RESUMO
In this work, ultrafast carrier dynamics of mechanically exfoliated 1T-TiSe2flakes from the high-quality single crystals with self-intercalated Ti atoms are investigated by femtosecond transient absorption spectroscopy. The observed coherent acoustic and optical phonon oscillations after ultrafast photoexcitation reveal the strong electron-phonon coupling in 1T-TiSe2. The ultrafast carrier dynamics probed in both visible and mid-infrared regions indicate that some photogenerated carriers localize near the intercalated Ti atoms and form small polarons rapidly within several picoseconds after photoexcitation due to the strong and short-range electron-phonon coupling. The formation of polarons leads to a reduction of carrier mobility and a long-time relaxation process of photoexcited carriers for several nanoseconds. The formation and dissociation rates of the photoinduced polarons are dependent on both the pump fluence and the thickness of TiSe2sample. This work offers new insights into the photogenerated carrier dynamics of 1T-TiSe2, and emphasizes the effects of intercalated atoms on the electron and lattice dynamics after photoexcitation.
RESUMO
Stepwise mini-incision microdissection testicular sperm extraction (mTESE) is a procedure that attempts to minimize testicular damage. However, the mini-incision approach may vary in patients with different etiologies. Here, we performed a retrospective analysis of 665 men with nonobstructive azoospermia (NOA) who underwent stepwise mini-incision mTESE (Group 1) and 365 men who underwent standard mTESE (Group 2). The results showed that the operation time (mean ± standard deviation) for patients with successful sperm retrieval in Group 1 (64.0 ± 26.6 min) was significantly shorter than that in Group 2 (80.2 ± 31.3 min), with P<0.001. The total sperm retrieval rate (SRR) was 23.1% in our study, and there was no significant difference between Group 1 and Group 2 (P>0.05), even when the etiologies of NOA were taken into consideration. The results of consecutive multivariate logistic regression analysis (odds ratio [OR]: 0.57; 95% confidence interval [CI]: 0.38-0.87; P=0.009) and receiver operating characteristic (ROC) analysis (area under the ROC curve [AUC]=0.628) showed that preoperative anti-Müllerian hormone (AMH) level in idiopathic NOA patients was a potential predictor for surgical outcomes after initial three small incisions made in the equatorial region without sperm examined under an operating microscope (Steps 2-4). In conclusion, stepwise mini-incision mTESE is a useful technique for NOA patients, with comparable SRR, less surgical invasiveness, and shorter operation time compared with the standard approach. Low AMH levels may predict successful sperm retrieval in idiopathic patients even after a failed initial mini-incision procedure.
RESUMO
BACKGROUND: The purpose of this scoping review was to organize and describe the literature on the application of clown care to the elderly population in nursing homes, including intervention time, intervention methods and intervention effects, so as to provide reference ideas for other scholars to explore clown care programs suitable for the elderly population in nursing homes. METHODS: Employing Arksey and O'Malley's methodology, we searched for PubMed, Web of Science, Embase, Cochrane, CNKI, WanFang, VIP, and CBM systematically and thoroughly, and the search period was from the establishment of each database to December 12, 2022. Two researchers with evidence-based learning experience independently conducted literature retrieval, information extraction, and cross-checking in strict accordance with the inclusion and exclusion criteria. The review process is reported according to PRISMA. RESULTS: 148 literature were initially obtained after searching, of which 18 were finally included. Among them, 17 were in English and 1 was in Chinese. There are 16 quantitative studies and 2 qualitative studies published from 2010 to 2022. It is found that the current clown care intervention program has not established a unified intervention standard and effective evaluation program. CONCLUSIONS: The results of this scoping review conclude that clown care played a significant role in the nursing home. At first, it can reduce negative emotions, cognitive impairments and physical pain among older adults. In addition, it can improve their quality of life, life satisfaction, etc. It is suggested to learn from the advanced experience of clown care in foreign countries and carry out more clown care among the elderly population in nursing homes in China.
RESUMO
Circadian rhythm (CR) disruption contributes to tumor initiation and progression, however the pharmacological targeting of circadian regulators reversely inhibits tumor growth. Precisely controlling CR in tumor cells is urgently required to investigate the exact role of CR interruption in tumor therapy. Herein, based on KL001, a small molecule that specifically interacts with the clock gene cryptochrome (CRY) functioning at disruption of CR, we fabricated a hollow MnO2 nanocapsule carrying KL001 and photosensitizer BODIPY with the modification of alendronate (ALD) on the surface (H-MnSiO/K&B-ALD) for osteosarcoma (OS) targeting. The H-MnSiO/K&B-ALD nanoparticles reduced the CR amplitude in OS cells without affecting cell proliferation. Furthermore, nanoparticles-controlled oxygen consumption by inhibiting mitochondrial respiration via CR disruption, thus partially overcoming the hypoxia limitation for photodynamic therapy (PDT) and significantly promoting PDT efficacy. An orthotopic OS model demonstrated that KL001 significantly enhanced the inhibitory effect of H-MnSiO/K&B-ALD nanoparticles on tumor growth after laser irradiation. CR disruption and oxygen level enhancement induced by H-MnSiO/K&B-ALD nanoparticles under laser irradiation were also confirmed in vivo. This discovery first demonstrated the potential of CR controlling for tumor PDT ablation and provided a promising strategy for overcoming tumor hypoxia.
RESUMO
Toxicity of contaminants in organisms under ocean acidification (OA) has attracted increasing attention in ecotoxicological studies. This study investigated how pCO2-driven OA affected waterborne copper (Cu) toxicity in antioxidant defences in viscera and gills of Asiatic hard clam Meretrix petechialis (Lamarck). Clams were continuously exposed to Cu at ambient relevant (0/no metal exposure, 10 and 50⯵gâ¯L-1) and polluted-high (100⯵gâ¯L-1) concentrations in unacidified (pHâ¯8.10) and acidified (pHâ¯7.70/moderate OA and 7.30/extreme OA) seawater for 21â¯days. Following coexposure, metal bioaccumulation and responses of antioxidant defence-related biomarkers to OA and Cu coexposure were investigated. Results showed that metal bioaccumulation was positively correlated with waterborne metal concentrations but was not notably influenced by OA conditions. Both Cu and OA affected the antioxidant responses to environmental stress. Additionally, OA induced tissue-specific interactions with Cu on antioxidant defences, varying with exposure conditions. In unacidified seawater, antioxidant biomarkers were activated to defend against oxidative stress induced by Cu and prevented clams from lipid peroxidation (LPO or MDA), but failed to defend against DNA damage (8-OHdG). OA exacerbated Cu toxicity in antioxidant defences and increased LPO levels in tissues. Gills and viscera adopted adaptive antioxidant defence strategies to manage oxidative stress, with the former being more vulnerable to oxidative stress than the latter. MDA and 8-OHdG were sensitive to OA and Cu exposure, respectively, and were useful bioindicators for assessing oxidative stress. Integrated biomarker response (IBR) and PCA can reflect the integrative responses of antioxidant biomarkers to environmental stress and illuminate the contributions of specific biomarkers to antioxidant defence strategies. The findings provided insights for understanding antioxidant defences against metal toxicity in marine bivalves under OA scenarios, which is essential for managing wild populations.
RESUMO
Background: Postmenopausal osteoporosis (PMOP) is a common bone disorder. Existing study has confirmed the role of exosome in regulating RNA N6-methyladenosine (m6A) methylation as therapies in osteoporosis. However, it still stays unclear on the roles of m6A modulators derived from serum exosome in PMOP. A comprehensive evaluation on the roles of m6A modulators in the diagnostic biomarkers and subtype identification of PMOP on the basis of GSE56815 and GSE2208 datasets was carried out to investigate the molecular mechanisms of m6A modulators in PMOP. Methods: We carried out a series of bioinformatics analyses including difference analysis to identify significant m6A modulators, m6A model construction of random forest, support vector machine and nomogram, m6A subtype consensus clustering, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between different m6A patterns, principal component analysis, and single sample gene set enrichment analysis (ssGSEA) for evaluation of immune cell infiltration, experimental validation of significant m6A modulators by real-time quantitative polymerase chain reaction (RT-qPCR), etc. Results: In the current study, we authenticated 7 significant m6A modulators via difference analysis between normal and PMOP patients from GSE56815 and GSE2208 datasets. In order to predict the risk of PMOP, we adopted random forest model to identify 7 diagnostic m6A modulators, including FTO, FMR1, YTHDC2, HNRNPC, RBM15, RBM15B and WTAP. Then we selected the 7 diagnostic m6A modulators to construct a nomogram model, which could provide benefit with patients according to our subsequent decision curve analysis. We classified PMOP patients into 2 m6A subtypes (clusterA and clusterB) on the basis of the significant m6A modulators via a consensus clustering approach. In addition, principal component analysis was utilized to evaluate the m6A score of each sample for quantification of the m6A subgroups. The m6A scores of patients in clusterB were higher than those of patients in clusterA. Moreover, we observed that the patients in clusterA had close correlation with immature B cell and gamma delta T cell immunity while clusterB was linked to monocyte, neutrophil, CD56dim natural killer cell, and regulatory T cell immunity, which has close connection with osteoclast differentiation. Notably, m6A modulators detected by RT-qPCR showed generally consistent expression levels with the bioinformatics results. Conclusion: In general, m6A modulators exert integral function in the pathological process of PMOP. Our study of m6A patterns may provide diagnostic biomarkers and immunotherapeutic strategies for future PMOP treatment.
Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Humanos , Feminino , Osteoporose Pós-Menopausa/diagnóstico , Osteoporose Pós-Menopausa/genética , Monócitos , Biologia Computacional , Biomarcadores , Proteína do X Frágil de Retardo Mental , Dioxigenase FTO Dependente de alfa-CetoglutaratoRESUMO
Objective: This study aims to review the evidence for the optimal regimen of probiotics for the prevention of necrotizing enterocolitis (NEC) in very low birth weight infants. Design: Through searching PubMed, EMBASE, Cochrane Library, and Web of Science till September 30, 2022, only randomized controlled trials were included to evaluate the optimal regimen of probiotics for the prevention of NEC in very low birth weight infants. The methodological quality of the included studies was assessed by the Cochrane risk of bias assessment tool (RoB 2), and the collected data were analyzed accordingly using Stata software. Results: Twenty-seven RCTs were included, and the total sample size used in the study was 529. The results of the network meta-analysis showed that Bovine lactoferrin + Lactobacillus rhamnosus GG (RR 0.03; 95% CI 0.00-0.35), Lactobacillus rhamnosus + Lactobacillus plantarum + Lactobacillus casei + Bifidobacterium lactis (RR 0.06; 95% CI 0.00-0.70), Bifidobacterium lactis + inulin (RR 0.16; 95% CI 0.03-0.91) were superior to the control group (Bifidobacterium lactis + Bifidobacterium longum) in reducing the incidence of NEC. The reduction in the incidence of NEC were as follows: Bovine lactoferrin + Lactobacillus rhamnosus GG (SUCRA 95.7%) > Lactobacillus rhamnosus + Lactobacillus plantarum + Lactobacillus casei + Bifidobacterium lactis (SUCRA 89.4%) > Bifidobacterium lactis + inulin (SUCRA 77.8%). Conclusions: This network meta-analysis suggests that Lactobacillus rhamnosus GG combined with bovine lactoferrin maybe the most recommended regimen for the prevention of NEC in very low birth weight infants.
RESUMO
Objectives: This study aimed to investigate the potential mechanism of hyperoestrogensim elicited by ovulation induction affects endometrial receptivity and leads to embryo implantation abnormality or failure. Study design: Establishment of ovulation induction mouse model. Changes in mouse body weight, ovarian weight, serum E2 level and oestrous cycle were observed. During the peri-implantation period, morphological changes in the mouse uterus and implantation sites and the localization and protein levels of oestrogen receptors ERα and ERß, the tight junction factors CLDN3 and OCLN, the aquaporins AQP3, AQP4 and AQP8, and the sodium channel proteins SCNN1α, SCNN1ß and SCNN1γ were observed. The expression and cellular localization of ERα, CLDN3, AQP8 and SCNN1 ß in RL95-2 cell line were also detected by western blotting and immunofluorescence. Results: Ovarian and body weights were significantly higher in the 5 IU and 10 IU groups than in the CON group. The E2 level was significantly higher in the 10 IU group than in the CON group. The mice in the 10 IU group had a disordered oestrous cycle and were in oestrus for a long time. At 5.5 dpc, significantly fewer implantation sites were observed in the 10 IU group than in the CON (p<0.001) and 5 IU (p<0.05) groups. The probability of abnormal implantation and abortion was higher in the 10 IU group than in the CON and 5 IU groups. CLDN3, OCLN, AQP8 and SCNN1ß in the mouse endometrium were localized on the luminal epithelium and glandular epithelium and expression levels were lower in the 10 IU group than in the CON group. The protein expression level of ERα was increased by 50% in the 10 IU group compared to the CON group. The expressions of CLDN3, AQP8, SCNN1ß in RL95-2 cell line were significantly depressed by the superphysiological E2, ERα agonist or ERß agonist, which could be reversed by the oestrogen receptor antagonist. Conclusion: ART-induced hyperoestrogenism reduces CLDN3, AQP8 and SCNN1ß expression through ERα, thereby destroying tight junctions and water and sodium channels in the endometrial cavity epithelium, which may cause abnormal implantation due to abnormal uterine fluid secretion and absorption.
Assuntos
Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Gravidez , Feminino , Camundongos , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Implantação do Embrião , Útero/metabolismo , Receptores de Estrogênio/metabolismo , Técnicas de Reprodução AssistidaRESUMO
The exploration of extreme environments has become necessary for understanding and changing nature. However, the development of functional materials suitable for extreme conditions is still insufficient. Herein, we report a kind of nacre-inspired bacterial cellulose (BC)/synthetic mica (S-Mica) nanopaper with excellent mechanical and electrical insulating properties that has excellent tolerance to extreme conditions. Benefited from the nacre-inspired structure and the three-dimensional network of BC, the nanopaper exhibits excellent mechanical properties, including high tensile strength (375 MPa), outstanding foldability, and bending fatigue resistance. In addition, S-Mica arranged in layers endows the nanopaper with remarkable dielectric strength (â¼145.7 kV mm-1 ) and ultralong corona resistance life. Moreover, the nanopaper is highly resistant to alternating high and low temperatures, ultraviolet (UV) light, and atomic oxygen (AO), making it an ideal candidate for extreme environment-resistant materials. This article is protected by copyright. All rights reserved.
RESUMO
A series of novel surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids were for the first time prepared by a combined procedure of surface organometallic chemistry with post-synthetic ligand exchange for photocatalytic conversion of CO2 to CH4 with H2 as electron and proton donors under visible light irradiation. The selectivity toward CH4 increased to 93.4% by the ligand exchange of 4,4'-dimethyl-2,2'-bipyridine (4,4'-bpy) with the surface cyclopentadienyl (Cp)-RuH complex and the CO2 methanation activity was enhanced by 4.4-fold. An impressive rate of 241.2 µL·g-1·h-1 for CH4 production was achieved over the optimal photocatalyst. The femtosecond transient IR absorption results demonstrated that the hot electrons were fast injected in 0.9 ps from the photoexcited surface 4,4'-bpy-RuH complex into the conduction band of TiO2 nanoparticles to form a charge-separated state with an average lifetime of ca. 50.0 ns responsible for the CO2 methanation. The spectral characterizations indicated clearly that the formation of CO2â¢- radicals by single electron reduction of CO2 molecules adsorbed on surface oxygen vacancies of TiO2 nanoparticles was the most critical step for the methanation. Such radical intermediates were inserted into the explored Ru-H bond to generate Ru-OOCH species and finally CH4 and H2O in the presence of H2.
RESUMO
Background: Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death worldwide. Advanced stage CRC, during the recent past, had a dismal prognosis and only a few available treatments. Pumilio homologous protein 1 (PUM1) is reportedly aberrant in human malignancies, including CRC. However, the role of PUM1 in the regulation of tumor-initiating cells (T-ICs) remains unknown. Methods: The levels of messenger RNAs (mRNAs) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunoblot analyses. Statistical analyses were performed to determine the associations between the levels of PUM1 and tumor features and patient outcomes. Whether PUM1 is a downstream target of miR-218-5p was verified by bioinformatics target gene prediction and qRT-PCR. Results: Herein, it was found that T-ICs, chemoresistance, and recurrent CRC samples all manifest increased PUM1 expression. Functional investigations have shown that PUM1 increased the self-renewal, tumorigenicity, malignant proliferation, and chemoresistance of colorectal cells. PUM1 activates the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway biochemically. Furthermore, it was discovered that miR-218-5p specifically targets T-ICs' PUM1 3'-untranslated region (3'-UTR). More importantly, the PUM1/PI3K/AKT axis regulates CRC cells' responses to treatment with cetuximab, and PUM1 overexpression increased cetuximab resistance. More evidence points to the possibility that low PUM1 may predict cetuximab benefits in CRC patients after analysis of the patient cohort, patient-derived tumor organoids, and patient-derived xenografts (PDXs). Conclusions: Taken together, the result of this work points to the critical function of the miR-218-5p/PUM1/PI3K/AKT regulatory circuit in regulating T-ICs characteristics and thus suggests possible therapeutic targets for CRC.
RESUMO
Gold nanoparticles (AuNPs) represent an attractive inorganic matrix for laser desorption/ionization mass spectrometry (LDI-MS) detection of low-molecular-weight analytes; however, their direct use is hindered by severe aggregation. To limit AuNPs aggregation, hexagonal boron nitride nanosheets (h-BNNs) were employed as supports to improve their desorption/ionization efficiency. Thus, Au@BN was synthesized and systematically characterized. It showed low background noise and high sensitivity for LDI-MS of fipronil and its metabolites. Au@BN-assisted LDI-MS was validated using complex samples including blueberry juice, green tea beverage, and fish muscle, achieving low detection limits (0.05-0.20 µg·L-1 for liquid media, 0.82-1.25 ng·g-1 for fish muscle), wide linear ranges (0.2-100 µg·L-1 for liquid media, 3.00-1000 ng·g-1 for fish muscle), high reproducibility (7.55%-13.7%), and satisfactory recoveries (82.62%-109.1%). Furthermore, spatial distributions of analytes in strawberries and zebrafish were successfully imaged. This strategy allows for the quantitative analysis of other small molecules in complex substrates.
RESUMO
Since bacteria in biofilms are inherently resistant to antibiotics and biofilm-associated infections pose serious threat to global public health, new therapeutic agents and schemes are urgently needed to meet clinical requirements. Here two quaternary ammonium-functionalized biphen[n]arenes (WBPn, n = 4, 5) were designed and synthesized with excellent anti-biofilm potency. Not only could they inhibit assembly of biofilm, but also eradicate intractable mature biofilm formed by Gram-positive S. aureus and Gram-negative E. coli bacterial strains. Moreover, they could strongly complex a conventional antibiotic, cefazolin sodium (CFZ) with complex stability constants of (7.41 ± 0.29) × 104 M-1 for CFZ/WBP4 and (4.98 ± 0.49) × 103 M-1 for CFZ/WBP5. Combination of CFZ by WBP4 and WBP5 synergistically enhanced biofilm eradication performance in vitro and statistically improved healing efficacy on E. coli-infected mice models, providing novel supramolecular strategy for combating biofilm-associated infections.
RESUMO
The functions of the influenza virus neuraminidase has been well documented but those of the mammalian neuraminidases remain less explored. Here, we characterize the role of neuraminidase 1 (NEU1) in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models. We find that NEU1 is significantly upregulated in the fibrotic kidneys of patients and mice. Functionally, tubular epithelial cell-specific NEU1 knockout inhibits epithelial-to-mesenchymal transition, inflammatory cytokines production, and collagen deposition in mice. Conversely, NEU1 overexpression exacerbates progressive renal fibrosis. Mechanistically, NEU1 interacts with TGFß type I receptor ALK5 at the 160-200aa region and stabilizes ALK5 leading to SMAD2/3 activation. Salvianolic acid B, a component of Salvia miltiorrhiza, is found to strongly bind to NEU1 and effectively protect mice from renal fibrosis in a NEU1-dependent manner. Collectively, this study characterizes a promotor role for NEU1 in renal fibrosis and suggests a potential avenue of targeting NEU1 to treat kidney diseases.
Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Masculino , Animais , Neuraminidase/genética , Neuraminidase/metabolismo , Nefropatias/patologia , Obstrução Ureteral/metabolismo , Fibrose , Expressão Gênica , Rim/metabolismo , Camundongos Endogâmicos C57BL , MamíferosRESUMO
Granulosa cells (GCs) are the ovary's most critical cells since they undergo cell differentiation and hormone synthesis changes closely associated with follicle development. While micro RNA 140-3p (miRNA-140-3p) has an apparent cell signaling role, particularly in cell proliferation, its biological role in chicken ovarian follicle growth and development remains elusive. This study explored miR-140-3p's effects on chicken GC proliferation and steroid hormone synthesis. MiR-140-3p dramatically increased GC proliferation, prevented apoptosis, increased progesterone synthesis, and enhanced gene expression related to steroid hormone synthesis. In addition, the anti-Müllerian hormone (AMH) gene was identified as a direct miR-140-3p target. MiR-140-3p abundance correlated negatively with AMH mRNA and protein levels in GCs. Our findings show that miR-140-3p influences chicken GC proliferation and steroid hormone synthesis by suppressing AMH expression.
RESUMO
Cervical spondylotic myelopathy (CSM) refers to a chronic injury of the cervical cord caused by cervical intervertebral disc degeneration. Endoplasmic reticulum (ER) homeostasis is essential to counteract neuronal apoptosis. ER stress, an integral part of ER homeostasis, was observed in a rat model of chronic cervical cord compression in our previous study. However, the correlation between ER homeostasis and CSM remains unknown. The antioxidant melatonin is known to exert therapeutic effects in acute spinal cord injury, but the specific effects and their potential mechanisms in the pathological processes of CSM require further exploration. The present study hypothesized that ER homeostasis is essential for neuronal apoptosis in the CSM and that melatonin maintains this homeostasis. The results showed that ER stress led to neuronal apoptosis in rats with chronic cervical cord compression. Conversely, melatonin attenuates protein kinase R-like ER kinase-eukaryotic initiation factor 2α-C/EBP-homologous protein, inositol-requiring enzyme 1, and transcription factor 6 signaling pathways to release ER stress and prevents Bax translocation to the mitochondrion, thereby promoting motor recovery and protecting neurons in vivo. It also rescued primary rat cortical neurons from ER stress-induced glutamate toxicity in vitro. Moreover, melatonin remodels the ER morphology and restores homeostasis via ER-phagy in injured neurons. FAM134B, CCPG1, RTN3, and Sec. 62 are four known ER-phagy receptors. In this study, Sec. 62 was identified as a key melatonin factor in promoting ER-phagy and restoring ER homeostasis in damaged neurons in vivo and in vitro. In conclusion, melatonin suppresses neuronal apoptosis by reducing ER stress and promoting ER-phagy to restore ER morphology and homeostasis. The current results suggested that melatonin is a promising treatment for CSM owing to its restorative effect on ER homeostasis; however, well-designed randomized controlled trials must be carried out to further investigate its clinical effects.
RESUMO
Phthalic acid esters (PAEs) are ubiquitous environmental pollutants and are recognized as a threat to the environment and agricultural product safety across the world. In order to investigate the level of PAEs in garlic, soils, and agricultural films from Pizhou City, Jiangsu province, China, 11 garlic samples, 106 soil samples, and 4 agricultural film samples were collected and analyzed using GC-MS. In addition, the uptake and transport characteristics of six PAEs compounds classified as priority pollutants by the United States Environmental Protection Agency (EPA) in the garlic cultivar Daqingke were investigated under hydroponic conditions. The results indicated that dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) were the dominant PAEs species in garlic cloves of the different garlic varieties from Pizhou City. The average contents of DBP and DEHP in garlic cloves were 0.611 mg·kg-1 and 0.167 mg·kg-1, respectively, which were significantly higher than those of the commercial varieties of garlic. The concentrations of DBP and DEHP differed in three tissues of garlic bulbs, ordered as the skin of garlic bulb>skin of garlic clove>garlic clove. Dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), DBP, and DEHP were the main PAEs species and were detected in all the surface soils collected from Pizhou City. Compared with the soil allowable concentrations of the six PAEs in the United States, the DMP and DBP concentrations in approximately 100% and 63.2% of soil samples exceeded the recommended allowable concentrations set by the EPA. However, the levels of DEP, DIBP, and DEHP in the soils were below the maximum allowable concentrations set by the EPA. Nevertheless, the average content of DEHP in soils was 486 µg·kg-1 and was found to be much higher than that in the other four PAEs. Six PAEs, including DMP, DEP, DIBP, DBP, butyl benzyl phthalate (BBP), and DEHP, were detected in all the agricultural film samples. Among them, the contents of DBP and DEHP in the agricultural films were the highest, accounting for 53.7%-63.2% of the total PAEs. The amount of PAEs present in the residual film was significantly lower than that in the new film, and all six PAEs were detected in garlic or soil samples, suggesting that agricultural film can be an important source of PAEs in garlic farming soils and garlic. Furthermore, the garlic plants absorbed DMP and DEP efficiently from the substrate and showed higher translocation factors (TFs) for DMP and DEP than those for DBP, BBP, DEHP, and di-n-octyl phthalate (DnOP), resulting in a higher accumulation of DMP and DEP in the over-ground parts of garlic. In contrast, DBP and BBP in roots of garlic displayed higher bioconcentration factors (57.4 and 81.5, respectively) compared to those of the other four PAEs, whereas the TFs of DBP and BBP were lower; this may have contributed to the high accumulation of DBP in garlic bulbs. The BCFs and TFs of DEHP and DnOP in garlic were relatively lower, but the DEHP had been detected in all garlic cloves, which may be a result of the higher DEHP contents in soils.
Assuntos
Dietilexilftalato , Poluentes Ambientais , Alho , Ácidos Ftálicos , Poluentes do Solo , Dietilexilftalato/análise , Poluentes do Solo/análise , Ésteres/análise , Ácidos Ftálicos/análise , Dibutilftalato , Solo/química , Poluentes Ambientais/análise , ChinaRESUMO
The children's gut microbiota, associated with the development of obesity, is in maturation. The impact of obesity on the gut microbiota in childhood could have a more significant effect than on adulthood and eventually be lifelong lasting, but it has been rarely studied. Aimed to discover the difference in gut microbiota between children and adults with obesity, we collected published amplicon sequencing data from National Center for Biotechnology Information (NCBI) and re-analyzed them using a uniform bioinformatic pipeline, as well as predicted the obesity using gut microbiota based on the random forest model. Summarizing common points among these cohorts, we found that the gut microbiota had a significant difference between children with and without obesity, but this difference was not observed in adult cohorts. Based on the random forest model, it was more challenging to predict childhood obesity using gut microbiota than adulthood obesity. Our results suggest that gut microbiota in childhood is more easily affected than in adulthood. Early intervention for childhood obesity is essential to improve children's health and lifelong gut microbiota-related health.