Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.567
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36607129

RESUMO

OBJECTIVE: NIPA1 mutations have been implicated in hereditary spastic paraplegia (HSP) as the cause of spastic paraplegia type 6 (SPG6). The aim of this study was to investigate the clinical and genetic features of SPG6 in a Taiwanese HSP cohort. METHODS: We screened 242 unrelated Taiwanese patients with HSP for NIPA1 mutations. The clinical features of patients with a NIPA1 mutation were analyzed. Minigene-based splicing assay, RT-PCR analysis on the patients' RNA, and cell-based protein expression study were utilized to assess the effects of the mutations on splicing and protein expression. RESULTS: Two patients were identified to carry a different heterozygous NIPA1 mutation. The two mutations, c.316G>A and c.316G>C, are located in the 3' end of NIPA1 exon 3 near the exon-intron boundary and putatively lead to the same amino acid substitution, p.G106R. The patient harboring NIPA1 c.316G>A manifested spastic paraplegia, epilepsy and schizophrenia since age 17 years, whereas the individual carrying NIPA1 c.316G>C had pure HSP since age 12 years. We reviewed literature and found that epilepsy was present in multiple individuals with NIPA1 c.316G>A but none with NIPA1 c.316G>C. Functional studies demonstrated that both mutations did not affect splicing, but only the c.316G>A mutation was associated with a significantly reduced NIPA1 protein expression. INTERPRETATION: SPG6 accounted for 0.8% of HSP cases in the Taiwanese cohort. The NIPA1 c.316G>A and c.316G>C mutations are associated with adolescent-onset complex and pure form HSP, respectively. The different effects on protein expression of the two mutations may be associated with their phenotypic discrepancy.

2.
ACS Sens ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598150

RESUMO

Skin metabolites show huge potential for use in clinical diagnostics. However, skin sampling and analysis workflows are tedious and time-consuming. Here, we demonstrate a vending-machine-style skin excretion sensing platform based on hydrogel-assisted sampling of skin metabolites. In this sensing platform, a sampling probe with hydrogel is held by a robotic arm. The robotic arm manoeuvres the probe to press it onto the forearm of a human subject. Due to the highly hydrophilic nature of the hydrogel, water-soluble metabolites─released by skin─are collected into the hydrogel, leaving behind the nonpolar metabolites. The probe is then inserted into a custom-made open port sampling interface coupled to an electrospray ion source of a high-resolution quadrupole-time-of-flight mass spectrometer. Metabolites in the hydrogel are immediately extracted by a solvent liquid junction in the interface and analyzed using the mass spectrometer. The ion current of the target analyte is displayed on a customized graphical user interface, which can also be used to control the key components of the analytical platform. The automated sampling and analysis workflow starts after the user inserts coins or presents an insurance card, presses a button, and extends an arm on the sampling area. The platform relies on low-cost mechanical and electronic modules (a robotic arm, a single-board computer, and two microcontroller boards). The limits of detection for standard analytes─arginine, citrulline, and histidine─embedded in agarose gel beds were 148, 205, and 199 nM, respectively. Various low-molecular-weight metabolites from human skin have been identified with the high-resolution mass spectrometer.

3.
Small ; : e2206723, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592427

RESUMO

Metal-organic frameworks (MOFs) are regarded as one promising class of precatalysts for electrocatalytic oxygen evolution reaction (OER), yet most of them suffer from poor conductivity and lack of coordinatively unsaturated metal sites, which hinders the fast electrochemical reconstruction and thus a poor OER activity. To address this issue, a unique heterocomposite has been constructed by in situ inserting carbon dots (CDs) into cobalt-based zeolitic imidazolate framework (Co-ZIF) nanosheet arrays (Co-ZIF/CDs/CC) in the presence of carbon cloth (CC) via one-pot coprecipitation for alkaline OER. Benefiting from the synergism between CDs and Co-ZIF subunits such as superior conductivity, strong charge interaction as well as abundant metal sites exposure, the Co-ZIF/CDs/CC exhibits an enhanced promotion effect for OER and contributes to the deep phase transformation from CDs-coupled Co-ZIF to CDs-coupled active CoOOH. As expected, the achieved Co-ZIF/CDs/CC only requires an overpotential of 226 mV to deliver 10 mA cm-2 in 1.0 M KOH, which is lower than that of Co-ZIF/CC and superior to most previously reported CC-supported MOF precatalysts. Moreover, it can also maintain a large current density of 100 mA cm-2 for 24 h with negligible activity decay.

4.
Front Med ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645634

RESUMO

Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictly related to genomic alterations. After identifying conserved gene modules co-expressed with EGFR or PDGFRA (EM or PM), we recently proposed an EM/PM classification scheme for adult gliomas in a histological subtype- and grade-independent manner. By using cohorts of bulk samples, paired primary and recurrent samples, multi-region samples from the same glioma, single-cell RNA-seq samples, and clinical samples, we here demonstrate the temporal and spatial stability of the EM and PM subtypes. The EM and PM subtypes, which progress in a subtype-specific mode, are robustly maintained in paired longitudinal samples. Elevated activities of cell proliferation, genomic instability and microenvironment, rather than subtype switching, mark recurrent gliomas. Within individual gliomas, the EM/PM subtype was preserved across regions and single cells. Malignant cells in the EM and PM gliomas were correlated to neural stem cell and oligodendrocyte progenitor cell compartment, respectively. Thus, while genetic makeup may change during progression and/or within different tumor areas, adult gliomas evolve within a neurodevelopmental framework of the EM and PM molecular subtypes. The dysregulated developmental pathways embedded in these molecular subtypes may contain subtype-specific vulnerabilities.

5.
BMC Genomics ; 24(1): 8, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624393

RESUMO

BACKGROUND: Exosomes are nanosized membranous vesicles secreted by various types of cells, which facilitate intercellular communication by transporting bioactive compounds. Exosomes are abundant in biological fluids including semen, and their protein composition and the potential of seminal plasma exosomes (SPEs) as fertility biomarkers were elucidated in humans, however, little information is available regarding buffalo (Bubalus bubalis). Here, we examined protein correlation between spermatozoa, seminal plasma (SP), and SPEs, and we compared and analyzed protein differences between high-motility (H-motility) and low-motility (L-motility) SPEs in buffalo. RESULTS: SPEs were concentrated and purified by ultracentrifugation combined with sucrose density gradient centrifugation, followed by verification using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. Protein composition in spermatozoa, SP and SPEs, and protein difference in H- and L-motility SPEs were identified by LC-MS/MS proteomic analysis and were functionally analyzed through comprehensive bioinformatics. Many SPEs proteins originated from spermatozoa and SP, and nearly one third were also present in spermatozoa and SP. A series of proteins associated with reproductive processes including sperm capacitation, spermatid differentiation, fertilization, sperm-egg recognition, membrane fusion, and acrosome reaction were integrated in a functional network. Comparative proteomic analyses showed 119 down-regulated and 41 up-regulated proteins in L-motility SPEs, compared with H-motility SPEs. Gene Ontology (GO) enrichment of differentially expressed proteins (DEPs) showed that most differential proteins were located in sperm and vesicles, with activities of hydrolase and metalloproteinase, and were involved in sperm-egg recognition, fertilization, single fertilization, and sperm-zona pellucida binding processes, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differential proteins were mainly involved in the PPRP signaling pathway, calcium signaling pathway, and cAMP signaling pathway, among others. Furthermore, 6 proteins associated with reproduction were validated by parallel reaction monitoring analysis. CONCLUSION: This study provides a comprehensive description of the seminal plasma exosome proteome and may be of use for further screening of biomarkers associated with male infertility.


Assuntos
Exossomos , Sêmen , Animais , Masculino , Humanos , Sêmen/metabolismo , Búfalos , Motilidade Espermática , Cromatografia Líquida , Exossomos/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Espermatozoides/metabolismo , Proteoma/metabolismo
6.
ACS Appl Mater Interfaces ; 15(2): 2552-2563, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36600575

RESUMO

Sonodynamic therapy (SDT) can be described as ultrasonic (US) catalysis. Adequate charge separation is considered as effective means to promote reactive oxygen species (ROS). Here, hollow CoP@N-carbon@PEG (CPCs@PEG) nanospheres (∼60 nm) are prepared as sonosensitizers, showing greater ROS generation than pure CoP@PEG under US irradiation. Both 1O2 and ·O2- are activation species that are determined by O2 and electrons. The great SDT performance of CPCs@PEG is ascribed to the heterostructure which promotes the separation and transfer for US-generated electrons and holes. In addition, holes can be further captured by endogenous glucose that is in favor of electron aggregation and ROS generation. Moreover, the consumption of glucose would decrease intracellular ATP for starvation therapy. Given the higher oxidation ability of Co3+, CPCs@PEG nanospheres possess catalase (CAT) activity to convert H2O2 into O2 for assisting ROS generation. Moreover, they also can oxidize glutathione (GSH) as a mimic GSH oxidase to break intratumor redox balance, facilitating oxidative stress. More importantly, the nanocomposites reveal good degradation ability dominated by the oxidation from insoluble phosphide into soluble phosphate, accelerating elimination via urine and feces within 14 days. CPCs@PEG nanospheres integrate the above effects not only to reveal great tumor inhibition ability but also to excite immune activation for anticancer.


Assuntos
Nanosferas , Neoplasias , Humanos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Carbono , Linhagem Celular Tumoral
7.
Bioorg Med Chem ; 79: 117169, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36657375

RESUMO

The selenoprotein thioredoxin reductase (TrxR) is of paramount importance in maintaining cellular redox homeostasis, and aberrant upregulation of TrxR is frequently observed in various cancers due to their elevated oxidative stress in cells. Thus, it seems promising and feasible to target the ablation of intracellular TrxR for the treatment of cancers. We report herein the design and synthesis of a series of Baylis-Hillman adducts, and identified a typical adduct that possesses the superior cytotoxicity against HepG2 cells over other types of cancer cells. The biological investigation shows the selected typical adduct selectively targets TrxR in HepG2 cells, which thereafter results in the collapse of intracellular redox homeostasis. Further mechanistic studies reveal that the selected typical adduct arrests the cell cycle in G1/G0 phase. Importantly, the malignant metastasis of HepG2 cells is significantly restrained by the selected typical adduct. With well-defined molecular target and mechanism of action, the selected typical adduct, even other Baylis-Hillman skeleton-bearing compounds, merits further development as candidate or ancillary agent for the treatment of various cancers.

8.
Chemosphere ; 315: 137730, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603675

RESUMO

Copper and zinc are toxic heavy metals in soils that require development of feasible strategies for remediation of contaminated soils around the mine areas. In this study, the processing conditions and mechanisms of immobilization and bioleaching for remediation of highly contaminated soils with heavy metals are investigated. Soil remediation is carried out using a bioleaching-immobilization bipolar method. The results show that LSE03 bacteria provide efficient leaching result and immobilization on Cu2+ and Zn2+. Among the bacterial metabolites, cis, cis-muconic acid and isovaleric acid play major roles in the bioleaching process. The bacterial extracellular polymeric substances are rich in a variety of organic acids that show a significant decrease in content after the adsorption process, indicating that all of these substances are involved in the binding of heavy metals. Characterization of the endophytes and immobilizing agents with FTIR, TEM-mapping, and XPS techniques reveal the ability of both bacteria and composites to adsorb Cu-Zn as well as the main functional groups of -OH, -COOH, -PO43-, and -NH. According to the heavy metals species analyses, competitive adsorption experiments, and bioleaching desorption experiments, it is planned to carry out the bipolar remediation of contaminated soil through immobilization followed by bioleaching process. After bipolar remediation processing, 97.923% and 96.387% of available Cu and Zn are respectively removed. Soils fertility significantly increases in all cases. Our study provides a green, practical, and environmentally friendly treatment method for soils contaminated with high concentrations of heavy metals.


Assuntos
Metais Pesados , Poluentes do Solo , Zinco/análise , Cobre/química , Endófitos , Solo/química , Metais Pesados/análise , Compostos Orgânicos , Hidroxiapatitas , Poluentes do Solo/análise
9.
J Pers Med ; 13(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36675787

RESUMO

PURPOSE: Post-operative cystography has been used to predict the recovery of postprostatectomy urinary incontinence (PPI) in patients with localized prostate cancer. This study aimed to validate the predictive value of cystography for PPI and utilize a deep learning model to identify favorable and unfavorable features. METHODS: Medical records and cystography images of patients who underwent robotic-assisted radical prostatectomy for localized prostate cancer were retrospectively reviewed. Specific cystography features, including anastomosis leakage, a downward bladder neck (BN), and the bladder neck angle, were analyzed for the prediction of PPI recovery. Favorable and unfavorable patterns were categorized based on the three cystography features. The deep learning model used for transfer learning was ResNet 50 and weights were trained on ImageNet. We used 5-fold cross-validation to reduce bias. After each fold, we used a test set to confirm the model's performance. RESULT: A total of 170 consecutive patients were included; 31.2% experienced immediate urinary continence after surgery, while 93.5% achieved a pad-free status and 6.5% were still incontinent in the 24 weeks after surgery. We divided patients into a fast recovery group (≤4 weeks) and a slow recovery group (>4 weeks). Compared with the slow recovery group, the fast recovery group had a significantly lower anastomosis leakage rate, less of a downward bladder neck, and a larger bladder neck angle. Test data used to evaluate the model's performance demonstrated an average 5-fold accuracy, sensitivity, and specificity of 93.75%, 87.5%, and 100%, respectively. CONCLUSIONS: Postoperative cystography features can predict PPI recovery in patients with localized prostate cancer. A deep-learning model can facilitate the identification process. Further validation and exploration are required for the future development of artificial intelligence (AI) in this field.

10.
Tissue Cell ; 80: 101995, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36512950

RESUMO

Carbon nanotubes (CNTs), as kinds of conductive carbon nanomaterials, were widely applied in neural tissue engineering due to their excellent electrical conductivity and good biocompatibility. In this study, the carboxyl-modified multi-walled carbon nanotubes (mMWCNTs) were introduced into sodium alginate/gelatin (Alg/Gel) scaffolds to optimize the function of the hybrid scaffolds. The Alg/Gel/mMWCNTs conductive scaffolds with mMWCNTs content of 1%, 3%, and 5% were prepared by freeze-drying, respectively. Following this, the physicochemical properties and biocompatibility of the hybrid scaffolds at different magnetic field intensities were evaluated. The conductive scaffolds were characterized by Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In general, the mMWCNTs addition improved the hydrophilic, electrical conductivity and mechanical properties of the composite scaffold, and PC12 cells showed a trend of gradual increase over culture time. Particularly, the Alg/Gel-1%C scaffold exhibited the best cell proliferation behavior. Briefly, the surface contact angle decreased from 74 ± 1° to 60 ± 3°, the electrical conductivity and compressive modulus increased to 1.32 × 10-3 ± 2.1 × 10-4 S/cm and 1.40 ± 0.076 Mpa, the G1 phase from 55.67 ± 1.86% to 59.77 ± 0.94% and the G2 phase from 10.32 ± 0.35% to 13.93 ± 1.26%,respectively. In the SEM images, PC12 cells were well-shaped and densely distributed. Therefore, the Alg/Gel/mMWCNTs conductive scaffold has potential as a tissue engineering scaffold in nerve regeneration.


Assuntos
Nanotubos de Carbono , Engenharia Tecidual , Ratos , Animais , Engenharia Tecidual/métodos , Nanotubos de Carbono/química , Gelatina/química , Alginatos/química , Tecidos Suporte/química , Condutividade Elétrica
11.
Sci Total Environ ; 862: 160850, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526204

RESUMO

BACKGROUND: The ongoing climate change will elevate the incidence of diarrheal in 2030-2050 in Asia, including Taiwan. This study investigated associations between meteorological factors (temperature, precipitation) and burden of age-cause-specific diarrheal diseases in six regions of Taiwan using 13 years of (2004-2016) population-based data. METHODS: Weekly cause-specific diarrheal and meteorological data were obtained from 2004 to 2016. We used distributed lag non-linear model to assess age (under five, all age) and cause-specific (viral, bacterial) diarrheal disease burden associated with extreme high (99th percentile) and low (5th percentile) of climate variables up to lag 8 weeks in six regions of Taiwan. Random-effects meta-analysis was used to pool these region-specific estimates. RESULTS: Extreme low temperature (15.30 °C) was associated with risks of all-infectious and viral diarrhea, with the highest risk for all-infectious diarrheal found at lag 8 weeks among all age [Relative Risk (RR): 1.44; 95 % Confidence Interval (95 % CI): 1.24-1.67]. The highest risk of viral diarrheal infection was observed at lag 2 weeks regardless the age. Extreme high temperature (30.18 °C) was associated with risk of bacterial diarrheal among all age (RR: 1.07; 95 % CI: 1.02-1.13) at lag 8 weeks. Likewise, extreme high precipitation (290 mm) was associated with all infectious diarrheal, with the highest risk observed for bacterial diarrheal among population under five years (RR: 2.77; 95 % CI: 1.60-4.79) at lag 8 weeks. Extreme low precipitation (0 mm) was associated with viral diarrheal in all age at lag 1 week (RR: 1.08; 95 % CI: 1.01-1.15)]. CONCLUSION: In Taiwan, extreme low temperature is associated with an increased burden of viral diarrheal, while extreme high temperature and precipitation elevated burden of bacterial diarrheal. This distinction in cause-specific and climate-hazard specific diarrheal disease burden underscore the importance of incorporating differences in public health preparedness measures designed to enhance community resilience against climate change.


Assuntos
Temperatura Baixa , Diarreia , Humanos , Adolescente , Lactente , Recém-Nascido , Temperatura , Taiwan/epidemiologia , Risco , Diarreia/epidemiologia
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122186, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36481535

RESUMO

Traumatic lung injury (TLI), which is a common mechanical injury, is receiving increasing attention because of its serious hazards. In forensic practices, accurately identifying TLI is of great importance for investigations and case trials. The main goal of this research was to identify TLI utilizing attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy in combination with chemometrics. The macroscopic appearance of lung tissue showed that identifying TLI in lung tissue at the decomposition stage is not feasible by only visualization, and significant pulmonary hypostasis was observed in the lungs regardless of whether the lung tissue was injured. Average spectra and principal component analysis (PCA) suggested that the biochemical difference between injured lung tissue samples from the TLI group and noninjured lung tissue samples from the negative control group was mainly attributed to the different structures and contents of proteins. Partial least squares discriminant analysis (PLS-DA) was then utilized to identify TLI with an accuracy of 96.4% and 98.6% based on the training set and the test set, respectively. Next, we focused on samples that were misclassified in the model and proposed that the misclassification could be caused by the pulmonary hypostasis effect. Therefore, two additional PCA and PLS-DA models were created to identify the pulmonary hypostatic areas between the TLI group and the negative control group and the nonpulmonary hypostatic areas between the TLI group and the negative control group. The PCA results indicated that the biochemical difference between the two groups was still associated with proteins, and the two PLS-DA models achieved 100% accuracy based on both the training and test sets. This result indicated that when pulmonary hypostasis was considered and the lung tissue was divided into pulmonary hypostatic areas and nonpulmonary hypostatic areas for separate comparisons, TLI identification was achieved with a greater accuracy than that obtained when the two areas were combined. This research confirms that the combined application of ATR-FTIR spectroscopy and chemometrics can be utilized to accurately identify TLI.


Assuntos
Lesão Pulmonar , Humanos , Lesão Pulmonar/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quimiometria , Análise Discriminante , Análise dos Mínimos Quadrados , Análise de Componente Principal , Pulmão , Proteínas Mutadas de Ataxia Telangiectasia
13.
ACS Biomater Sci Eng ; 9(1): 329-339, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36516234

RESUMO

Bacteria and viruses can adhere onto diverse surfaces and be transmitted in multiple ways. A bifunctional coating that integrates both antibacterial and antiviral activities is a promising approach to mitigate bacterial and viral infections arising from a contaminated surface. However, current coating approaches encounter a slow reaction, limited activity against diverse bacteria or viruses, short-term activity, difficulty in scaling-up, and poor adaptation to diverse material surfaces. Here, we report a new one-step strategy for the development of a polydopamine-based nonfouling antibacterial and antiviral coating by the codeposition of various components. The in situ formed nanosilver in the presence of polydopamine was incorporated into the coating and served as both antibacterial and antiviral agents. In addition, the coassembly of polydopamine and a nonfouling hydrophilic polymer was constructed to prevent the adhesion of bacteria and viruses on the coating. The coating was prepared on model surfaces and thoroughly characterized using various surface analytical techniques. The coating exhibited strong antifouling properties with a reduction of nonspecific protein adsorption up to 90%. The coating was tested against both Gram-positive and Gram-negative bacteria and showed long-term antibacterial effectiveness, which correlated with the composition of the coating. The antiviral activity of the coating was evaluated against human coronavirus 229E. A possible mechanism of action of the coating was proposed. We anticipate that the optimized coating will have applications in the development of infection prevention devices and surfaces.


Assuntos
Incrustação Biológica , Dopamina , Humanos , Dopamina/farmacologia , Incrustação Biológica/prevenção & controle , Antibacterianos/farmacologia , Antivirais/farmacologia , Aderência Bacteriana , Materiais Revestidos Biocompatíveis/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Polímeros/farmacologia , Bactérias
14.
Brief Bioinform ; 24(1)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36528388

RESUMO

Membrane-based cells are the fundamental structural and functional units of organisms, while evidences demonstrate that liquid-liquid phase separation (LLPS) is associated with the formation of membraneless organelles, such as P-bodies, nucleoli and stress granules. Many studies have been undertaken to explore the functions of protein phase separation (PS), but these studies lacked an effective tool to identify the sequence segments that critical for LLPS. In this study, we presented a novel software called dSCOPE (http://dscope.omicsbio.info) to predict the PS-driving regions. To develop the predictor, we curated experimentally identified sequence segments that can drive LLPS from published literature. Then sliding sequence window based physiological, biochemical, structural and coding features were integrated by random forest algorithm to perform prediction. Through rigorous evaluation, dSCOPE was demonstrated to achieve satisfactory performance. Furthermore, large-scale analysis of human proteome based on dSCOPE showed that the predicted PS-driving regions enriched various protein post-translational modifications and cancer mutations, and the proteins which contain predicted PS-driving regions enriched critical cellular signaling pathways. Taken together, dSCOPE precisely predicted the protein sequence segments critical for LLPS, with various helpful information visualized in the webserver to facilitate LLPS-related research.


Assuntos
Proteínas , Software , Humanos , Proteínas/química
15.
Brief Bioinform ; 24(1)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36572655

RESUMO

The time since deposition (TSD) of a bloodstain, i.e., the time of a bloodstain formation is an essential piece of biological evidence in crime scene investigation. The practical usage of some existing microscopic methods (e.g., spectroscopy or RNA analysis technology) is limited, as their performance strongly relies on high-end instrumentation and/or rigorous laboratory conditions. This paper presents a practically applicable deep learning-based method (i.e., BloodNet) for efficient, accurate, and costless TSD inference from a macroscopic view, i.e., by using easily accessible bloodstain photos. To this end, we established a benchmark database containing around 50,000 photos of bloodstains with varying TSDs. Capitalizing on such a large-scale database, BloodNet adopted attention mechanisms to learn from relatively high-resolution input images the localized fine-grained feature representations that were highly discriminative between different TSD periods. Also, the visual analysis of the learned deep networks based on the Smooth Grad-CAM tool demonstrated that our BloodNet can stably capture the unique local patterns of bloodstains with specific TSDs, suggesting the efficacy of the utilized attention mechanism in learning fine-grained representations for TSD inference. As a paired study for BloodNet, we further conducted a microscopic analysis using Raman spectroscopic data and a machine learning method based on Bayesian optimization. Although the experimental results show that such a new microscopic-level approach outperformed the state-of-the-art by a large margin, its inference accuracy is significantly lower than BloodNet, which further justifies the efficacy of deep learning techniques in the challenging task of bloodstain TSD inference. Our code is publically accessible via https://github.com/shenxiaochenn/BloodNet. Our datasets and pre-trained models can be freely accessed via https://figshare.com/articles/dataset/21291825.


Assuntos
Manchas de Sangue , Teorema de Bayes , Aprendizado de Máquina
16.
J Colloid Interface Sci ; 634: 535-542, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549202

RESUMO

Phospholipids are the protective layer of modern cells, but it is challenging for the formation of phospholipids that require a simple abiotic synthesis before the advent of primitive cells. Here, we reported the abiotic synthesis for lysophosphatidic acids (LPAs) with prebiotically plausible reactants in aqueous microdroplets under ambient conditions. The LPAs formation is carried out by fusing two microdroplets streams: one contains glycerol and pyrophosphate in water and the other one contains fatty acids in acetonitrile. Compared with the bulk solution, LPAs were generated in microdroplets without the addition of catalyst and heating. Conditions of reactant concentrations and microdroplet size varied and suggested that LPAs formation occurred near or at the microdroplet surface. The LPAs formation also showed chemoselective toward on chain-length of fatty acids. Finally, the formation of LPAs underwent two-step reactions with glycerol phosphorylation eliminating one water molecule followed by esterification with fatty acids. These results also implicated that pyrophosphate functioned as both catalysts and precursors in prebiotic LPAs synthesis. The approach using fusion aqueous microdroplets has desirable features in studying the substance exchange and interaction in atmosphere.


Assuntos
Difosfatos , Fosfolipídeos , Glicerol , Ácidos Graxos , Água
17.
Org Lett ; 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472909

RESUMO

We have developed a dual copper/photoredox-catalyzed approach for the construction of the P(O)-N bond from commercially available aromatic amines and P(O)-H compounds. This metallaphotoredox method avoids toxic or corrosive reagents and does not require prefunctionalized substrates. The reaction has a broad substrate scope and is suitable for the synthesis of phosphonamides and phosphinamides, thus complementing the previous nonphotochemical approaches. The reaction is amenable to the direct modification of drug molecules and can be conducted on a gram scale.

18.
Front Aging Neurosci ; 14: 943992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466603

RESUMO

Higher aerobic fitness during late midlife is associated with higher white matter (WM) microstructure. Compared with individuals engaged in irregular exercise, those who engage in regular aerobic exercise show higher fractional anisotropy (FA), a diffusion tenor imaging (DTI) measure that provides an index of WM microstructural integrity. However, whether other types of exercise, such as Tai Chi, can also facilitate WM changes in adults during late midlife remains unknown. The present study compares two types of exercise, Tai Chi and walking, with a sedentary control group, in order to examine the effects of exercise on WM microstructure and determine the regional specificity of WM differences. Thirty-six healthy adults between the ages of 55 and 65 years participated in the study. Based on the participants' exercise habits, they were allocated into three groups: Tai Chi, walking, or sedentary control. All participants were required to complete physical fitness measurements and completed magnetic reasoning imaging (MRI) scans. Our results revealed that the Tai Chi group exhibited a higher FA value in the left cerebral peduncle, compared to the sedentary control group. We also observed that both the Tai Chi and walking groups exhibited higher FA values in the right uncinate fasciculus and the left external capsule, in comparison to the sedentary control group. Increased FA values in these regions was positively correlated with higher levels of physical fitness measurements (i.e., peak oxygen uptake [VO2peak], muscular endurance/number of push-up, agility, power). These findings collectively suggest that regular exercise is associated with improved WM microstructural integrity, regardless of the exercise type, which could guide the development and application of future prevention and intervention strategies designed to address age-related cognitive impairments during late midlife.

19.
Front Neurorobot ; 16: 1035921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467568

RESUMO

With the rapid development of artificial intelligence technology, many researchers have begun to focus on visual language navigation, which is one of the most important tasks in multi-modal machine learning. The focus of this multi-modal field is how to fuse multiple inputs, which is crucial for the integrated feedback of intrinsic information. However, the existing models are only implemented through simple data augmentation or expansion, and are obviously far from being able to tap the intrinsic relationship between modalities. In this paper, to overcome these challenges, a novel multi-modal matching feedback self-tuning model is proposed, which is a novel neural network called Vital Information Matching Feedback Self-tuning Network (VIM-Net). Our VIM-Net network is mainly composed of two matching feedback modules, a visual matching feedback module (V-mat) and a trajectory matching feedback module (T-mat). Specifically, V-mat matches the target information of visual recognition with the entity information extracted by the command; T-mat matches the serialized trajectory feature with the direction of movement of the command. Ablation experiments and comparative experiments are conducted on the proposed model using the Matterport3D simulator and the Room-to-Room (R2R) benchmark datasets, and the final navigation effect is shown in detail. The results prove that the model proposed in this paper is indeed effective on the task.

20.
Biomater Adv ; 144: 213168, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455499

RESUMO

Intratumoral hypoxia, which is in favour of cancer cell proliferation, invasion and metastasis, also inhibits photodynamic therapy (PDT) badly. Herein, second near-infrared (NIR-II) photocatalytic O2 production is established to realize hypoxia relief. MoS2/Co3S4@PEG (MSCs@PEG) nanoflowers (100-150 nm) are prepared via a two-step hydrothermal method. These samples possess high NIR-II harvest and photothermal conversion (39.8 %, 1064 nm) ability. That not only reveals photothermal therapy (PTT) but also lifts the thermal energy of nanomaterials to replenish extra energy, making sure the co-excitation of MoS2 (1.14 eV) and Co3S4 (1.40 eV) by low-energy NIR-II (1064 nm, 1.16 eV) laser. The investigation of band structure further displays the Z-Scheme characterization of MSCs heterostructure. These photo-excited holes/electrons hold great redox ability to form O2 (water splitting) and reactive oxygen species (ROS), simultaneously. In addition, MSC-2@PEG can be served to mimic catalase, peroxidase, and glutathione (GSH) oxidase to further boost oxidative stress. It is noted that heterostructure discovers the greater nanozyme activity, attributing to the lower resistance for charge transfer. Moreover, MSC-2@PEG displays a novel biodegradation ability to induce the elimination via urine and faeces within 14 days. Given the superparamagnetic and photothermal effect, the nanocomposite can be used as magnetic resonance and photothermal imaging (MRI and PTI) contrast. Associated with dual-imaging, intracellular O2 supplementation, and synergistic chemotherapy (CDT)/PTT/PDT, MSC-2@PEG possess great tumor inhibition that also efficiently motivates immune response for anticancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...