Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860707

RESUMO

WRKY transcription factors, one of the largest transcription factor families, play important roles in regulating the synthesis of secondary metabolites. In sweet osmanthus (Osmanthus fragrans), the monoterpenes have been demonstrated as the most important volatile compounds, and the W-box, which is the cognate binding site of WRKY transcription factors could be identified in most of terpene synthesis related genes' promoters. However, the role of the WRKY family in terpene synthesis in sweet osmanthus has rarely been examined. In this study, 154 WRKY genes with conserved WRKY domain were identified and classified into three groups. The group II was further divided into five subgroups and almost all members of IId contained a plant zinc cluster domain. Eight OfWRKYs (OfWRKY7/19/36/38/42/84/95/139) were screened from 20 OfWRKYs for their flower-specific expression patterns in different tissues. Simultaneously, the expression patterns of OfWRKYs and emission patterns of volatile compounds during the flowering process were determined and GC-MS results showed that monoterpenes, such as linalool and ocimene, accounted for the highest proportion, contributing to the floral scent of sweet osmanthus in two cultivars. In addition, correlation analysis revealed the expression patterns of OfWRKYs (OfWRKY7/19/36/139) were each correlated with distinct monoterpenes (linalool, linalool derivatives, ocimene, and ocimene derivatives). Subcellular localization analysis showed that p35S::GFP-OfWRKY7/38/95/139 were localized in the nucleus and OfWRKY139 had very strong transactivation activity. Collectively, the results indicated potential roles of OfWRKY139 and OfWRKYs with plant zinc cluster domain in regulating synthesis of aromatic compounds in sweet osmanthus, laying the foundation for use of OfWRKYs to improve aroma of ornamental plants.

2.
Chem Res Toxicol ; 32(12): 2398-2410, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31682107

RESUMO

Mineral wool products, composed of stone wool fibers and organic binder, are used in many construction applications. Among all their beneficial properties, the most important requirement is safety for human health, such as when fibers are inhaled. For determining long-term toxicity, biosolubility and biopersistence studies in vitro and in vivo are essential. In vitro fiber dissolution rate, which depends on the medium, fiber composition, and the surface available for dissolution, is a key parameter in determining biopersistence of the material in vivo. We investigated how organic binder (phenol-urea-formaldehyde), which can partially shield fiber surfaces from the solution, influences fiber dissolution kinetics in synthetic lung fluid (modified Gamble's solution) at pH 4.5 and temperature 37 °C, in vitro. Dissolution experiments were made in batch and continuous flow using stone wool fibers with typical insulation product binder amounts (0-6 wt %), applied by the standard industrial process. Dissolution rates were determined from element concentrations in the reacted solution, and changes in fiber surface composition and morphology were monitored. Stone wool fiber dissolution was close to stoichiometric and was similar, whether or not the material contained binder. The high dissolution rate (508 ng of fiber/cm2/h) is explained by Al and Fe complexing agents, that is, citrate and tartrate, in the synthetic lung fluid. The organic binder mainly forms micrometer-sized discrete droplets on the fiber surfaces rather than a homogeneous thick coating. During in vitro tests, fibers with organic binder preferentially dissolved in the areas free of binder, forming cavities, whereas the untreated fibers dissolved homogeneously. Propagation of cavities undermined the binder droplets, leading to complete fiber dissolution. Thus, presence of organic binder on stone wool fibers, produced by the standard industrial process, had no measurable effect on dissolution rate in synthetic lung fluid containing Al and Fe complexing agents.

3.
PLoS One ; 14(11): e0225451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31747430

RESUMO

Clerodendrum trichotomum, a member of the Lamiaceae (Verbenaceae) family, is an ornamental plant widely distributed in South Asia. Previous studies have focused primarily on its growth characteristics, stress resistance, and pharmacological applications; however, molecular investigations remain limited. Considering germplasm conservation and the extensive applications of this plant, it is necessary to explore transcriptome resources and SSR makers for C. trichotomum. In the present study, RNA sequencing was used to determine the transcriptome of C. trichotomum. Subsequently, unigene annotations and classifications were obtained, and SSRs were mined with MIcroSAtellite. Finally, primer pairs designed with Oligo 6.0 were selected for polymorphism validation. In total, 127,325,666 high-quality reads were obtained, and 58,345 non-redundant unigenes were generated, of which 36,900 (63.24%) were annotated. Among the annotated unigenes, 35,980 (97.51%) had significant similarity to 607 species in Nr databases. In addition, a total of 6,444 SSRs were identified in 5,530 unigenes, and 200 random primer pairs were designed for polymorphism validation. Furthermore, after primary polymorphism identification, 30 polymorphic primer pairs were selected for the further polymorphism screening, and 200 alleles were identified, 197 of which showed polymorphism. In this work, a large number of unigenes were generated, and numerous SSRs were detected. These findings should be beneficial for further investigations into germplasm conservation and various applications of C. trichotomum. These results should also provide a solid foundation for future molecular biology studies in C. trichotomum.

4.
Plants (Basel) ; 8(10)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627411

RESUMO

Lycoris, which is known as the 'Chinese tulip,' has diverse flower colors and shapes, and some species have a delicate fragrance. However, limited studies have reported the volatile organic compounds (VOCs) of Lycoris. In this study, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was used to analyze the floral VOCs of six typical Lycoris taxa. Thirty-two VOCs were identified, including terpenoids, alcohols, esters, aldehydes, ketones, and phenols. The aldehyde and terpenoid contents in Lycoris aurea were higher than in the other taxa, and the ester and alcohol contents in L. sprengeri were the highest compared to all taxa tested. Compared with other species and cultivars, L. longituba and L. longituba var. flava were the two most scented taxa and the VOCs were dominated by terpenoids and esters. L. radiate and L. chinensis were two unscented taxa and, accordingly, the VOC content was weak. A partial least squares discriminate analysis of the floral VOCs among the six Lycoris taxa showed that the six taxa could be successfully separated. Moreover, the VOCs of L. longituba and L. longituba var. flava clustered together. ß-Ocimene was verified as the most important aroma compound, as determined via the calculation of the variable importance in projection values and significance analysis. ß-Ocimene and its trans isomer, trans-ß-ocimene, had a high relative content in L. longituba, L. longituba var. flava, L. aurea, and L. chinensis but were not detected in L. sprengeri and L. radiata. These results indicate that floral VOCs might be selected during the evolutional processes of Lycoris, and ß-ocimene could be the most typical VOC among the different Lycoris taxa.

5.
Nanomaterials (Basel) ; 9(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554232

RESUMO

Surfactant-templated 5 mol% Al2O3-doped silica membranes nanofiltration membranes were synthesized via the sol-gel method, and afterward, were optimized, and tested with respect to the permeability and rejection rate. The disordered silica network was stabilized by doping 5 mol% alumina. Tetraethyl orthosilicate and aluminum isopropoxide were used as the silica and alumina precursors, respectively. Cetyltrimethylammonium bromide (CTAB) was used not only as a pore-forming agent, but also to control the reaction rate of the aluminum isopropoxide, thus obtaining highly homogeneous materials. The results about filtration of model solutions showed that the optimized membranes are featured by both a relatively high water permeability (1.1-2.3 L·m-2·h-1 ·bar-1) and a high rejection for salts (74% for NaCl, and >95% for MgSO4 and Na2SO4) and organic pollutants (e.g., about 98% for caffeine). High rejection of divalent ions and organic molecules was also observed when a real wastewater effluent was filtered. The influence of the synthesis conditions on the membrane performance is discussed.

6.
Adv Sci (Weinh) ; 6(18): 1901281, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31559141

RESUMO

Oxide glasses are one of the most important engineering and functional material families owing to their unique features, such as tailorable physical properties. However, at the same time intrinsic brittleness has been their main drawback, which severely restricts many applications. Despite much progress, a breakthrough in developing ultra-damage-resistant and ductile oxide glasses still needs to be made. Here, a critical advancement toward such oxide glasses is presented. In detail, a bulk oxide glass with a record-high crack resistance is obtained by subjecting a caesium aluminoborate glass to surface aging under humid conditions, enabling it to sustain sharp contact deformations under loads of ≈500 N without forming any strength-limiting cracks. This ultra-high crack resistance exceeds that of the annealed oxide glasses by more than one order of magnitude, making this glass micro-ductile. In addition, a remarkable indentation behavior, i.e., a time-dependent shrinkage of the indent cavity, is demonstrated. Based on structural analyses, a molecular-scale deformation model to account for both the ultra-high crack resistance and the time-dependent shrinkage in the studied glass is proposed.

7.
ACS Omega ; 4(7): 12081-12087, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460321

RESUMO

Metal-organic framework (MOF) glasses are a newly discovered family of melt-quenched glasses. Despite considerable progress in understanding the nature of MOF glasses, their photonic functionalities have not been found so far. Here, we report on the first breakthrough regarding the photonic functionalities of MOF glasses, that is, finding of the luminescence in melt-quenched MOF glasses. The finding was achieved on a zeolitic imidazolate framework (ZIF) series, that is, the ZIF-62 series: Zn1-x Co x (Im)1.7(bIm)0.3, x = 0, 0.1, and 0.5, where Co substitutes Zn in ZIF-62 forming single-phased solid solutions. Remarkably, we observed broadband mid-infrared (Mid-IR) luminescence (in the wavelength range of 1.5-4.8 µm) in both the crystalline and amorphous solid solutions. The intensity of the luminescence in ZIF glass is gradually enhanced by increasing the level of Co concentration. The observed Mid-IR emission originates from d-d transition of Co ions. The discovery of the luminescence in ZIF-62 glass may pave the way toward new photonic applications of bulk MOF glasses.

8.
Plants (Basel) ; 8(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277246

RESUMO

Jasmonate ZIM-domain (JAZ) family proteins are the key repressors in the jasmonate signaling pathway and play crucial roles in plant development, defenses, and responses to stresses. However, our knowledge about the JAZ protein family in petunia is limited. This research respectively identified 12 and 16 JAZ proteins in two Petunia progenitors, Petunia axillaris and Petunia inflata. Phylogenetic analysis showed that the 28 proteins could be divided into four groups (Groups A-D) and further classified into six subgroups (A1, A2, B1, B3, C, and D1); members in the same subgroup shared some similarities in motif composition and sequence structure. The Ka/Ks ratios of seven paralogous pairs were less than one, suggesting the petunia JAZ family might have principally undergone purifying selection. Quantitative real-time PCR (qRT-PCR) analysis revealed that PaJAZ genes presented differential expression patterns during the development of flower bud and anther in petunia, and the expression of PaJAZ5, 9, 12 genes was generally up-regulated after MeJA treatment. Subcellular localization assays demonstrated that proteins PaJAZ5, 9, 12 were localized in nucleus. Yeast two hybrid (Y2H) elucidated most PaJAZ proteins (PaJAZ1-7, 9, 12) might interact with transcription factor MYC2. This study provides insights for further investigation of functional analysis in petunia JAZ family proteins.

9.
Nanomaterials (Basel) ; 9(7)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261941

RESUMO

Hetero-photocatalytic graphene-TiO2 materials have, in the literature, been found to possess better photocatalytic activity for environmental applications compared to pure TiO2. These types of materials can be prepared in different ways; however, their photocatalytic performance and quality are not easily controlled and reproduced. Therefore, we synthetized graphene oxide-TiO2 nanoparticles by sol-gel reaction from TiCl4, as precursor, with two different methods of synthesis and with a graphene oxide (GO) loading ranging from 0 to 1.0. This approach led to a good adhesion of GO to TiO2 through the Ti-O-C bonding, which could enhance the photocatalytic performances of the materials. Overall, 0.05 wt % GO loading gave the highest rate in the photodegradation of phenol under visible light, while higher GO loadings had a negative impact on the photocatalytic performances of the composites. The 0.05 wt % GO-TiO2 composite material was confirmed to be a promising photocatalyst for water pollutant abatement. The designed synthetic approach could easily be implemented in large-scale production of the GO-TiO2 coupling materials.

10.
Chem Rev ; 119(13): 7848-7939, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31120738

RESUMO

Differential scanning calorimetry (DSC) is a powerful tool to address some of the most challenging issues in glass science and technology, such as the nonequilibrium nature of the glassy state and the detailed thermodynamics and kinetics of glass-forming systems during glass transition, relaxation, rejuvenation, polyamorphic transition, and crystallization. The utility of the DSC technique spans across all glass-forming chemistries, including oxide, chalcogenide, metallic, and organic systems, as well as recently discovered metal-organic framework glass-forming systems. Here we present a comprehensive review of the many applications of DSC in glass science with focus on glass transition, relaxation, polyamorphism, and crystallization phenomena. We also emphasize recent advances in DSC characterization technology, including flash DSC and temperature-modulated DSC. This review demonstrates how DSC studies have led to a multitude of relevant advances in the understanding of glass physics, chemistry, and even technology.

12.
Opt Lett ; 44(7): 1623-1625, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933106

RESUMO

Metal-organic framework (MOF) glasses are characterized by the possession of both inorganic and organic components, linked in a continuous network structure by coordination bonds. To the best of our knowledge, the optical properties of MOF glasses have not been reported until now. In this work, we prepared a transparent bubble-free bulk MOF glass, namely, the ZIF-62 glass (ZnIm2-xbImx), using our newly developed hot-pressing technique, and measured its optical properties. The ZIF-62 glass has a high transmittance (up to 90%) in the visible and near-infrared wavelength ranges, which is comparable to that of many oxide glasses. Using the Becke line nD method, we found that the ZIF-62 glass exhibits a refractive index (1.56) similar to most inorganic glasses, though a lower Abbe number (∼31).

13.
Plants (Basel) ; 8(3)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823447

RESUMO

Lycoris longituba, belonging to the Amaryllidaceae family, is a perennial bulb bearing flowers with diverse colors and fragrance. Selection of cultivars with excellent colored and scented flowers has always been the breeding aim for ornamental plants. However, the molecular mechanisms underlying color fading and aroma production during flower expansion in L. longituba remain unclear. Therefore, to systematically investigate these important biological phenomena, the tepals of L. longituba from different developmental stages were used to screen and analyze the metabolic components and relevant genes. Utilizing the Illumina platform, a total of 144,922 unigenes were obtained from the RNA-Seq libraries. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the phenylpropanoid biosynthesis and flavonoid biosynthesis pathways might play important roles during color and aroma changes. Metabolomic analysis identified 29 volatile organic components (VOCs) from different developmental stages of L. longituba tepals, and orthogonal partial least-squares discriminate analysis (OPLS-DA) revealed that trans-ß-ocimene-a terpene-was the most important aroma compound. Meanwhile, we found the content of anthocyanin was significantly reduced during the tepal color fading process. Then, we identified two dihydroflavonol-4-reductase (DFR) and three terpene synthase (TPS) genes, for which expression changes coincided with the production patterns of anthocyanins and trans-ß-ocimene, respectively. Furthermore, a number of MYB and bHLH transcription factors (TFs) which might be involved in color- and aroma-formation were also identified in L. longituba tepal transcriptomes. Taken together, this is the first comprehensive report of the color and fragrance in tepals of L. longituba and these results could be helpful in understanding these characteristics and their regulation networks.

14.
Chem Commun (Camb) ; 55(17): 2521-2524, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30742158

RESUMO

A pronounced enthalpy release occurs around 1.38Tg in the prototypical metal-organic framework glass formed from ZIF-4 [Zn(C3H3N2)2], but there is no sign for any crystallization (i.e., long-range ordering) taking place. The enthalpy release peak is attributed to pore collapse and structural densification.

15.
Hortic Res ; 5: 72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479779

RESUMO

Sweet osmanthus (Osmanthus fragrans) is a very popular ornamental tree species throughout Southeast Asia and USA particularly for its extremely fragrant aroma. We constructed a chromosome-level reference genome of O. fragrans to assist in studies of the evolution, genetic diversity, and molecular mechanism of aroma development. A total of over 118 Gb of polished reads was produced from HiSeq (45.1 Gb) and PacBio Sequel (73.35 Gb), giving 100× depth coverage for long reads. The combination of Illumina-short reads, PacBio-long reads, and Hi-C data produced the final chromosome quality genome of O. fragrans with a genome size of 727 Mb and a heterozygosity of 1.45 %. The genome was annotated using de novo and homology comparison and further refined with transcriptome data. The genome of O. fragrans was predicted to have 45,542 genes, of which 95.68 % were functionally annotated. Genome annotation found 49.35 % as the repetitive sequences, with long terminal repeats (LTR) being the richest (28.94 %). Genome evolution analysis indicated the evidence of whole-genome duplication 15 million years ago, which contributed to the current content of 45,242 genes. Metabolic analysis revealed that linalool, a monoterpene is the main aroma compound. Based on the genome and transcriptome, we further demonstrated the direct connection between terpene synthases (TPSs) and the rich aromatic molecules in O. fragrans. We identified three new flower-specific TPS genes, of which the expression coincided with the production of linalool. Our results suggest that the high number of TPS genes and the flower tissue- and stage-specific TPS genes expressions might drive the strong unique aroma production of O. fragrans.

16.
Nat Commun ; 9(1): 5042, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487589

RESUMO

To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In contrast, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently and reversibly porous toward incoming gases, without post-synthetic treatment. We characterize the structure of these glasses using a range of experimental techniques, and demonstrate pores in the range of 4 - 8 Å. The discovery of MOF glasses with permanent accessible porosity reveals a new category of porous glass materials that are elevated beyond conventional inorganic and organic porous glasses by their diversity and tunability.

17.
Nat Commun ; 9(1): 4402, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337537

RESUMO

The original version of this Article contained an error in Figure 1b, where the blue '(ZIF-4-Zn)0.5 (ZIF-62)0.5 blend' data curve was omitted from the enthalpy response plot. This has now been corrected in both the PDF and HTML versions of the Article.

18.
Phys Chem Chem Phys ; 20(27): 18291-18296, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29961789

RESUMO

In this work, we explore the thermodynamic evolution in a melt-quenched metal-organic framework glass, formed from ZIF-62 upon heating to the melting point (Tm), and subsequent enthalpy relaxation. The temperature dependence of the difference in Gibbs free energy between the liquid and crystal states of ZIF-62 in the temperature range from the glass transition temperature (Tg) to Tm is found to be weaker than those of other types of glasses, e.g., metallic glasses. Additionally, we find that the stretched exponent of the enthalpy relaxation function in the glass varies significantly (ß = 0.44-0.76) upon changing the extent of sub-Tg annealing, compared to metallic and oxide glasses with similar Tgs, suggesting a high degree of structural heterogeneity. Pair distribution function results suggest no significant structural changes during the sub-Tg relaxation in ZIF-62 glass.

19.
Molecules ; 23(7)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004428

RESUMO

Osmanthus fragrans, or "RiXiangGui", is an ornamental, woody, evergreen plant that is cultivated widely because it blooms recurrently and emits a strong fragrance. Recently, the germplasm resources, classification, and aroma compositions of O. fragrans have been investigated. However, the molecular mechanisms of the floral scent formation and regulation have remained largely unknown. To obtain a global perspective on the molecular mechanism of the aroma formation during blooming, nine RNA Sequencing (RNA-Seq) libraries were constructed from three flowering stages: The initial, full, and final flowering stage. In short, a total of 523,961,310 high-quality clean reads were assembled into 136,611unigenes, with an average sequence length of 792 bp. About 47.43% of the unigenes (64,795) could be annotated in the NCBI non-redundant protein database. A number of candidate genes were identified in the terpenoid metabolic pathways and 1327 transcription factors (TFs), which showed differential expression patterns among the floral scent formation stages, were also identified, especially OfMYB1, OfMYB6, OfWRKY1, and OfWRKY3, which could play critical roles in the floral scent formation. These results indicated that the floral scent formation of O. fragrans was a very complex process which involved a large number of TFs. This study provides reliable resources for further studies of the O.fragrans floral scent formation.


Assuntos
Oleaceae/genética , Transcriptoma/genética , Flores/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Fatores de Transcrição/genética
20.
Phys Chem Chem Phys ; 20(23): 15707-15717, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29850688

RESUMO

We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA