Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 320: 159-167, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31978443

RESUMO

Glucose-responsive insulin delivery system mimicking the function of pancreatic ß-cells to maintain blood glucose homeostasis would effectively alleviate diabetes. Here, a new glucose-responsive delivery (ZIF@Ins&GOx) for self-regulated insulin release was constructed by encapsulating insulin and glucose oxidase (GOx) into pH-sensitive zeolitic imidazole framework-8 (ZIF-8) nanocrystals. After entering the cavities of ZIF-8, glucose can be oxidized into gluconic acid by GOx, causing a decrease in local pH. Then, ZIF-8 nanocrystals would be degraded under the acidic microenvironment that in turn triggers the release of insulin in a glucose responsive fashion. In vitro studies indicated that the biological activity of insulin could be protected by the rigid structure of ZIF-8 and the release of insulin could be modulated in response to glucose concentrations. In vivo experiments demonstrated that a single subcutaneous injection of the ZIF@Ins&GOx would facilitate the stabilization of blood glucose level of normoglycemic state for up to 72 h in type 1 diabetes (T1D). The multifunctional insulin delivery system shows a new proof-of-concept for T1D treatment by using ZIF-8 nanocrystals loaded with insulin and enzyme.

2.
PLoS One ; 14(12): e0225693, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31794567

RESUMO

When consumers are faced with the choice of competitive chain facilities that offer exclusive services, current rules do not properly describe the behavior pattern of these consumers. To eliminate the gap between the current rules and this kind of customers behavior pattern, the partially proportional rule with a threshold is proposed in this paper. A leader-follower model for discrete competitive facility location problem is established under the partially proportional rule with a threshold. Combining with the greedy strategy and the 2-opt strategy, a heuristical algorithm (GFA) is designed to solve the follower's problem. By embedding the algorithm (GFA), an improved ranking-based algorithm (IRGA) is proposed to solve the leader-follower model. Numerical tests show that the algorithm proposed in this paper can solve the leader-follower model for discrete competitive facility location problem effectively. The effects of different parameters on the market share captured by the leader firm and the follower firm are analyzed in detail using a quasi-real example. An interesting finding is that in some cases the leader firm does not have a first-mover advantage.

3.
ACS Nano ; 13(12): 14230-14240, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31714733

RESUMO

Tumorous vasculature plays key roles in sustaining tumor growth. Vascular disruption is accompanied by internal coagulation along with platelet recruitment and the resulting suppression of oxygen supply. We intend to artificially create this physiological process to establish the mutual feedback between vascular disruption and platelet-mimicking biotaxis for the cascade amplification of hypoxia-dependent therapy. To prove this concept, mesoporous silica nanoparticles are co-loaded with a hypoxia-activated prodrug (HAP) and a vessel-disruptive agent and then coated with platelet membranes. Upon entering into tumors, our nanotherapeutic can disrupt local vasculature for tumor inhibition. This platelet membrane-coated nanoplatform shares the hemorrhage-tropic function with parental platelets and can be persistently recruited by the vasculature-disrupted tumors. In this way, the intratumoral vascular disruption and tumor targeting are biologically interdependent and mutually reinforced. Relying on this mutual feedback, tumorous hypoxia was largely promoted by more than 20-fold, accounting for the effective recovery of the HAP's cytotoxicity. Consequently, our bioinspired nanodesign has demonstrated highly specific and effective antitumor potency via the biologically driven cooperation among intratumoral vascular disruption, platelet-mimicking biotaxis, cascade hypoxia amplification, and hypoxia-sensitive chemotherapy. This study offers a paradigm of correlating the therapeutic design with the physiologically occurring events to achieve better therapy performance.

4.
ACS Nano ; 13(10): 11249-11262, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31566945

RESUMO

Here, a protein farnesyltransferase (PFTase)-driven plasma membrane (PM)-targeted chimeric peptide, PpIX-C6-PEG8-KKKKKKSKTKC-OMe (PCPK), was designed for PM-targeted photodynamic therapy (PM-PDT) and enhanced immunotherapy via tumor cell PM damage and fast release of damage-associated molecular patterns (DAMPs). The PM targeting ability of PCPK originates from the cellular K-Ras signaling, which occurs exclusively to drive the corresponding proteins to PM by PFTase. With the conjugation of the photosensitizer protoporphyrin IX (PpIX), PCPK could generate cytotoxic reactive oxygen species to deactivate membrane-associated proteins, initiate lipid peroxidation, and destroy PM with an extremely low concentration (1 µM) under light irradiation. The specific PM damage further induced the fast release of DAMPs (high-mobility group box 1 and ATP), resulting in antitumor immune responses stronger than those of conventional cytoplasm-localized PDT. This immune-stimulating PM-PDT strategy also exhibited the inhibition effect for distant metastatic tumors when combined with programmed cell death receptor 1 blockade therapy.

5.
Biomaterials ; 224: 119500, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31557591

RESUMO

Redox homeostasis inside malignant cells is a defense mechanism against the reactive oxygen species (ROS)-induced therapy means, but little importance has been paid to this innate barrier. The present study intends to make cancer cells more sensitive to the ROS-induced therapy by disturbing cellular redox homeostasis. To verify this concept, a porous metal-organic framework (MOF) serves not only as the photodynamic therapy (PDT) agent but also as the carrier to transport alkaloid piperlongumine (PL), a thioredoxin reductase (TrxR) inhibitor used to disturb cellular redox homeostasis. The PL-loaded MOF was further coated with cancer cell membranes to gain homologous tumor-targeting capability. Inside tumor cells, the released PL can effectively block the TrxR-mediated ROS elimination pathway. The resultant data show that compared to traditional PDT alone, the combination of PDT and TrxR inhibition causes profound promotions in cellular ROS level by about 1.6 times, in cytotoxicity by about 2 times, and in cellular apoptosis/necrosis rate by about 3 times. Consequently, this strategy based on the interference with cellular redox homeostasis has demonstrated high potency to improve the anticancer PDT performance, adumbrating a new way to boost the power of ROS-induced therapy.

6.
Biomaterials ; 223: 119472, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31499254

RESUMO

Inflammation during photothermal therapy (PTT) of tumor usually results in adverse consequences. Here, a biomembrane camouflaged nanomedicine (mPDAB) containing polydopamine and ammonia borane was designed to enhance PTT efficacy and mitigate inflammation. Polydopamine, a biocompatible photothermal agent, can effectively convert light into heat for PTT. Ammonia borane was linked to the surface of polydopamine through the interaction of hydrogen bonding, which could destroy redox homoeostasis in tumor cells and reduce inflammation by H2 release in tumor microenvironment. Owing to the same origin of outer biomembranes, mPDAB showed excellent tumor accumulation and low systemic toxicity in a breast tumor model. Excellent PTT efficacy and inflammation reduction made the mPDAB completely eliminate the primary tumors, while also restraining the outgrowth of distant dormant tumors. The biomimetic nanomedicine shows potentials as a universal inflammation-self-alleviated platform to ameliorate inflammation-related disease treatment, including but not limited to PTT for tumor.

7.
Nat Commun ; 10(1): 3199, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324770

RESUMO

Most cancer vaccines are unsuccessful in eliciting clinically relevant effects. Without using exogenous antigens and adoptive cells, we show a concept of utilizing biologically reprogrammed cytomembranes of the fused cells (FCs) derived from dendritic cells (DCs) and cancer cells as tumor vaccines. The fusion of immunologically interrelated two types of cells results in strong expression of the whole tumor antigen complexes and the immunological co-stimulatory molecules on cytomembranes (FMs), allowing the nanoparticle-supported FM (NP@FM) to function like antigen presenting cells (APCs) for T cell immunoactivation. Moreover, tumor-antigen bearing NP@FM can be bio-recognized by DCs to induce DC-mediated T cell immunoactivation. The combination of these two immunoactivation pathways offers powerful antitumor immunoresponse. Through mimicking both APCs and cancer cells, this cytomembrane vaccine strategy can develop various vaccines toward multiple tumor types and provide chances for accommodating diverse functions originating from the supporters.


Assuntos
Apresentação do Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Membrana Celular/imunologia , Nanopartículas/uso terapêutico , Animais , Fusão Celular , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Feminino , Imunoterapia , Ativação Linfocitária , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Transcriptoma , Transplante Heterólogo
8.
Adv Mater ; 31(18): e1900499, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30907473

RESUMO

Using the cytomembranes (FMs) of hybrid cells acquired from the fusion of cancer and dendritic cells (DCs), this study offers a biologically derived platform for the combination of immunotherapy and traditional oncotherapy approaches. Due to the immunoactivation implicated in the cellular fusion, FMs can effectively express whole cancer antigens and immunological co-stimulatory molecules for robust immunotherapy. FMs share the tumor's self-targeting character with the parent cancer cells. In bilateral tumor-bearing mouse models, the FM-coated nanophotosensitizer causes durable immunoresponse to inhibit the rebound of primary tumors post-nanophotosensitizer-induced photodynamic therapy (PDT). The FM-induced immunotherapy displays ultrahigh antitumor effects even comparable to that of PDT. On the other hand, PDT toward primary tumors enhances the immunotherapy-caused regression of the irradiation-free distant tumors. Consequently, both the primary and the distant tumors are almost completely eliminated. This tumor-specific immunotherapy-based nanoplatform is potentially expandable to multiple tumor types and readily equipped with diverse functions owing to the flexible nanoparticle options.


Assuntos
Membrana Celular/química , Células Dendríticas/citologia , Imunoterapia , Nanoestruturas/química , Animais , Anticorpos/química , Anticorpos/imunologia , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Receptores de Hialuronatos/imunologia , Estruturas Metalorgânicas/química , Camundongos , Camundongos Nus , Nanoestruturas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Porfirinas/uso terapêutico , Transplante Heterólogo , Zircônio/química
9.
ACS Nano ; 13(2): 1784-1794, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30698953

RESUMO

Hypoxia, a ubiquitously aberrant phenomenon implicated in tumor growth, causes severe tumor resistance to therapeutic interventions. Instead of the currently prevalent solution through intratumoral oxygen supply, we put forward an "O2-economizer" concept by inhibiting the O2 consumption of cell respiration to spare endogenous O2 and overcome the hypoxia barrier. A nitric oxide (NO) donor responsible for respiration inhibition and a photosensitizer for photodynamic therapy (PDT) are co-loaded into poly(d,l-lactide- co-glycolide) nanovesicles to provide a PDT-specific O2 economizer. Once accumulating in tumors and subsequently responding to the locally reductive environment, the carried NO donor undergoes breakdown to produce NO for inhibiting cellular respiration, allowing more O2 in tumor cells to support the profound enhancement of PDT. Depending on the biochemical reallocation of cellular oxygen resource, this O2-economizer concept offers a way to address the important issue of hypoxia-induced tumor resistance to therapeutic interventions, including but not limited to PDT.

10.
Biomaterials ; 194: 84-93, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30583151

RESUMO

This paper reported on a two-photon excited nanocomposite FCRH to overcome tumor hypoxia for enhanced photodynamic therapy (PDT). Through modified by ruthenium (Ⅱ) complex (Ru(bpy)32+) and hyperbranched conjugated copolymer with poly (ethylene glycol) arms (HOP), the water-splitting mediated O2 generation can be triggered via two-photon irradiation from iron-doped carbon nitride (Fe-C3N4) for the first time. While exposured to two-photon laser, Ru(bpy)32+ was activated to generate singlet oxygen (1O2) and Fe-C3N4 was triggered to split water for oxygen supply in the mean time. Owing to the injection of photoinduced electrons from excited Ru(bpy)32+ to Fe-C3N4, O2 generation by Fe-C3N4 was significantly accelerated. After accumulation of the nanocomposite by enhanced permeability and retention (EPR) effect, FCRH was demonstrated to alleviate the tumorous hypoxia and consequently enhance the antitumor efficacy of PDT. Furthermore, tumor metabolism evaluations explained the capability of the nanocomposite in reducing intratumoral hypoxia. Our results provide a new diagram for ameliorating the hypoxic tumor microenvironment and accelerating 1O2 generation under two-photon excitation, which will find great potential for spatiotemporally controlled tumor treatment in vivo.

11.
ACS Nano ; 12(12): 12181-12192, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30458111

RESUMO

Non-apoptotic ferroptosis is of clinical importance because it offers a solution to the inevitable biocarriers of traditional apoptotic therapeutic means. Inspired by industrial electro-Fenton technology featured with electrochemical iron cycling, we construct ferrous-supply-regeneration nanoengineering to intervene tumorous iron metabolism for enhanced ferroptosis. Fe3+ ion and naturally derived tannic acid (TA) spontaneously form a network-like corona onto sorafenib (SRF) nanocores. The formed SRF@FeIIITA nanoparticles can respond to a lysosomal acid environment with corona dissociation, permitting SRF release to inhibit GPX4 enzyme for ferroptosis initiation. TA is arranged to chemically reduce the liberated and the ferroptosis-generated Fe3+ to Fe2+, offering iron redox cycling to, thus, effectively produce lipid peroxide required in ferroptosis. Sustained Fe2+ supply leads to long-term cytotoxicity, which is identified to be specific to H2O2-overloaded cancer cells but minimal in normal cells. SRF@FeIIITA-mediated cell death proves to follow the ferroptosis pathway and strongly inhibits tumor proliferation. Moreover, SRF@FeIIITA provides a powerful platform capable of versatile integration between apoptosis and non-apoptosis means. Typically, photosensitizer-adsorbed SRF@FeIIITA demonstrates rapid tumor imaging owing to the acid-responsive fluorescence recovery. Together with ferroptosis, imaging-guided photodynamic therapy induces complete tumor elimination. This study offers ideas about how to advance anticancer ferroptosis through rational material design.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Nanotecnologia , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Células 3T3 , Animais , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Fármacos Fotossensibilizantes/química
12.
Adv Mater ; 30(35): e1802006, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30015997

RESUMO

Extreme hypoxia of tumors represents the most notable barrier against the advance of tumor treatments. Inspired by the biological nature of red blood cells (RBCs) as the primary oxygen supplier in mammals, an aggressive man-made RBC (AmmRBC) is created to combat the hypoxia-mediated resistance of tumors to photodynamic therapy (PDT). Specifically, the complex formed between hemoglobin and enzyme-mimicking polydopamine, and polydopamine-carried photosensitizer is encapsulated inside the biovesicle that is engineered from the recombined RBC membranes. The mean corpuscular hemoglobin of AmmRBCs reaches about tenfold as high as that of natural RBCs. Owing to the same origin of outer membranes, AmmRBCs share excellent biocompatibility with parent RBCs. The introduced polydopamine plays the role of the antioxidative enzymes existing inside RBCs to effectively prevent the oxygen-carrying hemoglobin from the oxidation damage during the circulation. This biomimetic engineering can accumulate in tumors, permit in situ efficient oxygen supply, and impose strong PDT efficacy toward the extremely hypoxic tumor with complete tumor elimination. The man-made pseudo-RBC shows potentials as a universal oxygen-self-supplied platform to sensitize hypoxia-limited tumor treatment means, including but not limited to PDT. Meanwhile, this study offers ideas to the production of artificial substitutes of packed RBCs for clinical blood transfusion.


Assuntos
Eritrócitos , Animais , Hipóxia Celular , Oxigênio , Fotoquimioterapia , Fármacos Fotossensibilizantes
13.
IEEE Trans Biomed Eng ; 65(12): 2808-2813, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29993401

RESUMO

In this paper, we present a smart capsule that can release its payload after a predetermined/adjustable delay subsequent to passing from the stomach into the small intestine. The described capsule (9 mm × 22 mm) comprises a pH-sensitive hydrogel-based switch, an electronic compartment containing a capacitor charged to 2.7 V, and a drug reservoir capped by a taut fusible thread intertwined with a nichrome wire. The nichrome wire, capacitor, and pH-responsive electrical switch are connected in series. The pH transition the capsule encounters when it enters the small intestine triggers controlled swelling of the pH-responsive hydrogel, which pushes a conductive elastic membrane to close an electrical switch. This initiates a sequence of events, i.e., the discharge of the capacitor, heating the nichrome wire, breakage of the fusible thread, and release of the payload stored in the capsule reservoir through the unlatched cap. The time lag between initiation of hydrogel swelling (by the near-neutral pH of the small intestine) and payload release is controlled by the deflection of the conductive elastic membrane and the gap separating the contacts. The release time can be set to within ±5 min after one hour in the small intestine (start of the swelling) increasing to ±40 min after 4 h.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Fármacos Gastrointestinais/farmacocinética , Hidrogéis/química , Desenho de Equipamento , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos
14.
Adv Mater ; 30(22): e1707459, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29675900

RESUMO

Many viruses have a lipid envelope derived from the host cell membrane that contributes much to the host specificity and the cellular invasion. This study puts forward a virus-inspired technology that allows targeted genetic delivery free from man-made materials. Genetic therapeutics, metal ions, and biologically derived cell membranes are nanointegrated. Vulnerable genetic therapeutics contained in the formed "nanogene" can be well protected from unwanted attacks by blood components and enzymes. The surface envelope composed of cancer cell membrane fragments enables host-specific targeting of the nanogene to the source cancer cells and homologous tumors while effectively inhibiting recognition by macrophages. High transfection efficiency highlights the potential of this technology for practical applications. Another unique merit of this technology arises from the facile combination of special biofunction of metal ions with genetic therapy. Typically, Gd(III)-involved nanogene generates a much higher T1 relaxation rate than the clinically used Gd magnetic resonance imaging agent and harvests the enhanced MRI contrast at tumors. This virus-inspired technology points out a distinctive new avenue for the disease-specific transport of genetic therapeutics and other biomacromolecules.

15.
Lab Chip ; 17(9): 1585-1593, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28379278

RESUMO

We demonstrate, for the first time, a facile and low-cost approach for integrating highly flexible and stretchable microfluidic channels into textile-based substrates. The integration of the microfluidics is accomplished by means of directly embroidering surface-functionalized micro-tubing in a zigzag/meander pattern and subsequently coating it with an elastomer for irreversible bonding. We show the utility of the embroidered micro-tubing by developing robust and stretchable drug-delivery and electronic devices. Controlled drug-delivery platforms with sustained release are achieved through selected laser ablated openings. We further demonstrate a wearable wireless resonant displacement sensor capable of detecting strains ranging from 0 to 60% with an average sensitivity of 45 kHz per % strain by filling the embroidered tubing with a liquid metal alloy, creating stretchable conductive microfluidics with <0.4 Ω resistance variations at their maximum stretchability (100%). The interconnects can withstand 1500 repeated stretch-and-release cycles at 30% strain with a less than 0.1 Ω change in resistance.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Microfluídica/instrumentação , Dispositivos Eletrônicos Vestíveis , Elastômeros , Desenho de Equipamento , Humanos , Resistência à Tração
16.
IEEE Trans Biomed Circuits Syst ; 11(3): 681-691, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28422664

RESUMO

Urinary tract infection (UTI) is one of the most common infections in humans. UTI is easily treatable using antibiotics if identified in early stage. However, without early identification and treatment, UTI can be a major source of serious complications in geriatric patients, in particular, those suffering from neurodegenerative diseases. Also, for infants who have difficulty in describing their symptoms, UTI may lead to serious development of the disease making early identification of UTI crucial. In this paper, we present a diaper-embedded, wireless, self-powered, and autonomous UTI monitoring sensor module that allows an early detection of UTI with minimal effort. The sensor module consists of a paper-based colorimetric nitrite sensor, urine-activated batteries, a boost dc-dc converter, a low-power sensor interface utilizing pulse width modulation, and a Bluetooth low energy module for wireless transmission. Experimental results show a better detection of nitrite, a surrogate of UTI, than that of conventional dipstick testing. The proposed sensor module achieves a sensitivity of 1.35 ms/(mg/L) and a detection limit of 4 mg/L for nitrite.


Assuntos
Fraldas para Adultos , Fraldas Infantis , Fontes de Energia Elétrica , Urinálise/instrumentação , Infecções Urinárias/diagnóstico , Humanos , Nitritos/análise
17.
Nano Lett ; 16(9): 5895-901, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27513184

RESUMO

The ultimate goal in cancer therapy and diagnosis is to achieve highly specific targeting to cancer cells. Coated with the source cancer cell membrane specifically derived from the homologous tumors, the nanoparticles are identified with the self-recognition internalization by the source cancer cell lines in vitro and the highly tumor-selective targeting "homing" to the homologous tumor in vivo even in the competition of another heterologous tumor. As the result, MNP@DOX@CCCM nanovehicle showed strong potency for tumor treatment in vivo and the MR imaging. This bioinspired strategy shows great potential for precise therapy/diagnosis of various tumors merely by adjusting the cell membrane source accordingly on the nanoparticle surface.


Assuntos
Membrana Celular/química , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Compostos Férricos/química , Humanos , Imagem por Ressonância Magnética , Magnetismo , Camundongos , Neoplasias/tratamento farmacológico
18.
ACS Appl Mater Interfaces ; 8(11): 6784-9, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26962876

RESUMO

It is challenging but imperative to merge together specific inorganic nanomaterials with macromolecular and small-molecule therapeutics into one nanoentity for all-in-one theranostic/remedy. We establish a versatile nanotechnology to nanoentrap magnetic nanoparticles, doxorubicin, and DNA, thus allowing the combination of magnetic targeting, magnetic resonance (MR) imaging, gene transport, and bioresponsive chemotherapy. We hope this nanotechnology can prompt the development of complex inorganic/organic nanosystems for various applications.


Assuntos
Meios de Contraste , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Campos Magnéticos , Imagem por Ressonância Magnética/métodos , Nanopartículas , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , DNA/química , DNA/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Células HeLa , Humanos , Camundongos , Nanopartículas/química
19.
IEEE Trans Biomed Eng ; 62(9): 2289-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25909999

RESUMO

In this paper, we present a smart capsule for location-specific drug release in the gastrointestinal tract. Once activated through a magnetic proximity fuse, the capsule opens up and releases its powdered payload in a location specified by an implanted miniature magnetic marker or an externally worn larger magnet. The capsule (9 mm × 26 mm) comprises of two compartments: one contains a charged capacitor and a reed switch, while the second one houses the drug reservoir capped by a taut nylon thread intertwined with a nichrome wire. The nichrome wire is connected to the capacitor through the reed switch. The capacitor is charged to 2.7 V before ingestion and once within the proximity of the permanent magnet; the reed switch closes, discharging the capacitor through the nichrome wire, melting the nylon thread, detaching the cap, and emptying the drug reservoir.


Assuntos
Endoscopia por Cápsula/instrumentação , Sistemas de Liberação de Medicamentos/instrumentação , Magnetismo/instrumentação , Desenho de Equipamento , Temperatura Ambiente
20.
ACS Appl Mater Interfaces ; 7(8): 4463-70, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25686021

RESUMO

In this paper, we present a simple and low-cost technique for fabricating highly stretchable (up to 100% strain) and sensitive (gauge factor of up to 20 000) strain sensors. Our technique is based on transfer and embedment of carbonized patterns created through selective laser pyrolization of thermoset polymers, such as polyimide, into elastomeric substrates (e.g., PDMS or Ecoflex). Embedded carbonized materials are composed of partially aligned graphene and carbon nanotube (CNT) particles and show a sharp directional anisotropy, which enables the fabrication of extremely robust, highly stretchable, and unidirectional strain sensors. Raman spectrum of pyrolized carbon regions reveal that under optimal laser settings, one can obtain highly porous carbon nano/microparticles with sheet resistances as low as 60 Ω/□. Using this technique, we fabricate an instrumented latex glove capable of measuring finger motion in real-time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA