Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Biol Med ; 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591414

RESUMO

OBJECTIVE: The aims of this study were to examine the prognostic value of SHP-1 in breast cancer, its roles in the regulation of breast cancer cell growth and metastasis, and the underlying mechanisms. METHODS: Tumor specimens from 160 patients with breast cancer and 160 noncancerous tissues were used to examine the expression of SHP-1 and to analyze its association with overall survival through Kaplan-Meier and multivariate Cox regression analyses. RNA sequencing data and the expression and clinical importance of SHP-1 in breast cancer were evaluated with data from The Cancer Genome Atlas. In vitro and in vivo assays were performed to elucidate the effects of SHP-1 on breast cancer cell proliferation and invasion. Confocal immunofluorescence and GST pulldown assays were used to demonstrate the interaction between SHP-1 and epidermal growth factor receptor, as well as its downstream pathways. Immunohistochemistry and The Cancer Genome Atlas database were used to investigate the clinical association between SHP-1 and EGFR in human breast cancer. RESULTS: SHP-1 expression was associated with better survival in patients with breast cancer, whereas SHP-1 expression was negatively correlated with EGFR in human breast cancer. Ectopic SHP-1 expression significantly suppressed breast cancer cell proliferation, migration, and invasion. SHP-1 knockdown induced a more invasive phenotype and accelerated cell growth. Mechanistically, EGFR, a protein directly interacting with SHP-1, mediates the SHP-1-induced inactivation of Ras/Erk/GSK3ß signaling and its downstream effectors. CONCLUSIONS: SHP-1 is an important prognostic biomarker in patients with breast cancer, and the SHP-1-EGFR axis is a promising target for treatment.

2.
Nat Commun ; 12(1): 4230, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244494

RESUMO

Extracellular matrix protein-1 (ECM1) promotes tumorigenesis in multiple organs but the mechanisms associated to ECM1 isoform subtypes have yet to be clarified. We report in this study that the secretory ECM1a isoform induces tumorigenesis through the GPR motif binding to integrin αXß2 and the activation of AKT/FAK/Rho/cytoskeleton signaling. The ATP binding cassette subfamily G member 1 (ABCG1) transduces the ECM1a-integrin αXß2 interactive signaling to facilitate the phosphorylation of AKT/FAK/Rho/cytoskeletal molecules and to confer cancer cell cisplatin resistance through up-regulation of the CD326-mediated cell stemness. On the contrary, the non-secretory ECM1b isoform binds myosin and blocks its phosphorylation, impairing cytoskeleton-mediated signaling and tumorigenesis. Moreover, ECM1a induces the expression of the heterogeneous nuclear ribonucleoprotein L like (hnRNPLL) protein to favor the alternative mRNA splicing generating ECM1a. ECM1a, αXß2, ABCG1 and hnRNPLL higher expression associates with poor survival, while ECM1b higher expression associates with good survival. These results highlight ECM1a, integrin αXß2, hnRNPLL and ABCG1 as potential targets for treating cancers associated with ECM1-activated signaling.


Assuntos
Processamento Alternativo , Carcinoma Epitelial do Ovário/genética , Proteínas da Matriz Extracelular/metabolismo , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Ovarianas/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/terapia , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas da Matriz Extracelular/genética , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/metabolismo , Estimativa de Kaplan-Meier , Camundongos , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Ovário/patologia , Ovário/cirurgia , Fosforilação/genética , Prognóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA-Seq , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(6): 650-656, 2019 Jun 30.
Artigo em Chinês | MEDLINE | ID: mdl-31270042

RESUMO

OBJECTIVE: To investigate the effect of medium-chain acyl-CoA dehydrogenase (ACADM) on invasion and metastasis of breast cancer cells and explore the underlying mechanism. METHODS: A large cancer genome database was used to analyze the expression of ACADM in breast cancer tissues and normal tissues. The proliferation, migration and invasion of cultured breast cancer MCF-7 and T47D cells with ACADM overexpression or ACADM silencing were evaluated using MTT proliferation assay, EdU assay, Transwell chamber assay, and Boyden invasion assay; Western blotting was used to detect the protein expressions of the related pathway in the cells. In nude mouse models of tail vein metastasis of MCF-7 cells with or without ACADM overexpression, the tumor growth and tumor histopathology were observed using HE staining. RESULTS: Analysis of the Oncomine sample set showed a significantly higher expression level of ACADM in breast cancer tissues than in normal breast tissues (P < 0.05). Overexpression of ACADM obviously enhanced the migration and invasion abilities and promoted the epithelial-mesenchymal transition (EMT) of cultured MCF-7 and T47D cells; conversely, silencing of ACADM significantly suppressed the migration and invasion of the breast cancer cells. In the nude mouse models, ACADM overexpression in MCF-7 cells significantly enhanced their in vivo migration and invasion abilities. CONCLUSIONS: ACADM can promote the EMT process of breast cancer cells and improve the migration and invasion ability. ACADM is an oncogene in breast cancer.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Acil-CoA Desidrogenase , Animais , Movimento Celular , Proliferação de Células , Humanos , Células MCF-7 , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...