Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(34): 38594-38603, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35981928

RESUMO

Metallacages with suitable cavities and specific functions are promising delivery vectors in biological systems. Herein, we report a morpholine-functionalized metallacage for lysosome-targeted cell imaging. The efficient host-guest interactions between the metallacage and dyes prevent them from aggregation, so their emission in aqueous solutions is well maintained. The fluorescence quantum yield of these host-guest complexes reaches 74.40%. Therefore, the metallacage is further employed as a vector to deliver dyes with different emission colors (blue, green, and red) into lysosomes for targeted imaging. This research affords a type of vector for the delivery of various cargos toward biological applications, which will enrich the usage of metallacages in biomedical engineering.


Assuntos
Lisossomos , Morfolinas , Corantes/metabolismo , Diagnóstico por Imagem , Fluorescência , Corantes Fluorescentes/metabolismo , Lisossomos/metabolismo
2.
Angew Chem Int Ed Engl ; 61(34): e202207289, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35686675

RESUMO

We herein report the preparation of a series of hexaphenylbenzene (HPB)-based deep blue-emissive metallacages via multicomponent coordination-driven self-assembly. These metallacages feature prismatic structures with HPB derivatives as the faces and tetracarboxylic ligands as the pillars, as evidenced by NMR, mass spectrometry and X-ray diffraction analysis. Light-harvesting systems were further constructed by employing the metallacages as the donor and a naphthalimide derivative (NAP) as the acceptor, owing to their good spectral overlap. The judiciously chosen metallacage serves as the antenna, providing the suitable energy to excite the non-emissive NAP, and thus resulting in bright emission for NAP in the solid state. This study provides a type of HPB-based multicomponent emissive metallacage and explores their applications as energy donors to light up non-emissive fluorophores in the solid state, which will advance the development of emissive metallacages as useful luminescent materials.


Assuntos
Corantes Fluorescentes , Luminescência , Espectroscopia de Ressonância Magnética
3.
Chem Asian J ; 17(13): e202200129, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472103

RESUMO

The realization of metal-organic framework (MOF) layers onto solid surfaces is a prerequisite for their integration into devices. This work reports the direct growth of Fe3+ /benzene di-carboxylate MOFs onto functionalized silicon surfaces, compatible with a wide range of MOF synthesis conditions. The co-nucleation and growth of different crystalline phases are evidenced, whose coverage depends on the surface chemistry and/or the solution composition. Three structural phases - the cubic MIL-101(Fe), a hexagonal phase with a structure close to MOF-235 and a MIL-53(Fe) with a monoclinic symmetry - are identified through characteristic crystal shapes and their structural parameters inferred from X-Ray Diffraction. In addition to the oriented growth of 3D crystallites, the formation of two-dimensional MIL-101 nano-crystallites or thin layers/islands exhibiting extended monocrystalline domains with (111) texture is also demonstrated through high-resolution atomic force microscopy. Post-synthesis treatments reveal a weak adhesion of the hexagonal phase, indicating a different surface anchoring.

4.
Adv Sci (Weinh) ; 9(6): e2104374, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939370

RESUMO

The ever-increasing concerns over indoor/outdoor air quality, industrial gas leakage, food freshness, and medical diagnosis require miniaturized gas sensors with excellent sensitivity, selectivity, stability, low power consumption, cost-effectiveness, and long lifetime. Metal-organic frameworks (MOFs), featuring structural diversity, large specific surface area, controllable pore size/geometry, and host-guest interactions, hold great promises for fabricating various MOF-based devices for diverse applications including gas sensing. Tremendous progress has been made in the past decade on the fabrication of MOF-based sensors with elevated sensitivity and selectivity toward various analytes due to their preconcentrating and molecule-sieving effects. Although several reviews have recently summarized different aspects of this field, a comprehensive review focusing on MOF-based gas sensors is absent. In this review, the latest advance of MOF-based gas sensors relying on different transduction mechanisms, for example, chemiresistive, capacitive/impedimetric, field-effect transistor or Kelvin probe-based, mass-sensitive, and optical ones are comprehensively summarized. The latest progress for making large-area MOF films essential to the mass-production of relevant gas sensors is also included. The structural and compositional features of MOFs are intentionally correlated with the sensing performance. Challenges and opportunities for the further development and practical applications of MOF-based gas sensors are also given.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Gases/análise , Estruturas Metalorgânicas/química , Eletrônica
5.
J Am Chem Soc ; 143(42): 17716-17723, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34608802

RESUMO

Membrane technology is attractive for natural gas separation (removing CO2, H2O, and hydrocarbons from CH4) because of membranes' low energy consumption and small environmental footprint. Compared to polymeric membranes, microporous inorganic membranes such as silicoaluminophosphate-34 (SAPO-34) membrane can retain their separation performance under conditions close to industrial requirements. However, moisture and hydrocarbons in natural gas can be strongly adsorbed in the pores of those membranes, thereby reducing the membrane separation performance. Herein, we report the fabrication of a polycrystalline MIL-160 membrane on an Al2O3 substrate by in situ hydrothermal synthesis. The MIL-160 membrane with a thickness of ca. 3 µm shows a remarkable molecular sieving effect in gas separation. Besides, the pore size and environment of the MIL-160 membrane can be precisely controlled using reticular chemistry by regulating the size and functionality of the ligand. Interestingly, the more polar fluorine-functionalized multivariate MIL-160/CAU-10-F membrane exhibits a 10.7% increase in selectivity for CO2/CH4 separation and a 31.2% increase in CO2 permeance compared to those of the MIL-160 membrane. In addition, hydrophobic MIL-160 membranes and MIL-160/CAU-10-F membranes are more resistant to water vapor and hydrocarbons than the hydrophilic SAPO-34 membranes.

6.
Opt Express ; 29(12): 19084-19093, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154150

RESUMO

Infrared gas sensors hold great promise in the internet of things and artificial intelligence. Making infrared light sources with miniaturized size, reliable and tunable emission is essential but remains challenging. Herein, we present the tailorability of radiant power and the emergence of new emission wavelength of microelectromechanical system (MEMS)-based thermal emitters with nickel oxide (NiO) films. The coating of NiO on emitters increases top surface emissivity and induces the appearance of new wavelengths between 15 and 19 µm, all of which have been justified by spectroscopic methods. Furthermore, a sensor array is assembled for simultaneous monitoring of concentrations of carbon dioxide (CO2), methane (CH4), humidity, and temperature. The platform shows selective and sensitive detection at room temperature toward CO2 and CH4 with detection limits of around 50 and 1750 ppm, respectively, and also shows fast response/recovery and good recyclability. The demonstrated emission tailorability of MEMS emitters and their usage in sensor array provide novel insights for designing and fabricating optical sensors with good performance, which is promising for mass production and commercialization.

7.
Angew Chem Int Ed Engl ; 60(32): 17338-17343, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33955661

RESUMO

Isoreticular functionalization is a well-elucidated strategy for pore environment tuning and the basis of gas separation performance in extended frameworks. The extension of this approach to discrete porous molecules such as metal-organic cages (MOCs) is conceptually straightforward but hindered by synthetic complications, especially stability concerns. We report the successful isoreticular functionalization of a zirconium MOC with tetrazole moiety by bottom-up synthesis. The title compound (ZrT-1-tetrazol) shows promising C2 H2 /CO2 and C2 H2 /C2 H4 separation performance, as demonstrated by adsorption isotherms, breakthrough experiments, and density functional theory calculations. The design analogy between MOFs and highly stable MOCs may guide the synthesis of novel porous materials for challenging separation applications.

8.
Adv Mater ; 33(29): e2101257, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057259

RESUMO

Metal-organic frameworks (MOFs) intrinsically lack fluidity and thus solution processability. Direct synthesis of MOFs exhibiting solution processability like polymers remains challenging but highly sought-after for multitudinous applications. Herein, a one-pot, surfactant-free, and scalable synthesis of highly stable MOF suspensions composed of exceptionally large (average area > 15 000 µm2 ) NUS-8 nanosheets with variable functionalities and excellent solution processability is presented. This is achieved by adding capping molecules during the synthesis, and by judicious controls of precursor concentration and MOF nanosheet-solvent interactions. The resulting 2D NUS-8 nanosheets with variable functionalities exhibit excellent solution processability. As such, relevant monoliths, aero- and xerogels, and large-area textured films with a great homogeneity, controllable thickness, and appreciable mechanical properties can be facilely fabricated. Additionally, from both the molecular- and chip-level it is demonstrated that capacitive sensors integrated with NUS-8 films functionalized with different terminal groups exhibit distinguishable sensing behaviors toward acetone due to their disparate host-guest interactions. It is envisioned that this simple approach will greatly facilitate the integration of MOFs in miniaturized electronic devices and benefit their mass production.

9.
ACS Appl Mater Interfaces ; 12(32): 36715-36722, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32691586

RESUMO

Interfacial compatibility between metal-organic framework (MOF) films and the underlying substrates determines the integrity of MOF films and their associated functions, and thus it has been gaining growing attention. Herein, we present a comparison of adhesion properties at the chip level of two disparate nickel (Ni)-MOF films, respectively, obtained by direct hydro/solvothermal growth and template-directed conversion approaches. We demonstrate that the on-chip delamination/corrugation of the films obtained by the direct growth approach can be circumvented by adopting the template-directed approach, which enables delicate dissolution of primarily grown nanoflaked nickel hydroxide (Ni(OH)2) films and thus triggers the controllable formation of Ni-MOF films. Successful on-chip conversions of Ni(OH)2 layers to different Ni-MOF thin films with good homogeneity, compactness, and appreciable affinity to the substrates are verified by multiple microscopic and spectroscopic techniques. Notably, the resultant Ni-MOF films do not show delamination even after activation with additional treatments, such as solvent soaking, nitrogen (N2) blowing for 1 h, and scotch-tape tests. As a demonstration of the application of MOF films, a Ni-NDC (NDC stands for 2,6-naphthalenedicarboxylate) MOF-coated sensor exhibits selective detection toward benzene vapor. This study highlights the importance of interfaces between MOF films and substrates and provides new perspectives for integrating MOF films onto microelectronic devices with robust adhesion for practical applications.

10.
ACS Sens ; 5(5): 1474-1481, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32367715

RESUMO

State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.


Assuntos
Estruturas Metalorgânicas , Benzeno , Gases
11.
Angew Chem Int Ed Engl ; 59(27): 11003-11009, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32107860

RESUMO

We report an in situ polymerization strategy to incorporate a thermo-responsive polymer, poly(N-isopropylacrylamide) (PNIPAM), with controlled loadings into the cavity of a mesoporous metal-organic framework (MOF), MIL-101(Cr). The resulting MOF/polymer composites exhibit an unprecedented temperature-triggered water capture and release behavior originating from the thermo-responsive phase transition of the PNIPAM component. This result sheds light on the development of stimuli-responsive porous adsorbent materials for water capture and heat transfer applications under relatively mild operating conditions.

12.
ACS Sens ; 4(10): 2746-2753, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31524375

RESUMO

Infrared gas sensors have been proven promising for broad applications in Internet of Things and Industrial Internet of Things. However, the lack of miniaturized light sources with good compatibility and tunable spectral features hinders their widespread utilization. Herein, a strategy is proposed to increase the radiated power from microelectromechanical-based thermal emitters by coating with graphene oxide (GO). The radiation can be substantially enhanced, which partially stems from the high emissivity of GO coating demonstrated by spectroscopic methods. Moreover, the sp2 structure within GO may induce plasmons and thus couple with photons to produce blackbody radiation and/or new thermal emission sources. As a proof-of-concept demonstration, the GO-coated emitter is integrated into a multifunctional monitoring platform and evaluated for gas detection. The platform exhibits sensitive and highly selective detection toward CO2 at room temperature with a detection limit of 50 ppm and short response/recovery time, outperforming the state-of-the-art gas sensors. This study demonstrates the emission tailorability of thermal emitters and the feasibility of improving the associated gas sensing property, offering perspectives for designing and fabricating high-end optical sensors with cost-effectiveness and superior performance.


Assuntos
Dióxido de Carbono/análise , Grafite/química , Acetona/análise , Monóxido de Carbono/análise , Umidade , Raios Infravermelhos , Metano/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
13.
Angew Chem Int Ed Engl ; 58(40): 14089-14094, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31270915

RESUMO

Gas sensing technologies for smart cities require miniaturization, cost-effectiveness, low power consumption, and outstanding sensitivity and selectivity. On-chip, tailorable capacitive sensors integrated with metal-organic framework (MOF) films are presented, in which abundant coordinatively unsaturated metal sites are available for gas detection. The in situ growth of homogeneous Mg-MOF-74 films is realized with an appropriate metal-to-ligand ratio. The resultant sensors exhibit selective detection for benzene vapor and carbon dioxide (CO2 ) at room temperature. Postsynthetic modification of Mg-MOF-74 films with ethylenediamine decreases sensitivity toward benzene but increases selectivity to CO2 . The reduced porosity and blocked open metal sites caused by amine coordination account for a deterioration in the sensing performance for benzene (by ca. 60 %). The enhanced sensitivity for CO2 (by ca. 25 %) stems from a tailored amine-CO2 interaction. This study demonstrates the feasibility of tuning gas sensing properties by adjusting MOF-analyte interactions, thereby offering new perspectives for the development of MOF-based sensors.

14.
Adv Mater ; 31(11): e1807161, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30637791

RESUMO

Surmounting the inhomogeniety issue of gas sensors and realizing their reproducible ppb-level gas sensing are highly desirable for widespread deployments of sensors to build networks in applications of industrial safety and indoor/outdoor air quality monitoring. Herein, a strategy is proposed to substantially improve the surface homogeneity of sensing materials and gas sensing performance via chip-level pyrolysis of as-grown ZIF-L (ZIF stands for zeolitic imidazolate framework) films to porous and hierarchical zinc oxide (ZnO) nanosheets. A novel approach to generate adjustable oxygen vacancies is demonstrated, through which the electronic structure of sensing materials can be fine-tuned. Their presence is thoroughly verified by various techniques. The sensing results demonstrate that the resultant oxygen vacancy-abundant ZnO nanosheets exhibit significantly enhanced sensitivity and shortened response time toward ppb-level carbon monoxide (CO) and volatile organic compounds encompassing 1,3-butadiene, toluene, and tetrachloroethylene, which can be ascribed to several reasons including unpaired electrons, consequent bandgap narrowing, increased specific surface area, and hierarchical micro-mesoporous structures. This facile approach sheds light on the rational design of sensing materials via defect engineering, and can facilitate the mass production, commercialization, and large-scale deployments of sensors with controllable morphology and superior sensing performance targeted for ultratrace gas detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...