Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Food ; 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31770044

RESUMO

Polysaccharide from Ma-chi-xian (Portulacae oleracea L., POLP) was prepared and the therapeutic effect on dextran sodium sulfate-induced colitis mice was investigated in this study. The results of clinical activity score and H&E staining confirmed the therapeutic effect of POLP. POLP could diminished the symptoms of colitis and improve colon histopathological structure of the colitis mice. The expression levels of four cytokines were determined. The concentrations of PGE2 and IL-6 were downregulated by POLP treatment. The COX-2 protein expression levels and the STAT3 phosphorylation levels were detected. The results showed that these two protein levels were all increased in colitis and decreased after POLP treatment, indicating that these two proteins were closely related with the protective effect of POLP. Because the synthesis of PGE2 is catalyzed by COX-2 and phosphorylation of STAT3 can induce the expression of COX-2, it was concluded that STAT3 was a key protein related to the POLP exerting its activity in colitis.

2.
Molecules ; 24(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726738

RESUMO

Indigo naturalis (IN) is a traditional Chinese medicine, named Qing-Dai, which is extracted from indigo plants and has been used to treat patients with inflammatory bowel disease (IBD) in China and Japan. Though there are notable effects of IN on colitis, the mechanisms remain elusive. Regarding the significance of alterations of intestinal flora related to IBD and the poor water solubility of the blue IN powder, we predicted that the protective action of IN on colitis may occur through modifying gut microbiota. To investigate the relationships of IN, colitis, and gut microbiomes, a dextran sulfate sodium (DSS)-induced mice colitis model was tested to explore the protective effects of IN on macroscopic colitis symptoms, the histopathological structure, inflammation cytokines, and gut microbiota, and their potential functions. Sulfasalazine (SASP) was used as the positive control. Firstly, because it was a mixture, the main chemical compositions of indigo and indirubin in IN were detected by ultra-performance liquid chromatography (UPLC). The clinical activity score (CAS), hematoxylin and eosin (H&E) staining results, and enzyme-linked immunosorbent assay (ELISA) results in this study showed that IN greatly improved the health conditions of the tested colitis mice, ameliorated the histopathological structure of the colon tissue, down-regulated pro-inflammatory cytokines, and up-regulated anti-inflammatory cytokines. The results of 16S rDNA sequences analysis with the Illumina MiSeq platform showed that IN could modulate the balance of gut microbiota, especially by down-regulating the relative quantity of Turicibacter and up-regulating the relative quantity of Peptococcus. The therapeutic effect of IN may be closely related to the anaerobic gram-positive bacteria of Turicibacter and Peptococcus. The inferred metagenomes from 16S data using PICRUSt demonstrated that decreased metabolic genes, such as through biosynthesis of siderophore group nonribosomal peptides, non-homologous end-joining, and glycosphingolipid biosynthesis of lacto and neolacto series, may maintain microbiota homeostasis during inflammation from IN treatment in DSS-induced colitis.

3.
Molecules ; 24(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574981

RESUMO

Siji-kangbingdu mixture is an anti-inflammatory, anti-bacterial, and anti-viral herbal mixture which is frequently used by doctors to treat upper respiratory infections. It's important to establish an efficient and economical quality-control method to ensure the quality consistency and efficacy stability of Siji-kangbingdu mixture. In this study, an integrated multi-evaluation method was established, sequentially involving UPLC-TripleTOF-MS analysis, UPLC fingerprint analysis, and the quantitative analysis of multi-components using the single-marker (QAMS) method. With one chromatographic condition, a total of 71 compounds were identified by MS and MS/MS information, with a mass error of less than 5 ppm; 49 peaks detected in 254 nm were selected to establish the fingerprint similarity model, and 7 chemical compounds were simultaneously determined, namely, chlorogenic acid, liquiritin, rutin, isochlorogenic acid A, forsythin, forsythoside A, and glycyrrhizic acid, with forsythoside A as the reference standard. There was no significant difference in the content of the seven compounds between the QAMS method and the external standard method (ESM). The established multi-evaluation method will largely promote the quality control and standardization process of Siji-kangbingdu mixture. It also provides a reference workflow for the overall evaluation of TCM patent medicines, from chemical profiling to fingerprint and quantitative analysis.

4.
Pharmacol Res ; 148: 104453, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31541688

RESUMO

With the development of system biology, traditional Chinese medicine (TCM) is drawing more and more attention nowadays. However, there are still many enigmas behind this ancient medical system because of the arcane theory and complex mechanism of actions. In recent decades, advancements in genome sequencing technologies, bioinformatics and culturomics have led to the groundbreaking characterization of the gut microbiota, a 'forgotten organ', and its role in host health and disease. Notably, gut microbiota has been emerging as a new avenue to understanding TCM. In this review, we will focus on the structure, composition, functionality and metabolites of gut microbiota affected by TCM so as to conversely understand its theory and mechanisms. We will also discuss the potential areas of gut microbiota for exploring Chinese material medica waste, Chinese marine material medica, add-on therapy and personalized precise medication of TCM. The review will conclude with future perspectives and challenges of gut microbiota in TCM intervention.

5.
Nat Prod Res ; : 1-7, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31081703

RESUMO

A pair of new neo-clerodane diterpenoid epimers, 3S-methoxyl-teucvin (1) and 3R-methoxyl-teucvin (2), were isolated from the Roots of Croton crassifolius. Their structures were completely established on the basis of spectroscopic methods, and the absolute configurations were determined by analysis of electronic circular dichroism (ECD) spectroscopy and X-ray diffraction analysis. Compounds 1 and 2 exhibited anti-inflammatory activities with IC50 values of 0.82 and 0.54 µM, respectively, while the IC50 value of dexamethasone as a positive control was found to be 0.14 µM.

6.
Zhongguo Zhong Yao Za Zhi ; 44(3): 518-525, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30989917

RESUMO

Based on the toxic characteristics caused by the compatibility between "Zaoji Suiyuan" and Glycyrrhizae Radix et Rhizoma, which was found in the previous studies, the expanded study was carried out on the incompatibility mechanism between Crotonis Semen Pulveratum(CT) and Glycyrrhizae Radix et Rhizoma(GU) with the diuretic effect and intestinal flora as the characteristic indexes. The results showed that GU could slow down the rapid diuretic effect of CT, which suggested a tendency of decreasing the efficacy. Both the high and low dose of CT could significantly induce the intestinal injury and change the intestinal bacteria structure of mice. Low dose CT combined with GU could significantly increase the levels of Streptococcus and Rikenellaceae_ukn. The relative abundance of Desulfovibrio and Streptococcaceae_ukn were increased after the combined application of high dose CT and GU. It also suggested that there was a risk of inflammation in the liver and intestines when combined application of these two herbs. The results revealed that the combination of CT and GU has a tendency to reduce the clinical effect and increase the toxicity from the aspects of its traditional efficacy and its effect on intestinal microflora structure, which could provide the data for the clinical use of CT.


Assuntos
Croton/química , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glycyrrhiza/química , Animais , Diuréticos , Interações de Medicamentos , Intestinos , Camundongos , Raízes de Plantas/química , Sementes/química
7.
J Ethnopharmacol ; 236: 136-146, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30851368

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice and Yuanhua are both famous herbs in Traditional Chinese Medicine (TCM), and their combination is used by some TCM doctors to treat renal and gastrointestinal diseases as well as tumors. On the other hand, the compatibility theory of TCM warns that toxic effects might be triggered by Licorice-Yuanhua combination. The usability of Licorice-Yuanhua combination has long been controversial due to lack of evidence and mechanism illustration. Colonic hydrogen sulfide (H2S) metabolism imbalance is closely related with colonic inflammation, tumor promotion and many other diseases. AIM OF THE STUDY: This study was carried out to investigate if licorice-Yuanhua combination could induce potential toxic effects in the aspect of colonic H2S metabolism. MATERIALS AND METHODS: Normal mice were treated with high or low doses of Licorice, Yuanhua and Licorice-Yuanhua combination. Fecal H2S concentration was measured by colorimetric method, colon sulfomucin production was compared through tissue staining, fecal microbiota and microbial metagenomes were analyzed by 16S rDNA sequencing and data mining. RESULTS: Data shows that although licorice cannot change colonic H2S concentration, it can exacerbate Yuanhua induced H2S rising. Licorice or Yuanhua increases colon sulfomucin production, and their combination further enhances this effect. 16S rDNA sequencing analysis revealed that licorice or Yuanhua has little influence on gut microbiota, however, licorice-Yuanhua combination can impact gut microbiota structural balance and increase the abundance of Desulfovibrio genus and other related genera. Moreover, the combination extensively changes microbial metagenomes, influencing 1172 genes that cannot be changed by individual licorice or Yuanhua. By searching in KEGG database, ten genes are annotated with H2S producing gene, and these genes are remarkably increased by licorice-Yuanhua combination, more significantly than licorice or Yuanhua. CONCLUSIONS: This study provides evidences and mechanisms for licorice induced risks, which is related with colonic H2S metabolism disturbance, gut microbiota and microbial metagenomes. More risk assessment should be evaluated when licorice was used in combination with foods, herbs or drugs. The study provides an example where healthy risks can be induced by combination of food additive, herbs or drugs, through regulating gut microbiota and its metagenomes.


Assuntos
Colo/efeitos dos fármacos , Daphne/química , Medicamentos de Ervas Chinesas/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Glycyrrhiza/química , Sulfeto de Hidrogênio/metabolismo , Animais , Colo/metabolismo , Colo/microbiologia , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/genética , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/isolamento & purificação , Fezes/química , Flores/química , Microbioma Gastrointestinal/genética , Sulfeto de Hidrogênio/análise , Masculino , Medicina Tradicional Chinesa , Metagenoma/genética , Camundongos Endogâmicos ICR , Raízes de Plantas/química
8.
J Ethnopharmacol ; 229: 222-232, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30339979

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As recorded in traditional Chinese medicine (TCM) theory, Genkwa Flos (YH) and Glycyrrhizae Radix et Rhizoma (GC) compose one herbal pair of the so-called "eighteen incompatible medicaments", which indicate pairs of herbs that are mutually incompatible and that theoretically should not be applied simultaneously. However, the theory has been called into question due to a lack of evidence. AIMS OF STUDY: In this study, the incompatibility of YH and GC was investigated based on an assessment of the toxic effects of their combination by traditional safety methods and a modern metabonomic approach. MATERIALS AND METHODS: Sprague-Dawley rats were used to evaluate the subacute toxicity of YH and YH-GC. The serum, urine, and several tissues were collected for biochemical analysis, histopathological examination, and metabonomic analysis. RESULTS: Rats exposed to a dose of 1.0 g/kg YH (3 times of the Chinese Pharmacopoeia maximum dose) exhibited toxicity of the heart, liver, kidney and testes, and rats exposed to a YH-GC combination (1.0 g/kg YH + 1.0 g/kg GC) exhibited similar hepatotoxicity, which aggravated renal and reproductive toxicity. Following this, a metabonomic study tentatively identified 14 potential biomarkers in the YH group and 10 potential biomarkers in the YH-GC group, and metabolic pathways were then constructed. YH disturbed the pathways of glycerophospholipid metabolism, primary bile acid biosynthesis, and sphingolipid metabolism, while YH-GC combination induced disruptions in phenylalanine, tyrosine and tryptophan biosynthesis, tyrosine metabolism, and glycerophospholipid metabolism. CONCLUSION: The toxicities of YH and YH-GC combination above the Chinese Pharmacopoeia dose were obvious but different. Metabonomics combined with biochemical and histopathological methods can be applied to elucidate the toxicity mechanism of the YH-GC combination that caused liver, kidney and reproductive injuries in rats.


Assuntos
Daphne , Glycyrrhiza , Extratos Vegetais/farmacologia , Animais , Flores , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Metabolômica , Miocárdio/patologia , Ratos Sprague-Dawley , Rizoma , Testículo/efeitos dos fármacos , Testículo/patologia
9.
Zhongguo Zhong Yao Za Zhi ; 43(7): 1484-1491, 2018 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29728041

RESUMO

To evaluate the effect and mechanism of aerial parts of Salvia miltiorrhiza(SM) on high sugar-induced Drosophila melanogaster metabolic disorder model. The levels of glucose, triglyceride and protein in SM were detected; nymphosis time was recorded, and the reliability of metabolic disorder model as well as the mechanism of aerial parts of SM were evaluated based on metabonomics. The results showed that the levels of glucose and triglyceride in model group were significantly higher than those in normal control group(P<0.05). As compared with the model group, the glucose level was significantly decreased in gliclazide(GLZ) group, SM medium(SM-M) and high(SM-H) dose groups(P<0.05, P<0.01); the triglyceride level was significantly decreased in GLZ group and SM-H group(P<0.05, P<0.01). By principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA), the metabolic level of model ones was recovered to a certain degree after intervention by aerial parts of SM. Seventeen marker compounds and four major metabolic pathways were obtained by screening differential metabolites, comparing literature and retrieving the database. The aerial parts of SM may regulate glycolipid metabolism through the impact on histidine metabolism, glycerophospholipid metabolism, pentose and glucuronate interconversions, cysteine and methionine metabolism and glycerolipid metabolism. Extract from aerial parts of SM can regulate the glycolipid metabolism of D. melanogaster metabolic disorder model and make it return to normal condition. This paper provides reference for the value discovery and resource utilization of the aerial parts of S. miltiorrhiza.


Assuntos
Drosophila melanogaster , Glicolipídeos/metabolismo , Doenças Metabólicas/tratamento farmacológico , Extratos Vegetais/farmacologia , Salvia miltiorrhiza/química , Animais , Componentes Aéreos da Planta/química , Reprodutibilidade dos Testes , Açúcares
10.
Zhongguo Zhong Yao Za Zhi ; 43(2): 369-371, 2018 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-29552857

RESUMO

The study was based on the toxic characteristics of the compatibility between "Zaojisuiyuan" and Gancao, with intestinal tract and intestinal bacteria as subject. From the angle of intestinal barrier function, motor function, steady state of intestinal flora and metabolism genes, the toxic and side effects of the compatibility between Qianjinzi and Gancao with similar properties, bases and chemical composition and types were further explored. The results showed that the combined application of Qianjinzi and Gancao enhanced intestinal mucosa damage, and led to abnormal changes in intestinal bacteria structure and metabolic function. It improved the degradation functions of mucus and aromatic amino acids on intestinal bacteria, which may increase the risk of disease and derived from intestinal urotoxin and other toxic substances. This study considered intestinal bacteria as an important target to study the interactions of traditional Chinese medicine. The "drug-intestinal bacteria-metabolism-toxicity" was applied in the experiment. Meanwhile, it provides ideas for exploring incompatible mechanism of traditional Chinese medicines.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glycyrrhiza uralensis/química , Mucosa Intestinal/efeitos dos fármacos , Animais , Mucosa Intestinal/patologia , Medicina Tradicional Chinesa
11.
J Pharm Biomed Anal ; 149: 425-435, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29169110

RESUMO

Chronic kidney disease (CKD) is a worldwide public health problem. Uremic retention solutes such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are accumulated in CKD patients and are associated with the incidence of CKD progression. Amino acids are the major precursors of uremic retention solutes in gut. The dynamic change of amino acid metabolism in the gut during CKD progression has not been reported previously. In this paper, we studied the dynamic change of gut IS/PCS precursor and amino acid metabolism profile during CKD progression in 5/6 nephrectomized (5/6Nx) rats model. The related gut microbiota and metagenome profile was also studied. Rat plasma, urine and feces were collected at different time points after nephrectomization. Plasma IS and PCS, fecal indole (the precursor of IS), p-cresol (the precursor of PCS) and 19 kinds of amino acids were analyzed by LC-MS. During CKD progression, 5/6 Nx rats showed increased plasma IS, PCS concentration and increased fecal indole, p-cresol concentration. 5/6 Nx rats also showed disordered gut amino acids metabolism profile which became more significant along with the progession of CKD. The abundance of some specific gut bacteria also changed significantly in 5/6 Nx rats. The 16S rDNA sequencing data of gut microbiota was further analyzed by an online tool PICRUSt, a large-scale computational method for metagenomes prediction with 16S rDNA sequencing data. The content of each gene was compared between the two groups by Mann-Whitney U test, and then the significantly regulated genes in 5/6 Nx group were subjected to KEGG website. The amino acid metabolism related genes were picked out. Most of these genes are more abundant in 5/6 Nx groups. Our study showed that gut amino acids metabolism profile was disordered with CKD progression, which was highly related to the gut microbiota dysbiosis and metagenome change. And that regulation of gut amino acids metabolism pathway may be a possible way to intervene the progression of CKD.


Assuntos
Aminoácidos/metabolismo , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Metagenoma/fisiologia , Insuficiência Renal Crônica/metabolismo , Aminoácidos/sangue , Aminoácidos/urina , Animais , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Cresóis/sangue , Cresóis/metabolismo , Cresóis/urina , DNA Bacteriano/isolamento & purificação , Modelos Animais de Doenças , Progressão da Doença , Fezes/química , Fezes/microbiologia , Trato Gastrointestinal/metabolismo , Humanos , Indóis/sangue , Indóis/metabolismo , Indóis/urina , Masculino , Redes e Vias Metabólicas , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/urina , Análise de Sequência de DNA , Organismos Livres de Patógenos Específicos
12.
J Ethnopharmacol ; 214: 71-82, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29198875

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The theory of "eighteen incompatible medicaments" (EIM) in traditional Chinese medicine (TCM) is the most representative case of herbal-herbal interactions. Gancao and Gansui are one of the incompatible herbal pairs in EIM. Gancao, also known as "licorice", is the most frequently used Chinese herb or food additive. Gansui, the root of Euphorbia kansui T.P. Wang, is another famous Chinese herb usually used to treat edema, ascites and asthma but could induce gastrointestinal (GI) tract irritation. Although Gancao and Gansui are incompatible herbal pairs, they are still used in combination in the famous "Gansui-Banxia" decoction. AIM OF THE STUDY: This study was conducted to investigate if Gancao-Gansui combination could exacerbate Gansui induced GI tract injury. Moreover, the impact of Gancao-Gansui combination to gut microbiota and related metabolism pathways were evaluated. MATERIALS AND METHODS: Normal mice were divided into different groups and treated with Gancao extracts, Gansui extracts, and Gancao-Gansui combination extracts for 7 days. Serum biomarkers (diamine oxidase activity, lipopolysaccharide, motilin, IL-1ß, IL-6, TNF-α) were determined to reflect GI tract damage. Gut microbiota diversity was studied by 16S rDNA sequencing and metagenomes analysis were also conducted to reflect functional genes expression alteration. Fecal hydrogen sulfide concentrations were measured by spectrophotometry to confirm the alteration of Desulfovibrio genus. Fecal lipid metabolomics study was conducted by GC-MS analysis to confirm the change of metagenomes and Mycoplasma abundance. RESULTS: Gancao-Gansui combination did not exacerbate GI tract tissue or functional damage but caused gut microbiota dysbiosis and increased some rare genus's abundance including Desulfovibrio and Mycoplasma. Desulfovibrio genus proliferation was confirmed by the disturbance of fecal hydrogen sulfide homeostasis. Gancao-Gansui combination also dys-regulated the metabolic genes in metagenomes. Mycoplasma genus proliferation and the metagenomes changes were both confirmed by metabolic profile analysis of fecal lipids, especially cholesterol. CONCLUSIONS: Gancao-Gansui combination can impact the gut microbiota diversity and related metabolic functions. Further studies should be carried out when the combination of Gancao-Gansui is used in herbal formulations as this may alter the diversity of the microbiota.


Assuntos
Bactérias/efeitos dos fármacos , Medicamentos de Ervas Chinesas/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biomarcadores/sangue , Disbiose , Fezes/química , Fezes/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Metabolômica/métodos , Metagenoma , Camundongos Endogâmicos ICR , Ribotipagem , Medição de Risco
13.
Front Pharmacol ; 8: 677, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018346

RESUMO

The mutual-assistance compatibility of Cyperi Rhizoma (Xiangfu, XF) and Angelicae Sinensis Radix (Danggui, DG), Chuanxiong Rhizoma (Chuanxiong, CX), Paeoniae Radix Alba (Baishao, BS), or Corydalis Rhizoma (Yanhusuo, YH), found in a traditional Chinese medicine (TCM) named Xiang-Fu-Si-Wu Decoction (XFSWD), can produce synergistic and promoting blood effects. Nowadays, XFSWD has been proved to be effective in activating blood circulation and dissipating blood stasis. However, the role of the herb pairs synergistic effects in the formula were poorly understood. In order to quantitatively assess the compatibility effects of herb pairs, mass spectrometry-based untargeted metabolomics studies were performed. The plasma and urine metabolic profiles of acute blood stasis rats induced by adrenaline hydrochloride and ice water and administered with Cyperi Rhizoma-Angelicae Sinensis Radix (XD), Cyperi Rhizoma-Chuanxiong Rhizoma (XC), Cyperi Rhizoma-Paeoniae Radix Alba (XB), Cyperi Rhizoma-Corydalis Rhizoma (XY) were compared. Relative peak area of identified metabolites was calculated and principal component analysis (PCA) score plot from the potential markers was used to visualize the overall differences. Then, the metabolites results were used with biochemistry indicators and genes expression values as parameters to quantitatively evaluate the compatibility effects of XF series of herb pairs by PCA and correlation analysis. The collective results indicated that the four XF herb pairs regulated glycerophospholipid metabolism, steroid hormone biosynthesis and arachidonic acid metabolism pathway. XD was more prominent in regulating the blood stasis during the four XF herb pairs. This study demonstrated that metabolomics was a useful tool to efficacy evaluation and compatibility effects of TCM elucidation.

14.
Sci Rep ; 7(1): 3828, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630457

RESUMO

As recorded in Traditional Chinese Medicine (TCM) theory, Gancao (Glycyrrhizae Radix et Rhizoma) could weaken the pharmacological effect or increase the toxicity of Yuanhua (Genkwa Flos). However, the theory has been suspected due to lack of evidence. Here, we investigate whether Gancao could weaken Yuanhua's diuretic effect, if so, which chemicals and which targets may be involved. Results showed that Yuanhua exerted diuretic effect through down-regulating renal AQP 2, without electrolyte disturbances such as K+ loss which has been observed as side-effect of most diuretics. Gancao had no diuretic effect, but could impair Yuanhua's diuretic effect through up-regulating renal AQP 2. Glycyrrhetinic acid (GRA) in Gancao could up-regulate AQP 2 and counteract the AQP 2 regulation effect of Yuanhuacine (YHC) and Ginkwanin (GKW) in Yuanhua. Network pharmacology method suggested that YHC, GKW and GRA could bind to MEK1/FGFR1 protein and influence ERK-MAPK pathway, which was verified by Western blotting. This study supports TCM theory and reminds that more attention should be paid to the safety and efficacy problems induced by improper combination between herbs. Moreover, we suggested that promising diuretics with less side effects can be developed from Chinese Medicines such as Yuanhua.


Assuntos
Aquaporina 2/biossíntese , Diuréticos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Rim/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Preparações de Plantas/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Diuréticos/química , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos ICR , Preparações de Plantas/química
15.
Bioorg Med Chem Lett ; 25(20): 4382-6, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26387442

RESUMO

Colocasia esculenta (L.) Schoot (taro) is one of the most common crops in the world. Its rhizome was a tonic medicine and accustomed to treat some gastrointestinal disorders in traditional Chinese medicine. Today, the taro was further developed as anticancer prescription in herbal therapy. However, the mucilage of the fresh taro has irritation, and causes itchy feeling. The components in the mucilage were not evident up to now. Two active compounds, uracil and glycol-protein taro lectin (Accession number: A5HMM7), were purified and identified from the fresh taro. The glycol-protein taro lectin showed nerve stimulation activity on dorsal root ganglion (DRG) neurons from GCaMP transgenic mice at the concentration of 1mg/mL.


Assuntos
Colocasia/química , Lectinas/isolamento & purificação , Prurido/induzido quimicamente , Uracila/isolamento & purificação , Animais , Cromatografia Líquida , Relação Dose-Resposta a Droga , Gânglios Espinais/efeitos dos fármacos , Lectinas/química , Lectinas/farmacologia , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Neurônios/efeitos dos fármacos , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Uracila/química , Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA