Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32877172

RESUMO

Developing an effective strategy to synthesize perfect titanosilicate TS-1 zeolite crystals with desirable morphologies, enriched isolated framework Ti species, and thus enhanced catalytic oxidation properties is a pervasive challenge in zeolite crystal engineering. We here used an amino acid l-carnitine as a crystal growth modifier and ethanol as a cosolvent to regulate the morphologies and the Ti coordination states of TS-1 zeolites. During the hydrothermal crystallization process, the introduced l-carnitine can not only tailor the anisotropic growth rates of zeolite crystals but also induce the formation of uniformly distributed framework Ti species through building a suitable chemical interaction with the Ti precursor species. Condition optimizations could afford the generation of perfect hexagonal plate TS-1 crystals and elongated platelet TS-1 crystals enriched in tetrahedral framework Ti sites (TiO4) or mononuclear octahedrally coordinated Ti species (TiO6). Both samples showed significant improvement in catalytic activity for the H2O2-mediated epoxidation of alkenes. In particular, the elongated platelet TS-1 enriched in "TiO6" species afforded the highest activity in 1-hexene epoxidation, with a turnover frequency (TOF) of up to 131 h-1, which is approximately twice as high as that of the conventional TS-1 zeolite (TOF: 65 h-1) and even higher than those of the literature-reported TiO6-containting TS-1 catalysts derived from the hydrothermal post-treatment of TS-1 zeolites. This work demonstrates that the morphologies and the titanium coordination states of TS-1 zeolites can be effectively tuned by directly introducing suitable crystal growth modifiers, thus providing new opportunities for developing highly efficient titanosilicate zeolite catalysts for important catalytic applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32770613

RESUMO

A CO2 -mediated hydrogen storage energy cycle is a promising way to implement a hydrogen economy, but the exploration of efficient catalysts to achieve this process remains challenging. Herein, sub-nanometer Pd-Mn clusters were encaged within silicalite-1 (S-1) zeolites by a ligand-protected method under direct hydrothermal conditions. The obtained zeolite-encaged metallic nanocatalysts exhibited extraordinary catalytic activity and durability in both CO2 hydrogenation into formate and formic acid (FA) dehydrogenation back to CO2 and hydrogen. Thanks to the formation of ultrasmall metal clusters and the synergic effect of bimetallic components, the PdMn0.6 @S-1 catalyst afforded a formate generation rate of 2151 molformate molPd -1 h-1 at 353 K, and an initial turnover frequency of 6860 mol H 2 molPd -1 h-1 for CO-free FA decomposition at 333 K without any additive. Both values represent the top levels among state-of-the-art heterogeneous catalysts under similar conditions. This work demonstrates that zeolite-encaged metallic catalysts hold great promise to realize CO2 -mediated hydrogen energy cycles in the future that feature fast charge and release kinetics.

3.
Adv Mater ; : e2001818, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32638425

RESUMO

Hydrogen has emerged as an environmentally attractive fuel and a promising energy carrier for future applications to meet the ever-increasing energy challenges. The safe and efficient storage and release of hydrogen remain a bottleneck for realizing the upcoming hydrogen economy. Hydrogen storage based on liquid-phase chemical hydrogen storage materials is one of the most promising hydrogen storage techniques, which offers considerable potential for large-scale practical applications for its excellent safety, great convenience, and high efficiency. Recently, nanopore-supported metal nanocatalysts have stood out remarkably in boosting the field of liquid-phase chemical hydrogen storage. Herein, the latest research progress in catalytic hydrogen production is summarized, from liquid-phase chemical hydrogen storage materials, such as formic acid, ammonia borane, hydrous hydrazine, and sodium borohydride, by using metal nanocatalysts confined within diverse nanoporous materials, such as metal-organic frameworks, porous carbons, zeolites, mesoporous silica, and porous organic polymers. The state-of-the-art synthetic strategies and advanced characterizations for these nanocatalysts, as well as their catalytic performances in hydrogen generation, are presented. The limitation of each hydrogen storage system and future challenges and opportunities on this subject are also discussed. References in related fields are provided, and more developments and applications to achieve hydrogen energy will be inspired.

4.
Adv Mater ; : e2002559, 2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32715511

RESUMO

Porous materials possessing high surface area, large pore volume, tunable pore structure, superior tailorability, and dimensional effect have been widely applied as components of lithium-oxygen (Li-O2 ) batteries. Herein, the theoretical foundation of the porous materials applied in Li-O2 batteries is provided, based on the present understanding of the battery mechanism and the challenges and advantageous qualities of porous materials. Furthermore, recent progress in porous materials applied as the cathode, anode, separator, and electrolyte in Li-O2 batteries is summarized, together with corresponding approaches to address the critical issues that remain at present. Particular emphasis is placed on the importance of the correlation between the function-orientated design of porous materials and key challenges of Li-O2 batteries in accelerating oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) kinetics, improving the electrode stability, controlling lithium deposition, suppressing the shuttle effect of the dissolved redox mediators, and alleviating electrolyte decomposition. Finally, the rational design and innovative directions of porous materials are provided for their development and application in Li-O2 battery systems.

5.
Adv Mater ; : e2002927, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32697378

RESUMO

C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2 , CH4 , CH3 OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. Zeolites are highly efficient solid catalysts used in the chemical industry. The design and development of zeolite-based mono-, bi-, and multifunctional catalysts has led to a booming application of zeolite-based catalysts to C1 chemistry. Combining the advantages of zeolites and metallic catalytic species has promoted the catalytic production of various hydrocarbons (e.g., methane, light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from C1 molecules. The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Brønsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry. An outlook regarding challenges and opportunities for the conversion of C1 resources using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.

6.
Adv Mater ; : e1907098, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32671896

RESUMO

Photo-assisted charging is considered an effective approach to reducing the overpotential in lithium-oxygen (Li-O2 ) batteries. However, the utilization of photoenergy during the discharge process in a Li-O2 system has been rarely reported, and the functional mechanism of such a process remains unclear. Herein, a novel bifunctional photo-assisted Li-O2 system is established by employing a hierarchical TiO2 -Fe2 O3 heterojunction, in which the photo-generated electrons and holes play key roles in reducing the overpotential in the discharging and charging processes, respectively. Moreover, the morphology of the discharge product (Li2 O2 ) can be modified via the dense surface electrons of the cathode under illumination, resulting in promoted decomposition kinetics of Li2 O2 during the charging progress. Accordingly, the output and input energies of the battery can be tuned by illumination, giving an ultralow overpotential of 0.19 V between the charge and discharge plateaus with excellent cyclic stability (retaining a round-trip efficiency of ≈86% after 100 cycles). The investigation of the bifunctional photo-assisted process presented here provides significant insight into the mechanism of the photo-assisted Li-O2 battery and addresses the overpotential bottleneck in this system.

7.
Phys Chem Chem Phys ; 22(27): 15120-15162, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627773

RESUMO

Rare earth ion (RE3+) doped nano-phosphors with controllable morphologies have a wide range of applications in laser crystals, LEDs, bio-probes, photo-catalysis, three-dimensional displays, sensors, and flash memories. This review summarizes the morphology control strategy, phase transfer theory, spectrum modulation, and extended optical applications of RE3+-doped phosphors. The roles of surfactants in the morphology control in the liquid-solid-solution phase transfer process for RE3+-doped fluorides, oxides and other compounds are discussed. The relevant mechanisms of controlling morphologies are illustrated. The size- and shape-dependent optical properties of RE3+ doped phosphors, including the emission intensities, intensity ratios of adjacent emission bands, decay times and thermal stability, are analyzed. The extended optical applications and main challenges of RE3+-doped phosphors are also discussed.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32602591

RESUMO

Encapsulating metal nanoclusters into zeolites combines the superior catalytic activity of the nanoclusters with high stability and unique shape selectivity of the crystalline microporous materials. The preparation of such bifunctional catalysts, however, is often restricted by the mismatching in time scale between the fast formation of nanoclusters and the slow crystallization of zeolites. We herein demonstrate a novel strategy to overcome the mismatching issue, in which the crystallization of zeolites is expedited so as to synchronize it with the rapid formation of nanoclusters. The concept was demonstrated by confining Pt and Sn nanoclusters into a ZSM-5 (MFI) zeolite in the course of its crystallization, leading to an ultrafast, in situ encapsulation within just 5 min. The Pt/Sn-ZSM-5 exhibited exceptional activity and selectivity with stability in the dehydrogenation of propane to propene. This method of ultrafast encapsulation opens up a new avenue for designing and synthesizing composite zeolitic materials with structural and compositional complexity.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32613736

RESUMO

Intriguing properties and functions are expected to implant into metal-organic layers (MOLs) to achieve tailored pore environments and multiple functionalities owing to the synergies among multiple components. Herein, we demonstrate a facile one-pot synthetic strategy to incorporate multiple functionalities into stable zirconium MOLs via secondary ligand pillaring. Through the combination of Zr6 -BTB (BTB=benzene-1,3,5-tribenzoate) layers and diverse secondary ligands (including ditopic and tetratopic linkers), 31 MOFs with multi-functionalities were systematically prepared. Notably, a metal-phthalocyanine fragment was successfully incorporated into this Zr-MOL system, giving rise to an ideal platform for the selective oxidation of anthracene. The organic functionalization of two-dimensional MOLs can generate tunable porous structures and environments, which may facilitate the excellent catalytic performance of as-synthesized materials.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32648629

RESUMO

Porosity and acidity are influential properties in the rational design of solid-acid catalysts. Probing the physicochemical characteristics of an acidic zeotype framework at the molecular level can provide valuable insights in understanding intrinsic reaction pathways, for affording structure-activity relationships. Herein, we employ a variety of probe-based techniques (including positron annihilation lifetime spectroscopy (PALS), FTIR and solid-state NMR spectroscopy) to demonstrate how a hierarchical design strategy for a faujasitic (FAU) zeotype (synthesized for the first time, via a soft-templating approach, with high phase-purity) can be used to simultaneously modify the porosity and modulate the acidity for an industrially significant catalytic process (Beckmann rearrangement). Detailed characterization of hierarchically porous (HP) SAPO-37 reveals enhanced mass-transport characteristics and moderated acidity, which leads to superior catalytic performance and increased resistance to deactivation by coking, compared to its microporous counterpart, further vindicating the interplay between porosity and moderated acidity.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32608155

RESUMO

Zeolites are widely used in catalysis, gas separation, ion exchange, etc. due to their superior physicochemical properties, which are closely related to specific features of their framework structures. Although more than two hundred different framework types have been recognized, it is of great interest to explore from a crystallographic perspective, the atomic positions, surface terminations, pore connectivity and structural defects that deviate from the ideal framework structures, namely local structural modulation. In this article, we review different types of local modulations in zeolite frameworks using various techniques, especially electron microscopy (EM). The most recent advances in resolving structural information at the atomic level with aberration corrected EM are also presented, commencing a new era of gaining atomic structural information, not only for all tetrahedral atoms including point vacancies in framework but also for extra-framework cations and surface terminations.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32542978

RESUMO

Zeolites are becoming more versatile in their chemical functions through rational design of their frameworks. Therefore, direct imaging of all atoms at the atomic scale, basic units (Si, Al, and O), heteroatoms in the framework, and extra-framework cations, is needed. TEM provides local information at the atomic level, but the serious problem of electron-beam damage needs to be overcome. Herein, all framework atoms, including oxygen and most of the extra-framework Na cations, are successfully observed in one of the most electron-beam-sensitive and lowest framework density zeolites, Na-LTA. Zeolite performance, for instance in catalysis, is highly dependent on the location of incorporated heteroatoms. Fe single atomic sites in the MFI framework have been imaged for the first time. The approach presented here, combining image analysis, electron diffraction, and DFT calculations, can provide essential structural keys for tuning catalytically active sites at the atomic level.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32558159

RESUMO

Zeolite Y, with a high SiO2 /Al2 O3 ratio (SAR), plays an important role in fluidized catalytic cracking processes. However, in situ synthesis of zeolite Y with high SARs remains a challenge because of kinetic limitations. Here, zeolite Y with an SAR of 6.35 is synthesized by a hydroxyl radical assisted route. Density-functional theory (DFT) calculations suggest that hydroxyl radicals preferentially enhanced the formation of Si-O-Si bonds, thus leading to an increased SAR. To further increase the SAR, a dealumination process was carried out using citric acid, with a subsequent second-step hydrothermal crystallization, giving an SAR of up to 7.5 while maintaining good crystallinity and high product yield. The resultant zeolite Y shows good performance in cumene cracking. Introduced here is a new strategy for synthesizing high SAR zeolite Y, which is widely used in commercial applications.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32452131

RESUMO

Carbon dots (CDs) are emerging as a new class of carbon nanomaterials, which have inspired growing interest for their widespread applications in anti-counterfeiting, sensing, bioimaging, optoelectronic and energy-related fields. In terms of the concept of host-guest assembly, immobilizing CDs into porous materials (PMs) has proven to be an effective strategy to avoid the aggregation of bare CDs in solid state, in particular, the host-guest synergy with both merits of CDs and PMs affords composites promising properties in afterglow and tunable emissions, as well as optimizes their performance in optics, catalysis, and energy storage. This Minireview summarizes the recent progress in the research of CDs@PMs, and highlights synthetic strategies of constructing composites and roles of porous matrices in boosting the applications of CDs in diverse areas. The prospect of future exploration and challenges are proposed for designing advanced CDs-based functional nanocomposite materials.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32391921

RESUMO

Cationic framework materials, especially pure inorganic cationic frameworks that can efficiently and selectively capture harmful heavy metal oxyanions from aqueous solution are highly desired yet scarcely reported. Herein, we report the discovery of a 2D cationic aluminum oxyhydroxide, JU-111, which sets a new benchmark for heavy metal oxyanion sorbents, especially for CrVI . Its structure was solved based on 3D electron diffraction tomography data. JU-111 shows fast sorption kinetics (ca. 20 min), high capture capacity (105.4 mg g-1 ), and broad working pH range (3-10) toward CrVI oxyanions. Unlike layered double hydroxides (LDHs), which are poorly selective in the presence of CO3 2- , JU-111 retains excellent selectivity for CrVI even under a large excess of CO3 2- . These superior features coupled with the ultra-low cost and environmentally benign nature make JU-111 a promising candidate for toxic metal oxyanion remediation as well as other potential applications.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32259339

RESUMO

Propane dehydrogenation (PDH) has great potential to meet the increasing global demand for propylene, but the widely used Pt-based catalysts usually suffer from short-term stability and unsatisfactory propylene selectivity. Herein, we develop a ligand-protected direct hydrogen reduction method for encapsulating subnanometer bimetallic Pt-Zn clusters inside silicalite-1 (S-1) zeolite. The introduction of Zn species significantly improved the stability of the Pt clusters and gave a superhigh propylene selectivity of 99.3 % with a weight hourly space velocity (WHSV) of 3.6-54 h-1 and specific activity of propylene formation of 65.5 mol C 3 H 6 gPt -1 h-1 (WHSV=108 h-1 ) at 550 °C. Moreover, no obvious deactivation was observed over PtZn4@S-1-H catalyst even after 13000 min on stream (WHSV=3.6 h-1 ), affording an extremely low deactivation constant of 0.001 h-1 , which is 200 times lower than that of the PtZn4/Al2 O3 counterpart under the same conditions. We also show that the introduction of Cs+ ions into the zeolite can improve the regeneration stability of catalysts, and the catalytic activity kept unchanged after four continuous cycles.

17.
Sci Data ; 7(1): 107, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235834

RESUMO

Open-framework aluminophosphates are an important class of inorganic crystalline compounds because of their rich structural chemistry and diverse properties. We have collected 312 open-framework aluminophosphate crystal structures from published literature and established a database for these structures. For each aluminophosphate structure, we have assigned a unique index code and extracted its key chemical and crystallographic information from the original literature and the associated CIF file, such as the name, chemical formula, extra-framework species, Al/P ratio, space group, and unit cell parameters of the compound. More importantly, we have calculated the topological features for each aluminophosphate framework, including local connectivity, framework dimension, coordination sequences, vertex symbols, topology density, and the largest ring. To help experimental chemists identify their products, we have also calculated theoretical XRD peaks for all aluminophosphate structures. This database will provide important insight into understanding the structural chemistry of open-framework aluminophosphate compounds.

19.
ACS Appl Mater Interfaces ; 12(20): 23356-23362, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32329595

RESUMO

Efficient charge separation can promote photocatalysis of semiconductors. Herein, a hollow-structured TiO2 sphere decorated with spatially separated bifunctional cocatalysts was designed, which exhibited enhanced photocatalytic hydrogen generation. Ultrasmall-sized MOx (M = Pd, Co, Ni, or Cu) nanoparticles (NPs) were first introduced into a zeolite via confinement synthesis, and then, hollow TiO2 was fabricated by using the zeolite as a sacrificial template forming MOx@TiO2. Finally, Pt NPs were decorated on the outer shell, giving rise to MOx@TiO2@Pt, in which the MOx NPs and Pt NPs acted as hole capturers and electron sinks, respectively. Thanks to the enhanced light harvesting of the hollow structure and improved charge separation induced by the smaller-sized cocatalysts as well as spatially separated bifunctional cocatalysts, the as-prepared PdOx@TiO2@Pt catalyst exhibited a superior photocatalytic hydrogen-generation property (0.45 mmol h-1). This work demonstrates the advantage of the spatially separated bifunctional cocatalysts in enhancing the photocatalytic properties of semiconductors.

20.
J Phys Chem Lett ; : 3350-3356, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32191486

RESUMO

Defects within zeolites are crucially important for explaining their physicochemical behavior. The UTL zeolite, with a pillared layer structure, has been widely used in zeolite crystal engineering to assemble new structures from its layered structural units, but a fundamental understanding of its defect is lacking. Here, we report a newly synthesized UTL framework zeolite, UTL-DBU, with a commercially available superbase 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a template. Its structure was determined by a combination of three-dimensional electron diffraction tomography and high-resolution (scanning) transmission electron microscopy. Using transmission electron microscopy, two types of defects, stacking disorder and edge dislocation-like planar defect, were discovered. On the basis of the analysis of the electron diffraction and imaging, the layer stacking sequence together with the structural and mathematical models of the microtwinning was successfully built up. Unraveling these defects will provide new insights into the rational design of targeted zeolites utilizing UTL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA