 25% more in precipitation (T3) and 50% more in precipitation (T4). By using Illumina high-throughput sequencing and bioinformatics analysis, we investigated the effects of increased and decreased precipitation on soil bacterial and fungal communities, and examined the correlations between soil physicochemical properties, plant communities and soil bacterial and fungal communities. The result showed that the richness of soil bacteria and fungi was highest in the T4 treatment. In addition, the relative abundance of Chloroflexi, the predominant phyla of soil bacteria was more sensitive to precipitation change. However, the relative abundance of only Ascomycota, a rare fungal taxon, responded to precipitation changes. Results of redundancy analysis showed that the first two axes accounted for 92.8% and 87.4% of the total variance for soil bacterial and fungal community composition, respectively. Precipitation and soil pH were the most important environmental factors driving changes in soil bacterial diversity and community composition. On the one hand, precipitation had a direct positive effect on bacterial diversity and community composition. On the other hand, precipitation changed pH by affecting soil moisture, which in turn had a significant indirect effect on bacterial diversity and community composition. Plant community biomass, plant species richness, and soil pH were the most influential environmental factors affecting fungal diversity and community composition. Precipitation had no direct effect on soil fungal community, but had a significant indirect effect by changing plant community richness and soil pH. The response mechanisms of bacterial and fungal communities in soil differed significantly under different precipitation regimes in the desert grasslands of Ningxia.
Assuntos
Micobioma , Bactérias , Biomassa , Sequenciamento de Nucleotídeos em Larga Escala , SoloRESUMO
As a sustainable management of fossil fuel resources and ecological environment protection, recycling used lubricating oil has received widespread attention. However, large amounts of waste lubricating-oil regeneration wastewater (WLORW) are inevitably produced in the recycling process, and challenges are faced by traditional biological treatment of WLORW. Thus, this study investigated the effectiveness of electrocoagulation (EC) as pretreatment and its removal mechanism. The electrolysis parameters (current density, initial pH, and inter-electrode distance) were considered, and maximal 60.06% of oil removal was achieved at a current density of 15 mA/cm2, initial pH of 7, and an inter-electrode distance of 2 cm. The dispersed oil of WLORW was relatively easily removed, and most of the oil removal was contributed by emulsified oil within 5-10 µm. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that effective removal of the biorefractory organic compounds could contribute to the improvement of biodegradability of WLORW. Thus, the 5-day biochemical oxygen demand/chemical oxygen demand ratio (BOD5/COD) was significantly enhanced by 4.31 times, which highly benefits future biological treatment. The routes of WLORW removal could be concluded as charge neutralization, adsorption bridging, sweep flocculation, and air flotation. The results demonstrate that EC has potential as an effective pretreatment technology for WLORW biological treatment.
RESUMO
BACKGROUND: The clinical and histological features of chronic hepatitis B (CHB) patients who fall into the "grey zone (GZ)" and do not fit into conventional natural phases are unclear. AIM: To explore the impact of varying the threshold of alanine aminotransferase (ALT) levels in identifying significant liver injury among GZ patients. METHODS: This retrospective analysis involved a cohort of 1617 adult patients diagnosed with CHB who underwent liver biopsy. The clinical phases of CHB patients were determined based on the European Association for the Study of the Liver 2017 Clinical Practice Guidelines. GZ CHB patients were classified into four groups: GZ-A (HBeAg positive, normal ALT levels, and HBV DNA ≤ 107 IU/mL), GZ-B (HBeAg positive, elevated ALT levels, and HBV DNA < 104 or > 107 IU/mL), GZ-C (HBeAg negative, normal ALT levels, and HBV DNA ≥ 2000 IU/mL), and GZ-D (HBeAg negative, elevated ALT levels, and HBV DNA ≤ 2000 IU/mL). Significant hepatic injury (SHI) was defined as the presence of notable liver inflammation (≥ G2) and/or significant fibrosis (≥ S2). RESULTS: The results showed that 50.22% of patients were classified as GZ, and 63.7% of GZ patients developed SHI. The study also found that lowering the ALT treatment thresholds to the American Association for the Study of Liver Diseases 2018 treatment criteria (35 U/L for men and 25 U/L for women) can more accurately identify patients with significant liver damage in the GZ phases. In total, the proportion of patients with ALT ≤ 40 U/L who required antiviral therapy was 64.86% [(221 + 294)/794]. When we lowered the ALT treatment threshold to the new criteria (30 U/L for men and 19 U/L for women), the same outcome was revealed, and the proportion of patients with ALT ≤ 40 U/L who required antiviral therapy was 75.44% [(401 + 198)/794]. Additionally, the proportion of SHI was 49.1% in patients under 30 years old and increased to 55.3% in patients over 30 years old (P = 0.136). CONCLUSION: These findings suggest the importance of redefining the natural phases of CHB and using new ALT treatment thresholds for better diagnosis and management of CHB patients in the GZ phases.
RESUMO
Knee osteoarthritis (KOA) is a common chronic disease in orthopedics, which brings great pain to patients' life and spirit. Therefore, it is necessary to elucidate the pathogenesis of KOA. The pathophysiology of KOA has been linked to numerous factors, including oxidative stress, apoptosis, cellular senescence, mitochondrial dysfunction, and inflammatory factors. Cellular senescence has grown in importance as a topic of study for age-related illnesses recently. KOA has also been discovered to be closely related to human aging, a process in which chondrocyte senescence may be crucial. Numerous researches have looked at the pathogenesis of KOA from the perspectives of mechanical stress abnormalities, oxidative stress, inflammatory overexpression, and mitochondrial dysfunction. Many studies have discovered that the primary pathogenesis of KOA is inflammatory overexpression and chondrocyte death brought on by an imbalance in the joint microenvironment. And abnormal mechanical stress is the initiating cause of oxidative stress, inflammation, and mitochondrial disorders. However, few findings have been reported in the literature on the relationship between these factors, especially for mechanical stress abnormalities, and chondrocyte senescence. This time, in order to better understand the pathogenesis of KOA and identify potential connections between chondrocyte senescence and these microenvironments in KOA, as well as oxidative stress, inflammatory overexpression, and mitochondrial dysfunction microenvironmental dysfunctions, we will use chondrocyte senescence as a starting point. This will allow us to develop new therapeutic approaches for KOA.
RESUMO
BACKGROUND: Thymic carcinomas (TCs) and thymic neuroendocrine neoplasms (TNENs) are two aggressive subtypes of thymic malignancy. Traditional therapy for advanced TCs and TNENs has limited outcome. New genomic profiling of TCs and TNENs might provide insights that contribute to the development of new treatment approaches. METHODS: We used gene panel sequencing technologies to investigate the genetic aberrations of 32 TC patients and 15 TNEN patients who underwent surgery at Shanghai Chest Hospital between 2015 and 2017. Patient samples were sequenced using a 324-gene platform with licensed technologies. In this study, we focused on clinically relevant genomic alterations (CRGAs), which are previously proven to be pathogenic alterations, to identify the pathology-specific mutational patterns, prognostic signatures of TCs and TNENs. RESULTS: The mutational profiles between TCs and TNENs were diverse. The genetic alterations that ranked highest in TCs were in CDKN2A, TP53, ASXL1, CDKN2B, PIK3C2G, PTCH1, and ROS1, while those in TNENs were in MEN1, MLL2, APC, RB1, and TSC2. Prognostic analysis showed that mutations of ROS1, CDKN2A, CDKN2B, BRAF, and BAP1 were significantly associated with worse outcomes in TC patients, and that mutation of ERBB2 indicated shortened disease-free survival (DFS) and overall survival (OS) in TNEN patients. Further investigation found that the prognosis-related genes were focused on signal pathways of cell cycle control, chromatin remodeling/DNA methylation, phosphoinositide 3-kinases (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), and receptor tyrosine kinase (RTK)/RAS/mitogen-activated protein kinase (MAPK) signaling. CONCLUSION: We profiled the mutational features of 47 Chinese patients with thymic malignancy of diverse pathologic phenotypes to uncover the integrated genomic landscape of these rare tumors, and identified the pathology-specific mutational patterns, prognostic signatures, and potential therapeutic targets for TCs and TNENs.
RESUMO
The convolutional neural network (CNN) and Transformer play an important role in computer-aided diagnosis and intelligent medicine. However, CNN cannot obtain long-range dependence, and Transformer has shortcomings in computational complexity and a large number of parameters. Recently, compared with CNN and Transformer, the Multi-Layer Perceptron (MLP)-based medical image processing network can achieve higher accuracy with smaller computational and parametric quantities. Hence, in this work, we propose an encoder-decoder network, U-MLP, based on the ReMLP block. The ReMLP block contains an overlapping sliding window mechanism and a Multi-head Gate Self-Attention (MGSA) module, where the overlapping sliding window can extract local features of the image like convolution, then combines MGSA to fuse the information extracted from multiple dimensions to obtain more contextual semantic information. Meanwhile, to increase the generalization ability of the model, we design the Vague Region Refinement (VRRE) module, which uses the primary features generated by network inference to create local reference features, thus determining the pixel class by inferring the proximity between local features and labeled features. Extensive experimental evaluation shows U-MLP boosts the performance of segmentation. In the skin lesions, spleen, and left atrium segmentation on three benchmark datasets, our U-MLP method achieved a dice similarity coefficient of 88.27%, 97.61%, and 95.91% on the test set, respectively, outperforming 7 state-of-the-art methods.
Assuntos
Benchmarking , Diagnóstico por Computador , Átrios do Coração , Processamento de Imagem Assistida por Computador , Redes Neurais de ComputaçãoRESUMO
BACKGROUND: Predictive biomarkers for oesophageal squamous cell carcinoma (ESCC) immunotherapy are lacking, and immunotherapy resistance remains to be addressed. The role of long noncoding RNA (lncRNA) in ESCC immune escape and immunotherapy resistance remains to be elucidated. METHODS: The tumour-associated macrophage-upregulated lncRNAs and the exosomal lncRNAs highly expressed in ESCC immunotherapy nonresponders were identified by lncRNA sequencing and polymerase chain reaction assays. CRISPR-Cas9 was used to explore the functional roles of the lncRNA. RNA pull-down, MS2-tagged RNA affinity purification (MS2-TRAP) and RNA-binding protein immunoprecipitation (RIP) were performed to identify lncRNA-associated proteins and related mechanisms. In vivo, the humanized PBMC (hu-PBMC) mouse model was established to assess the therapeutic responses of specific lncRNA inhibitors and their combination with programmed cell death protein 1 (PD-1) monoclonal antibody (mAb). Single-cell sequencing, flow cytometry, and multiplex fluorescent immunohistochemistry were used to analyze immune cells infiltrating the tumour microenvironment. RESULTS: We identified a lncRNA that is involved in tumour immune evasion and immunotherapy resistance. High LINC02096 (RIME) expression in plasma exosomes correlates with a reduced response to PD-1 mAb treatment and poor prognosis. Mechanistically, RIME binds to mixed lineage leukaemia protein-1 (MLL1) and prevents ankyrin repeat and SOCS box containing 2 (ASB2)-mediated MLL1 ubiquitination, improving the stability of MLL1. RIME-MLL1 increases H3K4me3 levels in the promoter regions of programmed death-ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO-1), constitutively increasing the expression of PD-L1/IDO-1 in tumour cells and inhibiting CD8+ T cells infiltration and activation. RIME depletion in huPBMC-NOG mice significantly represses tumour development and improves the effectiveness of PD-1 mAb treatment by activating T-cell-mediated antitumour immunity. CONCLUSIONS: This study reveals that the RIME-MLL1-H3K4me3 axis plays a critical role in tumour immunosuppression. Moreover, RIME appears to be a potential prognostic biomarker for immunotherapy and developing drugs that target RIME may be a new therapeutic strategy that overcomes immunotherapy resistance and benefits patients with ESCC.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Animais , Camundongos , Anticorpos Monoclonais , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Leucócitos Mononucleares , Proteína de Leucina Linfoide-Mieloide , Receptor de Morte Celular Programada 1 , RNA Longo não Codificante/genética , Microambiente Tumoral/genéticaRESUMO
Developing non-fullerene acceptors (NFAs) by modifying the backbone, side chains and end groups is the most important strategy to improve the power conversion efficiency of organic solar cells (OSCs). Among numerous developed NFAs, Y6 and its derivatives are famous NFAs in the OSC field due to their good performance. Herein, in order to understand the mechanism of tuning the photovoltaic performance by modifying the Y6's center backbone, π-spacer and side-chains, we selected the PM6:Y6 OSC as a reference and systematically studied PM6:AQx-2, PM6:Y6-T, PM6:Y6-2T, PM6:Y6-O, PM6:Y6-1O and PM6:Y6-2O OSC systems based on extensive quantum chemistry calculations. The results indicate that introducing quinoxaline to substitute thiadiazole in the backbone induces a blue-shift of absorption spectra, reduces the charge transfer (CT) distance (Δd) and average electrostatic potential (ESP), and increases the singlet-triplet energy gap (ΔEST), CT excitation energy and the number of CT states in low-lying excitations. Inserting thienyl and dithiophenyl as π spacers generates a red-shift of absorption spectra, enlarges Δd and average ESP, and reduces ΔEST and the number of CT states. Introducing furo[3,2-b]furan for substituting one thieno[3,2-b]thiophene unit in the Y6's backbone causes a red-shift of absorption spectra and increases ΔEST, Δd and average ESP as well as CT excitation energy. Introducing alkoxyl as a side chain results in a blue-shift of absorption spectra, and increases ΔEST, Δd, average ESP, CT excitation energy and the number of CT states. The rate constants calculated using Marcus theory suggest that all the molecular modifications of Y6 reduce the exciton dissociation and charge recombination rates at the heterojunction interface, while introducing furo[3,2-b]furan and alkoxyl enlarges CT rates.
RESUMO
BACKGROUND: Cysteine dioxygenase 1 (CDO1) is frequently methylated, and its expression is decreased in many human cancers including breast cancer (BC). However, the functional and mechanistic aspects of CDO1 inactivation in BC are poorly understood, and the diagnostic significance of serum CDO1 methylation remains unclear. METHODS: We performed bioinformatics analysis of publicly available databases and employed MassARRAY EpiTYPER methylation sequencing technology to identify differentially methylated sites in the CDO1 promoter of BC tissues compared to normal adjacent tissues (NATs). Subsequently, we developed a MethyLight assay using specific primers and probes for these CpG sites to detect the percentage of methylated reference (PMR) of the CDO1 promoter. Furthermore, both LentiCRISPR/dCas9-Tet1CD-based CDO1-targeted demethylation system and CDO1 overexpression strategy were utilized to detect the function and underlying mechanism of CDO1 in BC. Finally, the early diagnostic value of CDO1 as a methylation biomarker in BC serum was evaluated. RESULTS: CDO1 promoter was hypermethylated in BC tissues, which was related to poor prognosis (p < .05). The CRISPR/dCas9-based targeted demethylation system significantly reduced the PMR of CDO1 promotor and increased CDO1 expression in BC cells. Consequently, this leads to suppression of cell proliferation, migration and invasion. Additionally, we found that CDO1 exerted a tumour suppressor effect by inhibiting the cell cycle, promoting cell apoptosis and ferroptosis. Furthermore, we employed the MethyLight to detect CDO1 PMR in BC serum, and we discovered that serum CDO1 methylation was an effective non-invasive biomarker for early diagnosis of BC. CONCLUSIONS: CDO1 is hypermethylated and acts as a tumour suppressor gene in BC. Epigenetic editing of abnormal CDO1 methylation could have a crucial role in the clinical treatment and prognosis of BC. Additionally, serum CDO1 methylation holds promise as a valuable biomarker for the early diagnosis and management of BC.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias , Humanos , Cisteína Dioxigenase/genética , Apoptose , Ciclo Celular , DesmetilaçãoRESUMO
Targeting metabolic remodeling represents a potentially promising strategy for hepatocellular carcinoma (HCC) therapy. In-depth understanding on the regulation of the glutamine transporter alanine-serine-cysteine transporter 2 (ASCT2) contributes to the development of novel promising therapeutics. As a developmentally regulated RNA binding protein, RBM45 is capable to shuttle between nucleus and cytoplasm, and directly interacts with proteins. By bioinformatics analysis, we screened out that RBM45 was elevated in the HCC patient specimens and positively correlated with poor prognosis. RBM45 promoted cell proliferation, boosted xenograft tumorigenicity and accelerated HCC progression. Using untargeted metabolomics, it was found that RBM45 interfered with glutamine metabolism. Further results demonstrated that RBM45 positively associated with ASCT2 in human and mouse specimens. Moreover, RBM45 enhanced ASCT2 protein stability by counteracting autophagy-independent lysosomal degradation. Significantly, wild-type ASCT2, instead of phospho-defective mutants, rescued siRBM45-suppressed HCC cell proliferation. Using molecular docking approaches, we found AG-221, a mutant isocitrate dehydrogenase 2 (mIDH2) inhibitor for acute myeloid leukemia therapy, pharmacologically perturbed RBM45-ASCT2 interaction, decreased ASCT2 stability and suppressed HCC progression. These findings provide evidence that RBM45 plays a crucial role in HCC progression via interacting with and counteracting the degradation of ASCT2. Our findings suggest a novel alternative structural sites for the design of ASCT2 inhibitors and the agents interfering with RBM45-ASCT2 interaction may be a potential direction for HCC drug development.
RESUMO
Data from 200 children with high-risk acute myeloid leukaemia who underwent their first haploidentical haematopoietic stem cell transplantation (haplo-HSCT) between 2015 and 2021 at our institution were analysed. The 4-year overall survival (OS), event-free survival (EFS) and cumulative incidence of relapse (CIR) were 71.9%, 62.3% and 32.4% respectively. The 100-day cumulative incidences of grade II-IV and III-IV acute graft-versus-host disease (aGVHD) were 41.1% and 9.5% respectively. The 4-year cumulative incidence of chronic GVHD (cGVHD) was 56.1%, and that of moderate-to-severe cGVHD was 27.3%. Minimal residual disease (MRD)-positive (MRD+) status pre-HSCT was significantly associated with lower survival and a higher risk of relapse. The 4-year OS, EFS and CIR differed significantly between patients with MRD+ pre-HSCT (n = 97; 63.4%, 51.4% and 41.0% respectively) and those with MRD-negative (MRD-) pre-HSCT (n = 103; 80.5%, 73.3% and 23.8% respectively). Multivariate analysis also revealed that acute megakaryoblastic leukaemia without Down syndrome (non-DS-AMKL) was associated with extremely poor outcomes (hazard ratios and 95% CIs for OS, EFS and CIR: 3.110 (1.430-6.763), 3.145 (1.628-6.074) and 3.250 (1.529-6.910) respectively; p-values were 0.004, 0.001 and 0.002 respectively). Thus, haplo-HSCT can be a therapy option for these patients, and MRD status pre-HSCT significantly affects the outcomes. As patients with non-DS-AMKL have extremely poor outcomes, even with haplo-HSCT, a combination of novel therapies is urgently needed.
RESUMO
Ophiocordyceps sinensis is a precious Chinese traditional herb with a long medicinal history. This study used UPLC-MS metabolomics to explore and compare the metabolic profiles of the stroma (OSBSz), sclerotium (OSBSh), and mycelium (OSBS) of O sinensis to analyze their differential metabolites and identified potential active components. Then combined with network pharmacology and molecular docking to explore the mechanism of differential metabolites with anti-influenza properties. The results indicate that the stroma, sclerotium, and mycelium showed significant differences in metabolites. The key pathways for differential metabolites were butanoate metabolism, thiamin metabolism, alanine, aspartate and glutamate metabolism, citrate cycle, and arginine biosynthesis. Protein-protein interaction analysis identified potential targets, including SRC, RHOA, HSP90AA1, VEGFA, ITGB1, PRKCA, and ITGA1, and the key protective pathways in-volved PI3K-Akt, HIF-1, influenza A, and Coronavirus disease 2019. The molecular docking results showed that the core metabolite D-(-)-glutamine has high binding affinity with SRC, RHOA, and EGFR, re-flecting the multi-component and multi-target network system of O sinensis. In short, the combination of metabonomics, network pharmacology and macromolecular docking technology provides a new way to explore the anti-influenza research of O sinensis. This is undoubtedly an important theoretical support for the clinical application of O sinensis in the future.
Assuntos
COVID-19 , Cordyceps , Humanos , Farmacologia em Rede , Cromatografia Líquida , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Espectrometria de Massas em Tandem , MetabolômicaRESUMO
Prenatal high-fat diet (HFD) or exposure to microplastics can affect the accumulation of liver fat in offspring. We sought to determine the effects of maternal HFD intake and microplastic exposure on fatty liver injury through oxidative stress in pups. Pregnant female Sprague-Dawley rats were randomly divided into maternal HFD (experimental group) or normal control diet (NCD; control group) groups with or without microplastic exposure. As a result, the following groups were established: HFD-L (HFD + microplastics, 5 µm, 100 µg/L), HFD-H (HFD + microplastics, 5 µm, 1000 µg/L), NCD-L (NCD + microplastics, 5 µm, 100 µg/L), and NCD-H (NCD + microplastics, 5 µm, 1000 µg/L). The pups were sacrificed on postnatal day 7 (PD7). Liver histology revealed increased hepatic lipid accumulation in pups in the HFD-L and HFD-H groups compared to those in the HFD, NCD-L, NCD-H, and NCD groups on PD7. Similarly, liver TUNEL staining and cellular apoptosis were found to increase in pups in the HFD-L and HFD-H groups compared to those in the HFD, NCD-L, NCD-H, and NCD groups. The expression levels of malondialdehyde, a lipid peroxidation marker, were high in the HFD, HFD-L, and HFD-H groups; however, the highest expression was observed in the HFD-H group (p < 0.05). The levels of glutathione peroxidase, an antioxidant enzyme, decreased in the HFD, HFD-L, and HFD-H groups (p < 0.05). Overall, oxidative stress with cellular apoptosis plays a vital role in liver injury in offspring after maternal intake of HFD and exposure to microplastic; such findings may shed light on future therapeutic strategies.
Assuntos
Dieta Hiperlipídica , Doenças não Transmissíveis , Feminino , Masculino , Ratos , Gravidez , Animais , Ratos Sprague-Dawley , Dieta Hiperlipídica/efeitos adversos , Microplásticos , Plásticos , Fígado , Estresse Oxidativo , VitaminasRESUMO
Double-cropping early-season rice is one important part of staple crop rice. In recent years, great progress has been made in breeding the double-cropping early-season japonica rice variety, ZhongKeFaZaoGeng1 (ZKFZG1), with high yield, good quality, and high resistance. The breeding of ZKFZG1 aimed at the severe problems of low quality, low income and pre-harvest sprouting in double-cropping early-season rice production, and was achieved through molecular design by selecting three parents with different beneficial genes, KongYu131, NanFangChangLiGeng, and JiGeng88 and screening for key agronomic genes in cross-breeding. ZKFZG1 has a compact plant architecture, a plant height of ~90 cm, a number of ~120 grains per panicle, a setting rate of ~85%, a 1000-grain weight of 26 grams, a yield of 8.25 t/ha, and especially good grain quality. The successful breeding of ZKFZG1 provides a new direction for double-cropping early-season rice production.
Assuntos
Oryza , Melhoramento Vegetal , Agricultura , Oryza/genética , Estações do AnoRESUMO
BACKGROUND: Malignant hyperthermia (MH) is a rare anesthetic emergency with a high mortality rate in China. We developed a WeChat applet-based National Remote Emergency System for Malignant Hyperthermia (MH-NRES) to provide a real-time emergency system to help Chinese anesthesiologists deal with MH crises. However, it is imperative that close attention should be paid to the usability of the applet. PURPOSE: The objectives of this study were to (1) evaluate the usability of the applet-based MH-NRES for anesthesiologists; and (2) to test the validity and reliability of a modified mHealth app usability questionnaire. METHODS: A modified User Version of the Mobile Application Rating Scale (uMARS) was designed. Together with System Usability Scale (SUS) and Post-Study System Usability Questionnaire (PSSUQ), another two well-validated questionnaires, uMARS were then used to evaluate the usability of MH-NRES. The Cronbach alpha of the total score and the subscales of uMARS was calculated to evaluate the internal consistency. The correlation coefficients among three questionnaires were calculated. RESULTS: In this study, 118 anesthesiologists provided responses to the questionnaire. The overall mean uMARS score was 4.43 ± 0.61, which ranged from 3 to 5. The mean PSSUQ score were in good to excellent range with mean of 6.02 ± 0.97, which ranged from 3.19 to 7. The overall SUS score was 76.0 ± 17.6, which ranged from 45 to 100. The total uMARS score had excellent internal consistency (Cronbach alpha = 0.984). uMARS and its subscales were strongly correlated with PSSUQ (coefficient 0.758-0.819, P < 0.001) and SUS (coefficient 0.535-0.561, P < 0.001), respectively. CONCLUSIONS: Data obtained from the usability evaluation questionnaires in this study indicated a high quality of the MH-NRES on the ease of use, satisfaction and perceived usefulness, which suggest this system might be a useful tool for anesthesiologists' education and management of MH crises. Future feedback from high-fidelity simulation and clinical scenarios are need for further usability evaluation of this system.
Assuntos
Hipertermia Maligna , Aplicativos Móveis , Humanos , Reprodutibilidade dos Testes , China , Simulação por ComputadorRESUMO
BACKGROUND: Full-cohort and sibling-comparison designs have yielded inconsistent results about the impacts of caesarean delivery on offspring health outcomes, with the effect estimates from the latter being more likely directed towards the null value. We hypothesized that the seemingly conservative results obtained from the sibling-comparison design might be attributed to inadequate adjustment for non-shared confounders between siblings, particularly maternal age at delivery. METHODS: A systematic review and meta-analysis was first conducted. PubMed, Embase, and the Web of Science were searched from database inception to April 6, 2022. Included studies (1) examined the association of caesarean delivery, whether elective or emergency, with offspring health outcomes; (2) simultaneously conducted full-cohort and sibling-comparison analyses; and (3) reported adjusted effect estimates with 95% confidence intervals (95% CIs). No language restrictions were applied. Data were extracted by 2 reviewers independently. Three-level meta-analytic models were used to calculate the pooled odds ratios (ORs) and 95% CIs for caesarean versus vaginal delivery on multiple offspring health outcomes separately for full-cohort and sibling-comparison designs. Subgroup analyses were performed based on the method of adjustment for maternal age at delivery. A simulation study was then conducted. The simulated datasets were generated with some key parameters derived from the meta-analysis. RESULTS: Eighteen studies involving 21,854,828 individuals were included. The outcomes assessed included mental and behavioral disorders; endocrine, nutritional and metabolic diseases; asthma; cardiorespiratory fitness; and multiple sclerosis. The overall pooled OR for estimates from the full-cohort design was 1.14 (95% CI: 1.11 to 1.17), higher than that for estimates from the sibling-comparison design (OR = 1.08; 95% CI: 1.02 to 1.14). Stratified analyses showed that estimates from the sibling-comparison design varied considerably across studies using different methods to adjust for maternal age at delivery in multivariate analyses, while those from the full-cohort design were rather stable: in studies that did not adjust maternal age at delivery, the pooled OR of full-cohort vs. sibling-comparison design was 1.10 (95% CI: 0.99 to 1.22) vs. 1.06 (95% CI: 0.85 to 1.31), in studies adjusting it as a categorical variable, 1.15 (95% CI: 1.11 to 1.19) vs. 1.07 (95% CI: 1.00 to 1.15), and in studies adjusting it as a continuous variable, 1.12 (95% CI: 1.05 to 1.19) vs. 1.12 (95% CI: 0.98 to 1.29). The severe underestimation bias related to the inadequate adjustment of maternal age at delivery in sibling-comparison analyses was fully replicated in the simulation study. CONCLUSIONS: Sibling-comparison analyses may underestimate the association of caesarean delivery with multiple offspring health outcomes due to inadequate adjustment of non-shared confounders, such as maternal age at delivery. Thus, we should be cautious when interpreting the seemingly conservative results of sibling-comparison analyses in delivery-related studies.