Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Neuropathology ; 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434166

RESUMO

X-linked Charcot-Marie-Tooth disease-5 (CMTX5) is a rare hereditary disorder caused by mutations in the gene for phosphoribosyl pyrophosphate synthetase-1 (PRPS1). We investigated a boy with a novel PRPS1 mutation (c.334G>C, p.V112L) via genetic, neuropathological and enzymatic tests. The proband was a 13-year-old boy with congenital non-syndromic sensorineural deafness. At 3 year old, he developed progressive distal weakness of all limbs with muscle atrophy of both hands and shanks. Nerve conduction study revealed the loss of sensory nerve action potentials, and slowing down of motor nerve conduction velocities with a decrease of amplitudes of compound motor action potentials. Visual evoked potentials and brainstem auditory evoked potentials were not bilaterally evocable. Sural biopsy proved the loss of myelinated nerve fibers, with axonal degeneration, regenerating clusters and onion bulbs. Enzymatically, PRPS1 activity was close to zero in the proband and mildly reduced in his mother, compared with controls. To our knowledge, this is the first report of CMTX5 in a Chinese population. The genetic finding has expanded the genotypic spectrum of PRPS1 mutations.

2.
J Med Genet ; 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413119

RESUMO

BACKGROUND: Neuronal intranuclear inclusion disease (NIID) is a heterogenous neurodegenerative disorder named after its pathological features. It has long been considered a disease of genetic origin. Recently, the GGC repeated expansion in the 5'-untranslated region (5'UTR) of the NOTCH2NLC gene has been found in adult-onset NIID in Japanese individuals. This study was aimed to investigate the causative mutations of NIID in Chinese patients. METHODS: Fifteen patients with NIID were identified from five academic neurological centres. Biopsied skin samples were analysed by histological staining, immunostaining and electron microscopic observation. Whole-genome sequencing (WGS) and long-read sequencing (LRS) were initially performed in three patients with NIID. Repeat-primed PCR was conducted to confirm the genetic variations in the three patients and the other 12 cases. RESULTS: Our patients included 14 adult-onset patients and 1 juvenile-onset patient characterised by degeneration of multiple nervous systems. All patients were identified with intranuclear inclusions in the nuclei of fibroblasts, fat cells and ductal epithelial cells of sweat glands. The WGS failed to find any likely pathogenic variations for NIID. The LRS successfully identified that three patients with adult-onset NIID showed abnormalities of GGC expansion in 5'UTR of the NOTCH2NLC gene. The GGC repeated expansion was further confirmed by repeat-primed PCR in seven familial cases and eight sporadic cases. CONCLUSION: Our findings provided evidence that confirmed the GGC repeated expansion in the 5'UTR of the NOTCH2NLC gene is associated with the pathogenesis of NIID. Additionally, the GGC expansion was not only responsible for adult-onset patients, but also responsible for juvenile-onset patients.

3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(7): 666-671, 2019 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-31302907

RESUMO

OBJECTIVE: To study the correlation of splicing mutations at the 5' end of the DMD gene with their phenotypes. METHODS: DMD gene mutations were analyzed using Multiplex Ligation Probe Amplification (MLPA) and Sanger sequencing. Co-segregation analysis was performed for the pedigrees of the probands. Influence of mutations on protein function was predicted by bioinformatic analysis. RESULTS: Three novel splicing mutations were identified in three patients with different phenotypes. Patient 1 carried a c.31+3insT mutation and presented primarily with dilated cardiomyopathy (XLDC). There was no clinical signs of skeletal myopathy. Bioinformatic analysis predicted that the mutation may inactivate the splicing donor of intron 1 and lead to premature termination of protein translation. Patient 2 carried a c.264_264+4delTGTAA mutation, which led to loss of splicing donor site for intron 4, and manifested Becker muscular dystrophy (BMD). The mutation was predicted to result in skipping of exon 4. The defective protein may still retain most of its function. Patient 3 had Duchenne muscular dystrophy (DMD) and carried a c.832-3C>T mutation which was predicted to decrease the activity of splicing acceptor of intron 8, resulting in usage of alternative acceptor site or retain of intron 8. All related transcripts may cause premature termination of protein translation and complete loss of protein function. The three mutations were all inherited from the mothers of the patients. CONCLUSION: Three novel splicing mutations were discovered at the 5' end of DMD gene in three patients with different disease phenotypes. Our study may facilitate understanding of the influence of splicing mutations at the 5' end of the DMD gene on dystrophin function and the correlation between genotypes and phenotypes.

4.
Curr Eye Res ; : 1-8, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31294618

RESUMO

Purpose: Adeno-associated virus vector (AAV) is the most accepted gene delivery vector for retinal gene therapy. Müller cells play an important role in maintaining homeostasis and neuronal structural integrity, stability and it has been found to be involved in many retinopathies. The aim of this study is to identify a rAAV2/6 mutant which has increased tropism for Müller cell of the mouse retina. Materials and Methods: Using amino acid mutagenesis, we created a rAAV2/6 capsid mutant, rAAV2/6-S663L. In vivo imaging and retinal flat mount were employed to analyze the gene expression of rAAV2/6-S663L and wt rAAV2/6 in mouse retinal tissue. Retinal tissue cryosection, immunohistochemistry (IHC), Müller cell-specific promoter-controlled gene expression, and double AAV fluorescent protein co-expression were performed to determine the targeting of rAAV2/6-S663L for mouse retinal Müller cells. Results: In vivo imaging, retinal flat mount and retinal tissue cryosection results showed that rAAV2/6-S663L and wt rAAV2/6 have different specific tropisms in mouse retina and rAAV2/6-S663L is more preferentially targeting Müller cells. Müller cell-specific promoter-controlled gene expression experiments and IHC test confirmed that rAAV2/6-S663L has a higher tendency to infect Müller cells than wt rAAV2/6. Co-infection of the mouse retina with one rAAV2/6-S663L expressing EGFP under the control of GFAP promoter and the other one expressing mCherry under the control of CMV promoter revealed co-expression of the two fluorescent proteins in Müller cells. Conclusions: The results confirmed that rAAV2/6-S663L has a higher tropism for Müller cells than wt rAAV2/6. Our findings could add a new useful tool for retinal disease gene therapy.

5.
Ann Clin Transl Neurol ; 6(7): 1311-1318, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31353864

RESUMO

OBJECTIVE: We present clinical features, muscle imaging findings, and genetic characteristics of five unrelated Chinese patients with congenital titinopathy, emphasizing the diagnostic role of muscle MRI. METHODS: Five patients who recessive titinopathies were recruited. All patients received muscle biopsies. Mutations were detected by panel massively parallel sequencing and confirmed by Sanger sequencing. Western blotting of muscle proteins was performed. Leg muscle MRIs were performed in four patients. RESULTS: Four patients aged 1-4 years old showed delayed motor development from early infancy, while a 17-year-old boy showed only a 1-year history of exercise intolerance. Physical examination showed proximal weakness in three patients. Muscle biopsies demonstrated multiple myopathological changes, including increased internalized nuclei, multicores, central cores, and dystrophic changes. Genetic sequencing revealed compound heterozygous or homozygous novel TTN mutations, including six frameshift mutations, one nonsense mutation, two missense mutations, one splicing mutation, and one small nonframeshift deletion. Protein analyses revealed significant decrease of full-length titin in all patients. Thigh muscle MRIs in four patients showed prominent fatty infiltration in the upper portion of semitendinosus and the peripheral portion of gluteus medius, while the sartorius and gracilis were relatively preserved. INTERPRETATION: These cases provided further evidence that TTN mutations are likely responsible for an increasing proportion of congenital myopathies than currently recognized. The novel mutations reported expand the mutation spectrum of the TTN gene. There is a characteristic pattern of muscle involvement in congenital titinopathy regardless of clinical or pathological phenotype, providing valuable clues for guiding a genetic diagnosis workup.

6.
PLoS One ; 14(7): e0219628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31344055

RESUMO

The study aimed to evaluate the body composition of patients with mitochondrial diseases (MD) and correlate it with disease severity. Overall, 89 patients (age ≥ 18 years) with MD were recruited, including 49 with chronic progressive external ophthalmoplegia (CPEO) and 40 with mitochondrial encephalomyopathy with lactate acidosis and stroke-like episodes (MELAS). Body composition, including fat mass index (FMI), fat-free mass index (FFMI), skeletal muscle mass index (SMI), and appendicular skeletal muscle mass index (ASMI), were examined using multifrequency bioelectric impedance analysis. Clinical assessments, including muscle strength, usual gait speed, and disease severity determined by the Newcastle Mitochondrial Disease Adult Scale score (NMDAS), were performed. The comparisons between patients group and age- and gender-matched healthy controls, as well as the correlations between anthropometric measurements, body composition, and disease severity were analyzed. Height, weight, body mass index (BMI), FFMI, SMI, and ASMI were significantly lower in patients with MD than in healthy controls. Notably, low muscle mass was noted in 69.7% (62/89) of MD patients, with 22 patients also presenting with compromised physical performance as indicated by decreased gait speed, resulting in 24.7% satisfied the sarcopenia diagnostic criteria. Disease severity was more negatively correlated with ASMI than it was with height, weight, and BMI. Subgroup analysis showed that in the MELAS subgroup, disease severity was negatively correlated with height, weight, and ASMI; whereas in the CPEO subgroup, it was only negatively correlated with ASMI and SMI. Additionally, ASMI was positively associated with muscle strength. Altogether, compared with BMI, ASMI is a more sensitive biomarker predicting disease severity of MD, both in MELAS and CPEO patients.

7.
J Hum Genet ; 64(9): 919-926, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31273321

RESUMO

Reducing body myopathy is a rare X-linked myopathy characterized by the presence of reducing bodies. The causative gene has been identified as FHL1. We presented with the clinical, muscle magnetic resonance imaging and genetic features of 6 unrelated Chinese patients with reducing body myopathy. We divided the patients into 2 groups according to their age at onset. In addition to limb muscle weakness, pronounced axial muscle involvement was a striking feature common to both groups. Muscle magnetic resonance imaging revealed fatty infiltration predominantly in the postero-medial muscles of the thigh and the soleus muscle of the calf, sparing the gluteus and sartorius muscles. Muscle pathology demonstrated the muscle fibres with reducing bodies distributed in small groups. Genetic analysis revealed FHL1 hemizygote variants in the 6 patients, including 4 novel and 2 reported variants. These variants were located in the LIM2 domain of FHL1 in 4 patients, but 2 located in the LIM4 domain. To the best of our knowledge, this is the first report of reducing body myopathy in the Chinese population. Our findings expand the genetic spectrum of reducing body myopathy.

8.
Arch Virol ; 164(9): 2385-2388, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31209596

RESUMO

The discovery and analysis of pathogens carried by non-human primates are important for understanding zoonotic infections in humans. We identified a highly divergent astrovirus (AstV) from fecal matter from a rhesus monkey in China, which has been tentatively named "monkey-feces-associated AstV" (MkAstV). The full-length genome of MkAstV was determined to be 7377 nt in length. It exhibits the standard genomic AstV organization of three open reading frames (ORFs) and is most closely related to duck AstV (28%, 49%, and 35% amino acid sequence identity in ORF1a, ORF1b, and ORF2, respectively). Coincidentally, while this report was being prepared, an astrovirus sequence from Hainan black-spectacled toad became available in the GenBank database, showing 95%, 94% and 92% aa sequence identity in ORF1a, ORF1b and ORF2, respectively, to the corresponding ORFs of MkAstV. Phylogenetic analysis of ORF1a, ORF1b, and ORF2 indicated that MkAstV and the amphibian-related astroviruses formed an independent cluster in the genus Avastrovirus. The host of MkAstV remains unknown. Epidemiological and serological studies of this novel virus should be undertaken in primates, including humans.


Assuntos
Astroviridae/isolamento & purificação , Fezes/virologia , Macaca mulatta/virologia , Sequência de Aminoácidos , Animais , Astroviridae/classificação , Astroviridae/genética , China , Genoma Viral , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência , Proteínas Virais/genética
9.
Int J Nanomedicine ; 14: 4007-4016, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213812

RESUMO

Background: This study exploited sheath-core-structured lidocaine/human EGF (hEGF)-loaded anti-adhesive poly[(d,l)-lactide-co-glycolide] (PLGA) nanofibrous films for surgical wounds via a co-axial electrospinning technique. Materials and methods: After spinning, the properties of the co-axially spun membranes were characterized by scanning electron microscopy, laser-scanning confocal microscopy, Fourier Transform Infrared spectrometry, water contact angle measurements, and tensile tests. Furthermore, a HPLC analysis and an ELISA evaluated the in vitro and in vivo release curves of lidocaine and hEGF from the films. Results: PLGA anti-adhesion nanofibers eluted high levels of lidocaine and hEGF for over 32 and 27 days, respectively, in vitro. The in vivo evaluation of post-surgery recovery in a rat model demonstrated that no adhesion was noticed in tissues at 2 weeks after surgery illustrating the anti-adhesive performance of the sheath-core-structured nanofibers. Nanofibrous films effectively released lidocaine and hEGF for >2 weeks in vivo. In addition, rats implanted with the lidocaine/hEGF nanofibrous membranes exhibited greater activities than the control demonstrating the pain relief efficacy of the films. Conclusion: The empirical outcomes suggested that the anti-adhesive nanofibrous films with extended release of lidocaine and hEGF offer post-operative pain relief and wound healing.


Assuntos
Adesivos/uso terapêutico , Fator de Crescimento Epidérmico/uso terapêutico , Nanofibras/química , Dor/tratamento farmacológico , Ferida Cirúrgica/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Adesivos/farmacologia , Anestésicos Locais/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Fator de Crescimento Epidérmico/farmacologia , Humanos , Lidocaína/farmacologia , Lidocaína/uso terapêutico , Masculino , Nanofibras/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Ferida Cirúrgica/patologia
10.
Am J Chin Med ; 47(4): 895-912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31091975

RESUMO

In children, neuroblastomas are the most common and deadly solid tumor. Our previous studies showed that honokiol can cross the blood-brain barrier and kill neuroblastoma cells. In this study, we further evaluated if exposure to honokiol for short periods could induce autophagy and subsequent apoptosis of neuroblastoma cells and possible mechanisms. Exposure of neuroblastoma neuro-2a cells to honokiol for 24 h induced morphological shrinkage and cell death. As to the mechanisms, honokiol consecutively induced cytochrome c release from mitochondria, caspase-3 activation, DNA fragmentation and cell apoptosis. Separately, honokiol time-dependently augmented the proportion of autophagic cells and the ratio of light chain 3 (LC3)-II/LC3-I. Pretreatment of neuro-2a cells with 3-methyladenine, an inhibitor of autophagy, attenuated honokiol-induced cell autophagy, caspase-3 activation, DNA damage and cell apoptosis. In contrast, stimulation of autophagy by rapamycin, an inducer of autophagy, significantly enhanced honokiol-induced cell apoptosis. Furthermore, honokiol-induced autophagic apoptosis was confirmed in neuroblastoma NB41A3 cells. Knocking down translation of p53 using RNA interference attenuated honokiol-induced autophagy and apoptosis in neuro-2a and NB41A3 cells. Taken together, this study showed that at early periods, honokiol can induce autophagic apoptosis of neuroblastoma cells through activating a p53-dependent mechanism. Consequently, honokiol has the potential to be a therapeutic option for neuroblastomas.

11.
Neuromuscul Disord ; 29(5): 350-357, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31053406

RESUMO

Titin, encoded by the gene TTN, is one of the main sarcomere components. It is involved in not only maintaining the structure of cardiac and skeletal muscles, but also in their development, extensibility, elasticity, and signaling events. Congenital titinopathy increasingly appears an important and common form of axial predominant congenital myopathy. The pathophysiological role of TTN in congenital titinopathy and pediatric heart diseases is yet to be explored. Here, we delineate the phenotype of two female siblings who developed severe congenital multi-minicore disease without cardiac involvement. Genetic investigation by whole exome sequencing demonstrated compound heterozygous TTN mutations (c.15496+1G>A, p.5166_5258del; c.18597_18598insC, p.Thr6200Hisfs*15), corresponding to the Ig domain of the proximal I-band. Aberrant splicing causing exon skipping was verified by in vitro minigene analysis. Our results suggest that TTN mutations affecting the Ig domain of the proximal I-band may be a cause of severe congenital defect in skeletal muscles without severe cardiac involvement, thereby providing evidence for the hypothesis that congenital titinopathy patients carrying biallelic N2BA only mutations are at lower cardiac risk than those with other combinations of mutations. Meanwhile, this study confirm the hypothesis on recessive truncating variants of TTN experimentally and thus support earlier reported genotype-phenotype correlations.

12.
Int J Biochem Cell Biol ; 113: 27-36, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31102664

RESUMO

BACKGROUND: Long non-coding RNA H19 (lncRNA H19) has been widely reported in esophageal cancer (EC), and previous study had found that lncRNAH19 was up-regulated in EC and promoted cell proliferation and metastasis. However, the mechanism still needs further studied. METHODS: Levels of lncRNA H19 were analyzed by qRT-PCR in matched samples from 30 patients. Expression levels of lncRNA H19, let-7, STAT3 and EZH2 were additionally identified by qRT-PCR and western blotting in five EC cell lines. The effects of lncRNA H19 on cell proliferation, migration, invasion and apoptosis in cell lines were performed by MTT assay, colony formation assay, Transwell assay and flow cytometry in vitro, and tumor formation was detected by xenograft nude mice model in vivo. The expression level of STAT3, EZH2, ß-catenin, and EMT and metastasis related molecules such as E-cadherin, N-cadherin, Snail-1 and MMP-9 was assessed by qRT-PCR and western blotting. Finally, luciferase reporter assay and RIP assay were used to verify the interaction between lncRNA H19 and let-7c, and their subsequent regulation of STAT3. RESULTS: Knockdown of lncRNA H19 repressed cell proliferation, migration and invasion as well as EMT and metastasis via STAT3-EZH2-ß-catenin pathway, while lncRNA H19 regulated STAT3 negatively regulated let-7c in EC cell lines. CONCLUSIONS: lncRNA H19 facilitates EMT and metastasis of EC through let-7c/STAT3/EZH2/ß-catenin axis.

13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(6): 577-580, 2019 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-31055809

RESUMO

OBJECTIVE: To explore the clinical, neuropathological and genetic characteristics of a patient with Perrault syndrome caused by TWNK mutation. METHODS: Potential variation of the TWNK gene was detected by next-generation sequencing (NGS) and verified by Sanger sequencing. RESULTS: The patient has featured primary amenorrhoea and progressive sensorineural hearing loss since childhood. She also had gait anormaly, distal limb atrophy and weakness, and nystagmus. Further study confirmed sensory neuronopathy accompanied with upper and lower motor neuron involvement as well as cerebellum atrophy. NGS has identified two heterozygous variants of the TWNK gene, namely c.794G>A (p.Arg265His) and c.1181G>A (p.Arg394His). Sanger sequencing confirmed that c.1181G>A (p.Arg394His), a known pathogenic variant, was derived from her farther, while c.794G>A(p.Arg265His), a novel variant, was derived from her mother and likely pathogenic according to the ACMG guidelines. CONCLUSION: Perrault syndrome is a group of disorders with a high phenotypic heterogeneity. The compound heterozygous variation of c.794G>A (p.Arg265His) and c.1181G>A(p.Arg394His) of the TWNK gene may underlie Perrault syndrome in the patient.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Criança , Feminino , Testes Genéticos , Humanos , Linhagem
14.
Clin Genet ; 96(3): 207-215, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31066047

RESUMO

Congenital muscular dystrophies (CMDs) are clinically and genetically heterogeneous conditions. We launched a nationwide study to determine the frequency of CMD in the Chinese population and assess the status of diagnosis and disease management for CMD in China. Cases were chosen from databases in 34 tertiary academic hospitals from 29 first-level administrative divisions (provinces, municipalities, autonomous regions, and special administrative regions), and medical records were reviewed to confirm the diagnoses. The study included 409 patients, of those patients who consented to genetic testing (n = 340), mutations were identified in 286 of them. The most common forms identified were LAMA2-related CMD (36.4%), followed by COL6-related CMD (23.2%) and α-dystroglycanopathy (21.0%). The forms of CMD related to mutations in LMNA and SEPN1 were less frequent (12.5% and 2.4%, respectively). We also recorded a significant difference in the diagnostic capabilities and disease management of CMD, with this being relatively backward in research centers from less developed regions. We provide, for the first time, comprehensive epidemiologic information of CMD in a large cohort of Chinese people. To our knowledge, this is the largest sample size of its kind so far highlighting the prevalence of CMD in China.

15.
Neuropathology ; 39(3): 194-199, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30957313

RESUMO

The tropomyosin-receptor kinase fused gene (TFG) functions in vesicles formation and egress at the endoplasmic reticulum (ER). A heterozygous missense mutation c.854C > T (p.Pro285Leu) within TFG has been reported as causative for hereditary motor and sensory neuropathy with proximal predominance. Here, we describe two unrelated Chinese pedigrees with 13 affected members harboring the same variant. The clinical, electrophysiological and pathological findings are consistent with motor neuron disease with sensory neuropathy. The main symptoms were painful muscle cramps, slowly progressive proximal predominant weakness, muscle atrophy, fasciculation and distal sensory disturbance. Electromyography revealed widespread denervation and reinnervation. Sural nerve biopsy revealed severe loss of myelinated fibers. Electron microscopy revealed aggregation of ER with enlarged lumen and small vesicles in the remaining myelinated and unmyelinated axons. The mitochondria are smaller in Schwann cells and axons. Some unmyelinated axons showed disappearance of neurofilament and microtubular structures. This is the first report of c.854C > T mutation within TFG in Chinese population. Our findings not only extend the geographical and phenotypic spectrum of TFG-related neurological disorders, but also confirm the abnormalities of ER and mitochondria in sural nerves.

16.
Curr Med Sci ; 39(1): 138-145, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30868504

RESUMO

Quantitative magnetic resonance image (MRI) in individual muscles may be useful for monitoring disease progression in Duchenne muscular dystrophy (DMD). The purpose of this study was to measure T2 relaxation time of thigh muscles in children with DMD and healthy boys, and to correlate the T2 relaxation time of muscles with the fat fraction (FF) at quantitative magnetic resonance and results of clinical assessment. Thirty-two boys with DMD and 18 healthy boys were evaluated with T2 mapping and three-point Dixon MRI. Age, body mass index (BMI), muscle strength assessment, timed functional tests (time to walk or run 10 metres, rise from the floor and ascend four stairs), and the North Star Ambulatory Assessment (NSAA) were evaluated. Spearman's correlation was used to assess the relationships between FF and clinical assessments and T2 relaxation time. The mean T2 relaxation time of thigh muscles in DMD was significantly longer than that in the control group (P<0.05), except for the gracilis (P=0.952). The gracilis, sartorius and adductor longus were relatively spared by fatty infiltration in DMD patients. The T2 relaxation time was correlated significantly with the mean FF in all muscles. Age, BMI, total muscle strength score, timed functional tests and NSAA were significantly correlated with the overall mean T2 relaxation time. T2 mapping may prove clinically useful in monitoring muscle changes as a result of the disease process and in predicting the outcome of DMD patients.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Distrofia Muscular de Duchenne/diagnóstico por imagem , Coxa da Perna/diagnóstico por imagem , Adolescente , Índice de Massa Corporal , Estudos de Casos e Controles , Criança , Pré-Escolar , Progressão da Doença , Humanos , Imagem por Ressonância Magnética , Masculino , Estudos Prospectivos
17.
Histol Histopathol ; : 18103, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30900737

RESUMO

Cerebral ischemia affects many especially with the ageing population. The ensuing ischemic reactions include oxidative stress, inflammation, and excitotoxicity among others. In the search for effective therapeutic strategies for cerebral ischemia, activated microglia which are the key player in neuroinflammation are now recognized as a potential therapeutic target. Microglia possess both neurotoxic and neuroprotective roles. They are protective by continuously surveilling the microenvironment, phagocytosing dead cells, secreting trophic factors and sculpting the neuronal connections by removing axons and pruning excess synapses. On the other hand, hyperactivated microglia may impair cerebral oxidative metabolism, and produce excessive proinflammatory mediators that may exacerbate the brain damage. In view of this, suppression of microglial activation has been considered a therapeutic strategy to mitigate microglia-based neuroinflammation in cerebral ischemia. However, balancing the neuroprotective and neurotoxic roles of activated microglia remains a challenging issue. Many traditional Chinese herbal agents have been used in clinic for treatment of cerebral ischemia. Here, we provide an overview of five common Chinese herbs targeting specifically microglia-mediated neuroinflammation in cerebral ischemia. It is hoped that a common parallel may be drawn from their beneficial effects especially in the latter pathological conditions for their better and effective use in the future.

18.
Orphanet J Rare Dis ; 14(1): 43, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30764848

RESUMO

BACKGROUND: Sarcoglycanopathies comprise four subtypes of autosomal recessive limb-girdle muscular dystrophy (LGMD2C, LGMD2D, LGMD2E, and LGMD2F) that are caused, respectively, by mutations in the SGCG, SGCA, SGCB, and SGCD genes. Knowledge about the clinical and genetic features of sarcoglycanopathies in Chinese patients is limited. The aims of this study were to investigate in detail the clinical manifestations, sarcoglycan expression, and gene mutations in Chinese patients with sarcoglycanopathies and to identify possible correlations between them. RESULTS: Of 3638 patients for suspected neuromuscular diseases (1733 with inherited myopathies, 1557 with acquired myopathies, and 348 unknown), 756 patients had next-generation sequencing (NGS) diagnostic panel. Twenty-five patients with sarcoglycanopathies (11.5%) were identified from 218 confirmed LGMDs, comprising 18 with LGMD2D, 6 with LGMD2E, and one with LGMD2C. One patient with LGMD2D also had Charcot-Marie-Tooth 1A. The clinical phenotypes of the patients with LGMD2D or LGMD2E were markedly heterogeneous. Muscle biopsy showed a dystrophic pattern in 19 patients and mild myopathic changes in 6. The percentage of correct prediction of genotype based on expression of sarcoglycan was 36.0% (4 LGMD2D, 4 LGMD2E, and one LGMD2C). There was a statistically significant positive correlation between reduction of α-sarcoglycan level and disease severity in LGMD2D. Thirty-five mutations were identified in SGCA, SGCB, SGCG, and PMP22, 16 of which were novel. Exon 3 of SGCA was a hotspot region for mutations in LGMD2D. The missense mutation c.662G > A (p.R221H) was the most common mutation in SGCA. Missense mutations in both alleles of SGCA were associated with a relative benign disease course. No obvious clinical, sarcoglycan expression, and genetic correlation was found in LGMD2E. CONCLUSIONS: This study expands the clinical and genetic spectrum of sarcoglycanopathies in Chinese patients and provides evidence that disease severity of LGMD2D may be predicted by α-sarcoglycan expression and SGCA mutation.


Assuntos
Sarcoglicanopatias/genética , Sarcoglicanopatias/patologia , Grupo com Ancestrais do Continente Asiático , Biópsia , Criança , Pré-Escolar , Éxons/genética , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Masculino , Mutação/genética , Fenótipo
19.
Protein Cell ; 10(4): 249-271, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30778920

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.

20.
Theranostics ; 9(3): 796-810, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809309

RESUMO

Background and Aims: Cancer cells prefer aerobic glycolysis to maintain growth advantages, but the role of long non-coding RNAs (lncRNAs) in glycometabolism still remains unclear. Here we identified one cytoplasmic lncRNA LINC01554 as a significantly downregulated lncRNA in hepatocellular carcinoma (HCC) and aimed to investigate its role in cellular glucose metabolism in the development and progression of HCC. Methods: Quantitative real-time PCR was used to determine the expression level of LINC01554. Downregulation of LINC01554 by miR-365a at transcriptional level was assessed by luciferase reporter assay. Subcellular fractionation assay and RNA fluorescence in situ hybridization were performed to detect the subcellular localization of LINC01554. RNA pull-down assay, mass spectrometry, and RNA immunoprecipitation assay were used to identify the underlying molecular mechanisms. The tumor-suppressive function of LINC01554 was determined by both in vitro assay and nude mice xenograft model. Results: LINC01554 was frequently downregulated in HCC, which was significantly associated with tumor invasion (P = 0.005), tumor size (P = 0.041), tumor staging (P = 0.023) and shorter survival (P = 0.035) of HCC patients. Luciferase reporter assay unraveled that LINC01554 was negatively regulated by miR-365a. Subcellular fractionation assay and RNA FISH revealed the cytoplasmic predominance of LINC01554 in MIHA cells and HCC clinical samples. Ectopic expression of LINC01554 inhibited HCC cell growth, colony formation in soft agar, foci formation, and tumor formation in nude mice. LINC01554 promoted the ubiquitin-mediated degradation of PKM2 and inhibited Akt/mTOR signaling pathway to abolish aerobic glycolysis in HCC cells. Further study found that LINC01554-knockout could effectively reverse the tumor-suppressive effect of LINC01554. Conclusions: Our results identify LINC01554 as a novel tumor suppressor in HCC and unravel its underlying molecular mechanism in reprogramming cellular glucose metabolism. LINC01554 could possibly serve as a novel prognostic biomarker and provide the rationale for HCC therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA