Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32413282

RESUMO

Oculopharyngodistal myopathy (OPDM) is an adult-onset inherited neuromuscular disorder characterized by progressive ptosis, external ophthalmoplegia, and weakness of the masseter, facial, pharyngeal, and distal limb muscles. The myopathological features are presence of rimmed vacuoles (RVs) in the muscle fibers and myopathic changes of differing severity. Inheritance is variable, with either putative autosomal-dominant or autosomal-recessive pattern. Here, using a comprehensive strategy combining whole-genome sequencing (WGS), long-read whole-genome sequencing (LRS), linkage analysis, repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis polymerase chain reaction (AL-PCR), we identified an abnormal GGC repeat expansion in the 5' UTR of GIPC1 in one out of four families and three sporadic case subjects from a Chinese OPDM cohort. Expanded GGC repeats were further confirmed as the cause of OPDM in an additional 2 out of 4 families and 6 out of 13 sporadic Chinese individuals with OPDM, as well as 7 out of 194 unrelated Japanese individuals with OPDM. Methylation, qRT-PCR, and western blot analysis indicated that GIPC1 mRNA levels were increased while protein levels were unaltered in OPDM-affected individuals. RNA sequencing indicated p53 signaling, vascular smooth muscle contraction, ubiquitin-mediated proteolysis, and ribosome pathways were involved in the pathogenic mechanisms of OPDM-affected individuals with GGC repeat expansion in GIPC1. This study provides further evidence that OPDM is associated with GGC repeat expansions in distinct genes and highly suggests that expanded GGC repeat units are essential in the pathogenesis of OPDM, regardless of the genes in which the expanded repeats are located.

2.
BMC Neurol ; 20(1): 178, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393192

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is one of the most aggressive malignant brain tumors. Intracranial GBM metastases to the spine are rarely detected clinically. Secondary gliosarcomas after treatment of primary GBM are rarely described. CASE PRESENTATION: Herein, we report the case of a 53-year-old woman who presented to our emergency room with progressive headache and weakness on the left side. Plain computed tomography and contrast magnetic resonance imaging of the brain revealed an approximately 6.8 cm × 4.5 cm right temporoparietooccipital intraaxial cystic tumor with surrounding diffuse perifocal edema that caused midline shift toward the left. Emergency craniotomy was performed to remove the tumor, and pathological examination revealed GBM. The patient received proton beam therapy, Gliadel implantation, and oral temozolomide chemotherapy as well as targeted therapy with bevacizumab. Approximately 15 months after diagnosis, she underwent surgical resection of the right temporal recurrent tumor and was newly diagnosed as having a metastatic spinal tumor. Pathologically, the right temporal and metastatic spinal tumors were gliosarcoma and GBM, respectively. CONCLUSIONS: Concurrent spinal metastasis and gliosarcomatous transformation, which are two types of GBM complications, are rare. To our knowledge, this is the first report of a case of recurrent GBM with gliosarcoma after proton bean therapy.

3.
Chemistry ; 2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32363612

RESUMO

Recently, two-dimensional (2D) organic-inorganic hybrid lead halide perovskites have attracted intensive attentions in solid state luminous fields as single-component white light emitters, and it is still significant to rationally optimize the photoluminescence (PL) performances through accurate structural design strategies. Herein, by carefully choosing homologous aliphatic amines as templates, we rationally designed two isotypical perovskites, [DMEDA]PbCl 4 ( 1 ) and [DMPDA]PbCl 4 ( 2 ), displaying tunable and stable broadband bluish white-light emission properties. Intriguingly, the subtle regulation on organic cations leads to higher distortion levels of 2D [PbCl 4 ] 2- layers and enhanced photoluminescence quantum efficiencies (PLQEs) (<1% for 1 and 4.9% for 2 ). The broadband light emissions can be ascribed to the self-trapped excitons (STEs) based on detailed studies of structural characterizations, time-resolved PL, temperature-dependent PL emissions, theoretical calculation and so on. This work gives a new guidance to rationally optimize the PL properties of low-dimensional halide perovskites and affords a platform to probe into the structure-property relationship.

4.
Stroke ; : STROKEAHA119028812, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32397933

RESUMO

Background and Purpose- Distribution patterns of iron deposition in deep gray matter and their association with clinical characteristics in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) remain unclear. We aimed to evaluate iron deposition in deep gray matter in patients with CADASIL using 7.0-T susceptibility-weighted imaging and mapping and to explore its correlations with clinical characteristics. Methods- Thirty-nine patients with CADASIL, confirmed via genetic analysis or skin biopsy, were enrolled. We examined patients using the Mini-Mental State Examination, modified Rankin Scale, and brain 7.0-T magnetic resonance imaging and obtained magnetic resonance imaging lesion loads, small vessel disease scores, and susceptibility mapping. The following regions of interest were selected: caudate nucleus, putamen, globus pallidus, thalamus, substantia nigra, and red nucleus. The quantitative differences in the susceptibility of deep gray matter between the CADASIL and control groups and the correlations between deep gray matter susceptibility and clinical characteristics were identified. Results- Compared with the control group, the CADASIL group showed significantly increased susceptibility of caudate nucleus, putamen, thalamus, substantia nigra, and red nucleus. The susceptibility of deep gray matter in basal ganglia region, including caudate nucleus, putamen, and thalamus, significantly increased with age or disease duration and positively correlated with small vessel disease scores in patients with CADASIL. Moreover, the susceptibility of thalamus positively correlated with modified Rankin Scale scores after adjusting for age and disease duration and that of putamen negatively correlated with Mini-Mental State Examination scores in patients with CADASIL after adjusting for age. Conclusions- Our findings indicate an association between abnormal iron deposition in deep gray matter of patients with CADASIL and their clinical characteristics. Therefore, excess iron deposition in deep gray matter, as indicated by 7.0-T susceptibility-weighted imaging and mapping, might not only be a novel magnetic resonance imaging feature but also a potential biomarker for CADASIL severity.

5.
Clin Neuropathol ; 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32383641

RESUMO

Mutations of the vesicle-associated membrane protein-associated protein B (VAPB) gene have been identified in familial amyotrophic lateral sclerosis (ALS) with dysautonomia. Here we report the peripheral nerve pathology in ALS with dysautonomia caused by the p.Pro56Ser mutation of the VAPB gene in a Chinese family. The clinical features in all patients were camptocormia, fasciculation, and weakness in all limbs. Two patients developed symptoms of dysautonomia, including abdominal bloating, orthostatic hypotension, constipation, frequent urination, decreased sweating, and burning feet. Electromyography showed widespread neuropathic damage. The sympathetic skin response was absent in the soles of the feet. Sural nerve biopsy revealed loss of nerve fibers, especially unmyelinated fibers. Electron microscopy revealed regional loss of unmyelinated fibers with numerous collagen pockets. This report indicates that VAPB-associated ALS may be accompanied by multifocal autonomic nerve damage.
.

6.
Nature ; 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349120

RESUMO

Sudden, large-scale and diffuse human migration can amplify localized outbreaks of disease into widespread epidemics1-4. Rapid and accurate tracking of aggregate population flows may therefore be epidemiologically informative. Here we use 11,478,484 counts of mobile phone data from individuals leaving or transiting through the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 296 prefectures throughout China. First, we document the efficacy of quarantine in ceasing movement. Second, we show that the distribution of population outflow from Wuhan accurately predicts the relative frequency and geographical distribution of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) until 19 February 2020, across all of China. Third, we develop a spatio-temporal 'risk source' model that leverages population flow data (which operationalize the risk that emanates from epidemic epicentres) not only to forecast the distribution of confirmed cases, but also to identify regions that have a high risk of transmission at an early stage. Fourth, we use this risk source model to statistically derive the geographical spread of COVID-19 and the growth pattern based on the population outflow from Wuhan; the model yields a benchmark trend and an index for assessing the risk of community transmission of COVID-19 over time for different locations. This approach can be used by policy-makers in any nation with available data to make rapid and accurate risk assessments and to plan the allocation of limited resources ahead of ongoing outbreaks.

7.
Med Sci Monit ; 26: e920221, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338252

RESUMO

BACKGROUND Laminaria japonica polysaccharide (LJP), a fucose enriched sulfated polysaccharide has been demonstrated to have excellent anticoagulant and antithrombotic activities. However, the antithrombotic effect of low molecular weight polysaccharide from enzymatically modified of LJP (LMWEP) remains unknown. MATERIAL AND METHODS LMWEP was prepared by fucoidanase enzymatic hydrolysis, and the antithrombotic and anticoagulant activities, and the underlying mechanism were investigated thoroughly. Rats were randomly divided into 6 groups (8 rats in each group): the blank control group, the blank control group treated with LMWEP (20 mg/kg), the model group, the model group treated with heparin (2 mg/kg), the model group treated with LJP (20 mg/kg), and the model group treated with LMWEP (20 mg/kg). After 7 days of intravenous administration, blood was collected for biochemical parameters examinations. RESULTS LMWEP increased the activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), 6-keto prostaglandin F1alpha (6-Keto-PGF1alpha), and endothelial nitric oxide synthase (eNOS). In addition, LMWEP decreased fibrinogen (FIB), endothelin-1 (ET-1), thromboxane B2 (TXB2), erythrocyte sedimentation rate (ESR), and hematocrit (HCT). CONCLUSIONS LMWEP, an enzymatically modified fragment with a molecular weight of 25.8 kDa, is a potential antithrombotic candidate for treatment of thrombosis related diseases.

8.
Chaos ; 30(2): 023116, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32113230

RESUMO

As the potential for a treatment of Duchenne muscular dystrophy (DMD) grows, the need for methods for the early diagnosis of DMD becomes more and more important. Clinical experiences suggest that children with DMD will show some lack of motor ability in the early stage when compared with children at the same age, especially in balance and coordination abilities. Is it possible to quantify the coordination differences between DMD and typically developing (TD) children to achieve the goal of screening for DMD diseases? In this study, we introduced a Local Manifold Structure Mapping approach in phase space and extracted a novel index, relative coupling coefficient (RCC), from gait pattern signals, which were acquired by wearable accelerometers to evaluate the coordination of children with DMD during a walking task. Furthermore, we compared the RCC of 100 children with DMD and 100 TD children in four different age groups and verified the feasibility and reliability of the proposed indices to distinguish children with TD from DMD. T-test results show that, for all age groups, children of the same age with DMD and TD show significant differences in RCC (p < 0.001). Moreover, RCC comprehensively reflects that the coordination ability of DMD patients under walking tasks gradually decreases with age, which is consistent with clinical experience. As a functional biomarker extracted in the phase space of the gait data, the proposed coupling degree index RCC could sensitively distinguish between DMD and TD children at the same age and provide alternative insights and potentially valuable tools for the screening of DMD.

9.
Clin Genet ; 97(6): 878-889, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32222963

RESUMO

Hereditary nemaline myopathy (NM) is one of the most common congenital myopathies with the histopathological findings of nemaline bodies. We used targeted next-generation sequencing to identify causative mutations in 48 NM patients with confirmed myopathological diagnosis, analyze the mutational spectrum and phenotypic features. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) was used to confirm the pathogenic effect of one nebulin (NEB) splicing variant. The results showed that variants were found in five NM-associated genes, including NEB, actin alpha 1 (ACTA1), troponin T1, Kelch repeat and BTB domain-containing 13, and cofilin-2, in 34 (73.9%), 7 (15.2%), 3 (6.5%), 1 (2.2%), and 1 (2.2%) patients, respectively, in a total of 46/48 (95.8%) NM patients. Of the total 64 variants identified, 51 were novel variants including 26 pathogenic, 1 probably pathogenic, and 24 variant of uncertain significance (VUS). Notably, one NEB splicing mutation, c.21417+3A>G causing exon 144 splicing (NM_001164508.1), as confirmed by RT-PCR, was found in 52.9% (18 patients) of NEB variant-carrying patients. Typical congenital NM, the most common clinical subtype (60.4%), was associated with five NM genes. We concluded that hereditary NM showed a highly variable genetic spectrum. NEB was the most frequent causative gene in this Chinese cohort, followed by ACTA1. We found a hotspot splicing mutation in NEB among Chinese cohort.

10.
Proc Natl Acad Sci U S A ; 117(11): 6103-6113, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123069

RESUMO

Clinical observation of the association between cancer aggressiveness and embryonic development stage implies the importance of developmental signals in cancer initiation and therapeutic resistance. However, the dynamic gene expression during organogenesis and the master oncofetal drivers are still unclear, which impeded the efficient elimination of poor prognostic tumors, including human hepatocellular carcinoma (HCC). In this study, human embryonic stem cells were induced to differentiate into adult hepatocytes along hepatic lineages to mimic liver development in vitro. Combining transcriptomic data from liver cancer patients with the hepatocyte differentiation model, the active genes derived from different hepatic developmental stages and the tumor tissues were selected. Bioinformatic analysis followed by experimental assays was used to validate the tumor subtype-specific oncofetal signatures and potential therapeutic values. Hierarchical clustering analysis revealed the existence of two subtypes of liver cancer with different oncofetal properties. The gene signatures and their clinical significance were further validated in an independent clinical cohort and The Cancer Genome Atlas database. Upstream activator analysis and functional screening further identified E2F1 and SMAD3 as master transcriptional regulators. Small-molecule inhibitors specifically targeting the oncofetal drivers extensively down-regulated subtype-specific developmental signaling and inhibited tumorigenicity. Liver cancer cells and primary HCC tumors with different oncofetal properties also showed selective vulnerability to their specific inhibitors. Further precise targeting of the tumor initiating steps and driving events according to subtype-specific biomarkers might eliminate tumor progression and provide novel therapeutic strategy.

11.
Inorg Chem ; 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32202431

RESUMO

In the past few decades, organic-inorganic hybrid metal halides acting as single-component white light emission diodes (LEDs) have attracted extensive attentions, but most of the studies concentrate on the low-dimensional lead perovskites. Here, by using the nontoxic silver as optically active metal center, a series of hybrid silver halides based on one-dimensional structures were constructed and realized broadband white light emission. Compounds [H2DABCO][Ag2X4(DABCO)] (X = Br (1), I (2)) feature one-dimensional [Ag2X4(DABCO)]2- structures charged balanced by [H2DABCO]2+ cations. Compound 1 exhibits an efficient broadband white-light emission with photoluminescence quantum efficiency (PLQE) of about 2.1% and excellent photochemical stability, while compound 2 gives a broadband yellow-white emission centered at 556 nm. [HDABCO]3Ag5Cl8 (3) gives a strong broadband yellow emission (585 nm) with high PLQE of 6.7%, which can be easily fabricated as a white light emitting device. Based on the temperature-dependent, particle-size-dependent, and time-resolved PL measurements as well as other detailed studies, the broadband white-light emissions are ascribed to the synergetic effects of the organic and inorganic components. Our work provides a unique structural assembly method to explore lead-free single-component white-light illuminants from molecular level.

12.
Mater Sci Eng C Mater Biol Appl ; 108: 110431, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923972

RESUMO

We successfully synthesized a strontium-doped tricalcium silicate (SrxCa3-xSiO5, Sr = 0 to 2 mol%) bone cement using the sol-gel process. The material properties including crystallinity, setting time, mechanical strength, and hydration products were characterized. Release of ions and pH values of simulated body fluid soaked with the bone cement were measured. In vitro biocompatibility of different concentrations of the material was evaluated by the viability of L929 cells. The setting times of as-prepared slurries were all <70 min. Doping with 0.5 mol% Sr reduced the final setting time by 20 min. After 14 days curing, 0.25 mol% Sr-doped SrxCa3-xSiO5 possessed the highest compressive strength of 45 MPa among all the Sr-doped groups with no statistical difference to Ca3SiO5. The bioactivity of the materials was confirmed with the formation of an apatite layer on the surface of the materials after immersion in simulated body fluid. In addition, the proliferation of L929 cells exposed to 1 mol% Sr was significantly promoted as compared to no Sr doping. SrxCa3-xSiO5 is a novel and advanced material that has the potential to serve as a bone cement in bone restoration with appropriate mechanical strength and favorable biocompatibility.

13.
J Neurol Sci ; 408: 116499, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31726383

RESUMO

BACKGROUND: Muscle pathology usually contributes to mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode (MELAS), even in patients without prominent muscle symptoms. We report a series of patients with MELAS without significant myopathic changes. METHODS: Twelve patients without ragged-red fibers (RRFs) on muscle pathology (RRF-negative group) and 99 patients with MELAS and RRFs and/or cytochrome c oxidase (COX)-deficient fibers (control RRF-positive group) were recruited. We analyzed clinical features, neuroimaging and pathological findings, gene mutation data, immunofluorescence assay of key respiratory chain subunits of complexes I and IV and mitochondrial DNA (mtDNA) mutation load in biopsied muscle samples. RESULTS: None of the RRF-negative patients had RRF or COX-negative fibers, but four patients had strongly succinate dehydrogenase-stained vessels (SSVs). There was a lower proportion of m.3243A>G and higher proportion of mitochondria-encoded ND gene mutations in RRF-negative than RRF-positive patients. The proportion of aphasia was relatively higher, while complex I and IV subunit abundance in muscle and mutation load were lower in RRF-negative than in RRF-positive patients. CONCLUSION: RRF-negative patients had a similar disease course, clinical symptoms, and neuroimaging results to RRF-positive patients with MELAS. SSV is a valuable diagnostic indicator for MELAS. For highly suspected MELAS yet without positive myopathological findings, combined immunofluorescence and genetic studies should be used to achieve final diagnosis.

14.
Biochem Biophys Res Commun ; 523(1): 91-97, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31836143

RESUMO

Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) is a common subtype of mitochondrial disease with high disability and mortality rate. The molecular mechanisms of MELAS are largely unknown and whether autophagy is activated in this disease remains controversial. In this work, we reported whole transcriptome profiling of skeletal muscle of MELAS patients and age-matched controls. Analyses revealed that MELAS patients had 224 differentially expressed genes (174 down-regulated, 50 up-regulated) compared to age-matched controls. Most of these genes relevant to MELAS are involved in signal transduction, metabolic process and immune system process. However, the RNA-seq data indicated that autophagy was not altered in MELAS. Functional assays showed that increased reactive oxygen species (ROS), decreased ATP production and decreased lysosome content in fibroblasts derived from MELAS patients, suggesting that mitochondrial dysfunction and degradation deficiency in MELAS. Furthermore, Western-blot analyses using skeletal muscle and fibroblasts derived from MELAS patients showed that autophagy was impaired in MEALS since two important autophagic genes: Beclin-1 and LC3-II, were significantly down-regulated. In conclusion, our study identified molecules and pathways involved in the mechanisms of MELAS, and the impairment of autophagy in this disease, which may serve as the potential therapeutic target for MELAS.

15.
Curr Eye Res ; 45(1): 64-71, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31294618

RESUMO

Purpose: Adeno-associated virus vector (AAV) is the most accepted gene delivery vector for retinal gene therapy. Müller cells play an important role in maintaining homeostasis and neuronal structural integrity, stability and it has been found to be involved in many retinopathies. The aim of this study is to identify a rAAV2/6 mutant which has increased tropism for Müller cell of the mouse retina.Materials and Methods: Using amino acid mutagenesis, we created a rAAV2/6 capsid mutant, rAAV2/6-S663L. In vivo imaging and retinal flat mount were employed to analyze the gene expression of rAAV2/6-S663L and wt rAAV2/6 in mouse retinal tissue. Retinal tissue cryosection, immunohistochemistry (IHC), Müller cell-specific promoter-controlled gene expression, and double AAV fluorescent protein co-expression were performed to determine the targeting of rAAV2/6-S663L for mouse retinal Müller cells.Results: In vivo imaging, retinal flat mount and retinal tissue cryosection results showed that rAAV2/6-S663L and wt rAAV2/6 have different specific tropisms in mouse retina and rAAV2/6-S663L is more preferentially targeting Müller cells. Müller cell-specific promoter-controlled gene expression experiments and IHC test confirmed that rAAV2/6-S663L has a higher tendency to infect Müller cells than wt rAAV2/6. Co-infection of the mouse retina with one rAAV2/6-S663L expressing EGFP under the control of GFAP promoter and the other one expressing mCherry under the control of CMV promoter revealed co-expression of the two fluorescent proteins in Müller cells.Conclusions: The results confirmed that rAAV2/6-S663L has a higher tropism for Müller cells than wt rAAV2/6. Our findings could add a new useful tool for retinal disease gene therapy.

16.
Food Chem ; 305: 125429, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505415

RESUMO

A simple and rapid magnetic solid-phase extraction (MSPE) method using PEGylated multi-walled carbon nanotubes magnetic nanoparticles (PEG-MWCNTs-MNP) as absorbents is proposed for isolation and enrichment of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), aflatoxin M1 (AFM1), aflatoxin M2 (AFM2), ochratoxin A (OTA), zearalenone (ZEA), zearalanone (ZAN), α-zeralanol (α-ZAL), ß-zeralanol (ß-ZAL), α-zeralenol (α-ZOL), and ß-zeralenol (ß-ZOL) from liquid milk. Combined with ultra-high performance liquid chromatography Q-Exactive high resolution mass spectrometry, simultaneous qualification of these mycotoxins was achieved with sensitivity and specificity. The proposed method showed a good linearity (R2 ≥ 0.995), high sensitivity (limit of detection in the range of 0.005-0.050 µg/kg and limit of quantification in the range of 0.015-0.150 µg/kg), adequate recovery (81.8-106.4%), and good repeatability (intra-day precision in the range of 2.1-8.5% and inter-day precision in the range of 3.9-11.7%). It has been successfully applied to the determination of 13 mycotoxins in real liquid milk samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Leite/química , Micotoxinas/análise , Extração em Fase Sólida/métodos , Aflatoxinas/análise , Animais , Magnetismo , Nanotubos de Carbono , Ocratoxinas/análise , Sensibilidade e Especificidade , Zearalenona/análise
17.
Neuromolecular Med ; 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792810

RESUMO

BACKGROUND: Scutellarin, an herbal compound, can effectively suppress the inflammatory response in activated microglia/brain macrophage(AM/BM) in experimentally induced cerebral ischemia; however, the underlying mechanism for this has not been fully clarified. We sought to elucidate if scutellarin would exert its anti-inflammatory effects on AM/BM through the MAPKs pathway. MATERIALS AND METHODS: Western blot and immunofluorescence labeling were used to determine the expression of the MAPKs pathway in AM/BM in rats subjected to middle cerebral artery occlusion (MCAO) also in lipopolysaccharide (LPS)-activated BV-2 microglia in vitro. Furthermore, expression of p-p38 along with that of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta(IL-1ß), and inducible nitric oxide synthase (iNOS) in LPS-activated microglia subjected to pretreatment with p38 inhibitor SB203580, p38 activator sc-201214, scutellarin, or a combination of them was evaluated. FINDINGS: Scutellarin markedly attenuated the expression of p-p38, p-JNK in AM/BM in MCAO rats and in vitro. Conversely, p-ERK1/2 expression level was significantly increased by scutellarin. Meanwhile, scutellarin suppressed the expression of proinflammatory mediators including iNOS, TNF-α, and IL-1ß in AM/BM. More importantly, SB203580 suppressed p-p38 protein expression level in LPS-activated BV-2 microglia that was coupled with decreased expression of proinflammatory mediators (TNF-α, iNOS) in LPS-activated BV-2 microglia. However, p38 activator sc-201214 increased expression of proinflammatory mediators TNF-α, iNOS, and IL-1ß. Interestingly, the decreased expression of both proinflammatory markers by p38 MAPK inhibitor and increased expression of proinflammatory markers by p38 MAPK activator were compatible with that in BV-2-activated microglia pretreated with scutellarin. CONCLUSIONS: The results suggest that scutellarin down-regulates the expression of proinflammatory mediators in AM/BM through suppressing the p-JNK and p-p38 MAPKs. Of note, the anti-inflammatory effect of p38 MAPK inhibitor and scutellarin is comparable. Besides, p38 MAPKs activator reverses the effect of scutellarin. Additionally, scutellarin increases p-ERK1/2 expression that may be neuroprotective.

18.
Neuropathology ; 39(6): 441-446, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31777123

RESUMO

Congenital hypomyelinating neuropathy (CHN) presents in the neonatal period and results in delayed development of sensory and motor functions due to several gene mutations including in EGR2, MPZ, CNTNAP1, and PMP22. The phenotype of homozygous splice-site mutation in the PMP22 gene has not been described in humans or animal models. Here we describe a family carrying a pathogenic splice-site c.78 + 5G>A mutation in the PMP22 gene. We evaluated the clinical, electrophysiological, histological, and genetic features of the family. The proband with homozygous mutation presented with CHN, while his consanguineous parents with heterozygous mutation were asymptomatic. The proband was a 7-year-old boy. He had motor retardation after birth and had remained unable to walk independently at the time of the study. The compound muscle action potentials and sensory nerve action potentials were not recordable in the boy. The motor and sensory nerve conduction velocities of the parents were slightly to moderately decreased, although they had no symptoms of peripheral neuropathy. The sural nerve biopsy of the boy revealed hypomyelinating neuropathy with absence of large myelinated fibers, no myelin breakdown products, and numerous basal lamina onion bulb formations. To our knowledge, this is the first report of a homozygous splice-site mutation in the PMP22 gene in humans. Our study expands the phenotype and genotype of PMP22-related neuropathy.

19.
Orphanet J Rare Dis ; 14(1): 250, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31747956

RESUMO

BACKGROUND: Dystrophin-glycoprotein complex (DGC)-related muscular dystrophies may present similar clinical and pathological features as well as undetectable mutations thus being sometimes difficult to distinguish. We investigated the value of muscle magnetic resonance imaging (MRI) in the differential diagnosis of DGC-related muscular dystrophies and reported the largest series of Chinese patients with sarcoglycanopathies studied by muscle MRI. RESULTS: Fifty-five patients with DGC-related muscular dystrophies, including 22 with confirmed sarcoglycanopathies, 11 with limb-girdle muscular dystrophy 2I (LGMD2I, FKRP-associated dystroglycanopathy), and 22 with dystrophinopathies underwent extensive clinical evaluation, muscle biopsies, genetic analysis, and muscle MRI examinations. Hierarchical clustering of patients according to the clinical characteristics showed that patients did not cluster according to the genotypes. No statistically significant differences were observed between sarcoglycanopathies and LGMD2I in terms of thigh muscle involvement. The concentric fatty infiltration pattern was observed not only in different sarcoglycanopathies (14/22) but also in LGMD2I (9/11). The trefoil with single fruit sign was observed in most patients with dystrophinopathies (21/22), and a few patients with sarcoglycanopathies (4/22) or LGMD2I (2/11). Hierarchical clustering showed that most patients with sarcoglycanopathies or LGMD2I can be distinguished from dystrophinopathies based on the concentric fatty infiltration pattern and trefoil with single fruit sign at the thigh level on muscle MRI. CONCLUSIONS: Muscle MRI at the thigh level potentially allows distinction of sarcoglycanopathies or FKRP-associated dystroglycanopathy from dystrophinopathies.

20.
Curr Pharm Des ; 25(21): 2375-2393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31584369

RESUMO

BACKGROUND: Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS: Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS: Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION: Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA