Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Mov Disord ; 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31483900

RESUMO

While current effective therapies are available for the symptomatic control of PD, treatments to halt the progressive neurodegeneration still do not exist. Loss of dopamine neurons in the SNc and dopamine terminals in the striatum drive the motor features of PD. Multiple lines of research point to several pathways which may contribute to dopaminergic neurodegeneration. These pathways include extensive axonal arborization, mitochondrial dysfunction, dopamine's biochemical properties, abnormal protein accumulation of α-synuclein, defective autophagy and lysosomal degradation, and synaptic impairment. Thus, understanding the essential features and mechanisms of dopaminergic neuronal vulnerability is a major scientific challenge and highlights an outstanding need for fostering effective therapies against neurodegeneration in PD. This article, which arose from the Movement Disorders 2018 Conference, discusses and reviews the possible mechanisms underlying neuronal vulnerability and potential therapeutic approaches in PD. © 2019 International Parkinson and Movement Disorder Society.

2.
Autophagy ; : 1-15, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362587

RESUMO

Macroautophagy (autophagy) is a key catabolic pathway for the maintenance of proteostasis through constant digestion of selective cargoes. The selectivity of autophagy is mediated by autophagy receptors that recognize and recruit cargoes to autophagosomes. SQSTM1/p62 is a prototype autophagy receptor, which is commonly found in protein aggregates associated with major neurodegenerative diseases. While accumulation of SQSTM1 implicates a disturbance of selective autophagy pathway, the pathogenic mechanism that contributes to impaired autophagy degradation remains poorly characterized. Herein we show that amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD)-linked mutations of TBK1 and SQSTM1 disrupt selective autophagy and cause neurotoxicity. Our data demonstrates that proteotoxic stress activates serine/threonine kinase TBK1, which coordinates with autophagy kinase ULK1 to promote concerted phosphorylation of autophagy receptor SQSTM1 at the UBA domain and activation of selective autophagy. In contrast, ALS-FTLD-linked mutations of TBK1 or SQSTM1 reduce SQSTM1 phosphorylation and compromise ubiquitinated cargo binding and clearance. Moreover, disease mutation SQSTM1G427R abolishes phosphorylation of Ser351 and impairs KEAP1-SQSTM1 interaction, thus diminishing NFE2L2/Nrf2-targeted gene expression and increasing TARDBP/TDP-43 associated stress granule formation under oxidative stress. Furthermore, expression of SQSTM1G427R in neurons impairs dendrite morphology and KEAP1-NFE2L2 signaling. Therefore, our results reveal a mechanism whereby pathogenic SQSTM1 mutants inhibit selective autophagy and disrupt NFE2L2 anti-oxidative stress response underlying the neurotoxicity in ALS-FTLD. Abbreviations: ALS: amyotrophic lateral sclerosis; FTLD: frontotemporal lobar degeneration; G3BP1: GTPase-activating protein (SH3 domain) binding protein 1; GSTM1: glutathione S-transferase, mu 1; HMOX/HO-1: Heme oxygenase 1; IP: immunoprecipitation; KEAP1: kelch-like ECH associated protein 1; KI: kinase inactive; KIR: KEAP1 interaction region; KO: knockout; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MBP: maltose binding protein; NBR1: NBR1, autophagy cargo receptor; NFE2L2/Nrf2: nuclear factor, erythroid derived 2, like 2; NQO1: NAD(P)H quinone dehydrogenase 1; SQSTM1/p62: sequestosome 1; SOD1: superoxide dismutase 1, soluble; S.S.: serum starvation; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; UBA: ubiquitin association; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type.

3.
Haematologica ; 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31399521

RESUMO

Autophagy is a genetically regulated process of adaptation to metabolic stress and was recently shown to be involved in the treatment response of chronic myeloid leukemia. However, in vivo data are limited and the molecular mechanism of autophagy regulators in the process of leukemogenesis is not completely understood. Here we show that Beclin-1 knockdown, but not Atg5 deletion in a murine chronic myeloid leukemia model leads to a reduced leukemic burden and results in a significantly prolonged median survival of targeted mice. Further analyses of murine cell lines and primary patient material indicate that active BCR-ABL directly interacts with Beclin-1 and phosphorylates its tyrosine residues 233 and 352, resulting in autophagy suppression. By using phosphorylation-deficient and phosphorylation-mimic mutants, we identify BCR-ABL induced Beclin-1 phosphorylation as a crucial mechanism for Beclin-1 complex formation: Interaction analyses exhibit diminished binding of the positive autophagy regulators UVRAG, VPS15, ATG14 and VPS34 and enhanced binding of the negative regulator Rubicon to BCR-ABL-phosphorylated Beclin-1. Taken together, our findings show interaction of BCR-ABL and Beclin-1 thereby highlighting the importance of Beclin-1-mediated autophagy in BCR-ABL+ cells.

4.
J Exp Med ; 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350310

RESUMO

Microglia, the brain resident macrophages, critically shape forebrain neuronal circuits. However, their precise function in the cerebellum is unknown. Here we show that human and mouse cerebellar microglia express a unique molecular program distinct from forebrain microglia. Cerebellar microglial identity was driven by the CSF-1R ligand CSF-1, independently of the alternate CSF-1R ligand, IL-34. Accordingly, CSF-1 depletion from Nestin+ cells led to severe depletion and transcriptional alterations of cerebellar microglia, while microglia in the forebrain remained intact. Strikingly, CSF-1 deficiency and alteration of cerebellar microglia were associated with reduced Purkinje cells, altered neuronal function, and defects in motor learning and social novelty interactions. These findings reveal a novel CSF-1-CSF-1R signaling-mediated mechanism that contributes to motor function and social behavior.

5.
Cell Res ; 29(4): 313-329, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30858560

RESUMO

Missense mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) cause the majority of familial and some sporadic forms of Parkinson's disease (PD). The hyperactivity of LRRK2 kinase induced by the pathogenic mutations underlies neurotoxicity, promoting the development of LRRK2 kinase inhibitors as therapeutics. Many potent and specific small-molecule LRRK2 inhibitors have been reported with promise. However, nearly all inhibitors are ATP competitive-some with unwanted side effects and unclear clinical outcome-alternative types of LRRK2 inhibitors are lacking. Herein we identify 5'-deoxyadenosylcobalamin (AdoCbl), a physiological form of the essential micronutrient vitamin B12 as a mixed-type allosteric inhibitor of LRRK2 kinase activity. Multiple assays show that AdoCbl directly binds LRRK2, leading to the alterations of protein conformation and ATP binding in LRRK2. STD-NMR analysis of a LRRK2 homologous kinase reveals the contact sites in AdoCbl that interface with the kinase domain. Furthermore, we provide evidence that AdoCbl modulates LRRK2 activity through disrupting LRRK2 dimerization. Treatment with AdoCbl inhibits LRRK2 kinase activity in cultured cells and brain tissue, and prevents neurotoxicity in cultured primary rodent neurons as well as in transgenic C. elegans and D. melanogaster expressing LRRK2 disease variants. Finally, AdoCbl alleviates deficits in dopamine release sustainability caused by LRRK2 disease variants in mouse models. Our study uncovers vitamin B12 as a novel class of LRRK2 kinase modulator with a distinct mechanism, which can be harnessed to develop new LRRK2-based PD therapeutics in the future.

7.
FASEB J ; 33(4): 4947-4961, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30653356

RESUMO

Angiogenesis is a crucial defense response to hypoxia that regulates the process of raising the promise of long-term neurologic recovery during the management of stroke. A high expression of antiangiogenic factors leads to the loss of neovascularization capacity in pathologic conditions. We have previously documented an impairment of the cerebral vessel perfusion and neovascularization in the cortex neighboring the stroke-induced lesion, which was accompanied by an activation of semaphorin 3E (Sema3E)/PlexinD1 after ischemic stroke. In this study, we employed micro-optical sectioning tomography to fully investigate the details of the vascular pattern, including the capillaries. We found that after transient middle cerebral artery occlusion, inhibiting PlexinD1 signaling led to an organized recovery of the vascular network in the ischemic area. We then further explored the possible mechanisms. In vivo, Sema3E substantially decreased dynamic delta-like 4 (DLL4) expression. In cultured brain microvascular endothelial cells, Sema3E down-regulated DLL4 expression via inhibiting Ras-related C3 botulinum toxin substrate 1-induced JNK phosphorylation. At the microcosmic level, Sema3E/PlexinD1 signaling promoted F-actin disassembly and focal adhesion reduction by activating the small guanosine triphosphatase Ras homolog family member J by releasing RhoGEF Tuba from direct binding to PlexinD1, thus mediating endothelial cell motility and filopodia retraction. Our study reveals that Sema3E/PlexinD1 signaling, which suppressed endothelial DLL4 expression, cell motility, and filopodia formation, is expected to be a novel druggable target for angiogenesis during poststroke progression.-Zhou, Y.-F., Chen, A.-Q., Wu, J.-H., Mao, L., Xia, Y.-P., Jin, H.-J., He, Q.-W., Miao, Q. R., Yue, Z.-Y., Liu, X.-L., Huang, M., Li, Y.-N., Hu, B. Sema3E/PlexinD1 signaling inhibits postischemic angiogenesis by regulating endothelial DLL4 and filopodia formation in a rat model of ischemic stroke.

8.
ACS Chem Neurosci ; 10(2): 973-990, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30590011

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. With the advent of an aging population and improving life expectancy worldwide, the number of PD patients is expected to increase, which may lead to an urgent need for effective preventive and diagnostic strategies for PD. Although there is increasing research regarding the pathogenesis of PD, there is limited knowledge regarding the prevention of PD. Moreover, the diagnosis of PD depends on clinical criteria, which require the occurrence of bradykinesia and at least one symptom of rest tremor or rigidity. However, converging evidence from clinical, genetic, neuropathological, and imaging studies suggests the initiation of PD-specific pathology prior to the initial presentation of these classical motor clinical features by years or decades. This latent stage of neurodegeneration in PD is a particularly important stage for effective neuroprotective therapies, which might retard the progression or prevent the onset of PD. Therefore, the exploration of risk factors and premotor biomarkers is not only crucial to the early diagnosis of PD but is also helpful in the development of effective neuroprotection and health care strategies for appropriate populations at risk for PD. In this review, we searched and summarized ∼249 researches and 31 reviews focusing on the risk factors and prodromal biomarkers of PD and published in MEDLINE.

9.
Nat Commun ; 9(1): 4962, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470740

RESUMO

Activation of the Hippo pathway effector Yap underlies many liver cancers, however no germline or somatic mutations have been identified. Autophagy maintains essential metabolic functions of the liver, and autophagy-deficient murine models develop benign adenomas and hepatomegaly, which have been attributed to activation of the p62/Sqstm1-Nrf2 axis. Here, we show that Yap is an autophagy substrate and mediator of tissue remodeling and hepatocarcinogenesis independent of the p62/Sqstm1-Nrf2 axis. Hepatocyte-specific deletion of Atg7 promotes liver size, fibrosis, progenitor cell expansion, and hepatocarcinogenesis, which is rescued by concurrent deletion of Yap. Our results shed new light on mechanisms of Yap degradation and the sequence of events that follow disruption of autophagy, which is impaired in chronic liver disease.

10.
Brief Bioinform ; 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30379998

RESUMO

While recently emergent driver mutation data sets are available for developing computational methods to predict cancer mutation effects, benchmark sets focusing on passenger mutations are largely missing. Here, we developed a comprehensive literature-based database of Cancer Passenger Mutations (dbCPM), which contains 941 experimentally supported and 978 putative passenger mutations derived from a manual curation of the literature. Using the missense mutation data, the largest group in the dbCPM, we explored patterns of missense passenger mutations by comparing them with the missense driver mutations and assessed the performance of four cancer-focused mutation effect predictors. We found that the missense passenger mutations showed significant differences with drivers at multiple levels, and several appeared in both the passenger and driver categories, showing pleiotropic functions depending on the tumor context. Although all the predictors displayed good true positive rates, their true negative rates were relatively low due to the lack of negative training samples with experimental evidence, which suggests that a suitable negative data set for developing a more robust methodology is needed. We hope that the dbCPM will be a benchmark data set for improving and evaluating prediction algorithms and serve as a valuable resource for the cancer research community. dbCPM is freely available online at http://bioinfo.ahu.edu.cn:8080/dbCPM.

11.
Proc Natl Acad Sci U S A ; 115(45): 11567-11572, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348779

RESUMO

Whole-exome sequencing has been successful in identifying genetic factors contributing to familial or sporadic Parkinson's disease (PD). However, this approach has not been applied to explore the impact of de novo mutations on PD pathogenesis. Here, we sequenced the exomes of 39 early onset patients, their parents, and 20 unaffected siblings to investigate the effects of de novo mutations on PD. We identified 12 genes with de novo mutations (MAD1L1, NUP98, PPP2CB, PKMYT1, TRIM24, CEP131, CTTNBP2, NUS1, SMPD3, MGRN1, IFI35, and RUSC2), which could be functionally relevant to PD pathogenesis. Further analyses of two independent case-control cohorts (1,852 patients and 1,565 controls in one cohort and 3,237 patients and 2,858 controls in the other) revealed that NUS1 harbors significantly more rare nonsynonymous variants (P = 1.01E-5, odds ratio = 11.3) in PD patients than in controls. Functional studies in Drosophila demonstrated that the loss of NUS1 could reduce the climbing ability, dopamine level, and number of dopaminergic neurons in 30-day-old flies and could induce apoptosis in fly brain. Together, our data suggest that de novo mutations could contribute to early onset PD pathogenesis and identify NUS1 as a candidate gene for PD.

12.
Brief Bioinform ; 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30016397

RESUMO

While recent advances in next-generation sequencing technologies have enabled the creation of a multitude of databases in cancer genomic research, there is no comprehensive database focusing on the annotation of driver indels (insertions and deletions) yet. Therefore, we have developed the database of Cancer driver InDels (dbCID), which is a collection of known coding indels that likely to be engaged in cancer development, progression or therapy. dbCID contains experimentally supported and putative driver indels derived from manual curation of literature and is freely available online at http://bioinfo.ahu.edu.cn: 8080/dbCID. Using the data deposited in dbCID, we summarized features of driver indels in four levels (gene, DNA, transcript and protein) through comparing with putative neutral indels. We found that most of the genes containing driver indels in dbCID are known cancer genes playing a role in tumorigenesis. Contrary to the expectation, the sequences affected by driver frameshift indels are not larger than those by neutral ones. In addition, the frameshift and inframe driver indels prefer to disrupt high-conservative regions both in DNA sequences and protein domains. Finally, we developed a computational method for discriminating cancer driver from neutral frameshift indels based on the deposited data in dbCID. The proposed method outperformed other widely used non-cancer-specific predictors on an external test set, which demonstrated the usefulness of the data deposited in dbCID. We hope dbCID will be a benchmark for improving and evaluating prediction algorithms, and the characteristics summarized here may assist with investigating the mechanism of indel-cancer association.

13.
Neurobiol Aging ; 70: 102-116, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30007159

RESUMO

Brain tissue survival and functional recovery after ischemic stroke greatly depend on cerebral vessel perfusion and functional collateral circulation in the ischemic area. Semaphorin 3E (Sema3E), one of the class 3 secreted semaphorins, has been demonstrated to be a critical regulator in embryonic and postnatal vascular formation via binding to its receptor PlexinD1. However, whether Sema3E/PlexinD1 signaling is involved in poststroke neovascularization remains unknown. To determine the contribution of Sema3E/PlexinD1 signaling to poststroke recovery, aged rats (18 months) were subjected to a transient middle cerebral artery occlusion. We found that depletion of Sema3E/PlexinD1 signaling with lentivirus-mediated PlexinD1-specific-shRNA improves tissue survival and functional outcome. Sema3E/PlexinD1 inhibition not only increases cortical perfusion but also ameliorates blood-brain barrier damage, as determined by positron emission tomography and magnetic resonance imaging. Mechanistically, we demonstrated that Sema3E suppresses endothelial cell proliferation and angiogenic capacity. More importantly, Sema3E/PlexinD1 signaling inhibits recruitment of pericytes by decreasing production of platelet derived growth factor-BB in endothelial cells. Overall, our study revealed that inhibition of Sema3E/PlexinD1 signaling in the ischemic penumbra, which increases both endothelial angiogenic capacity and recruitment of pericytes, contributed to functional neovascularization and blood-brain barrier integrity in the aged rats. Our findings imply that Sema3E/PlexinD1 signaling is a novel therapeutic target for improving brain tissue survival and functional recovery after ischemic stroke.

14.
Proc Natl Acad Sci U S A ; 115(25): E5669-E5678, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866835

RESUMO

The Beclin 1-Vps34 complex, known as "mammalian class III PI3K," plays essential roles in membrane-mediated transport processes including autophagy and endosomal trafficking. Beclin 1 acts as a scaffolding molecule for the complex and readily transits from its metastable homodimeric state to interact with key modulators such as Atg14L or UVRAG and form functionally distinct Atg14L/UVRAG-containing Beclin 1-Vps34 subcomplexes. The Beclin 1-Atg14L/UVRAG interaction relies critically on their coiled-coil domains, but the molecular mechanism remains poorly understood. We determined the crystal structure of Beclin 1-UVRAG coiled-coil complex and identified a strengthened interface with both hydrophobic pairings and electrostatically complementary interactions. This structure explains why the Beclin 1-UVRAG interaction is more potent than the metastable Beclin 1 homodimer. Potent Beclin 1-UVRAG interaction is functionally significant because it renders UVRAG more competitive than Atg14L in Beclin 1 binding and is critical for promoting endolysosomal trafficking. UVRAG coiled-coil mutants with weakened Beclin 1 binding do not outcompete Atg14L and fail to promote endolysosomal degradation of the EGF receptor (EGFR). We designed all-hydrocarbon stapled peptides that specifically targeted the C-terminal part of the Beclin 1 coiled-coil domain to interfere with its homodimerization. One such peptide reduced Beclin 1 self-association, promoted Beclin 1-Atg14L/UVRAG interaction, increased autophagic flux, and enhanced EGFR degradation. Our results demonstrate that the targeting Beclin 1 coiled-coil domain with designed peptides to induce the redistribution of Beclin 1 among its self-associated form or Atg14L/UVRAG-containing complexes enhances both autophagy and endolysosomal trafficking.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Transporte Proteico/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/fisiologia , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Lisossomos/fisiologia , Domínios Proteicos/fisiologia
15.
Neurobiol Dis ; 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723605

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disorder that profoundly affects one's motor functions. The disease is characterized pathologically by denervation of dopaminergic (DAergic) nigrostriatal terminal and degeneration of DAergic neurons in the substantia nigra par compacta (SNpc); however, the precise molecular mechanism underlying disease pathogenesis remains poorly understood. Animal studies in both toxin-induced and genetic PD models suggest that presynaptic impairments may underlie the early stage of DA depletion and neurodegeneration (reviewed in Schirinzi, T., et al. 2016). Supporting this notion, human genetic studies and genomic analysis have identified an increasing number of PD risk variants that are associated with synaptic vesicle (SV) trafficking, regulation of synaptic function and autophagy/lysosomal system (Chang, D., et al. 2017, reviewed in Trinh, J. & Farrer, M. 2013; Singleton, A.B., et al. 2013). Although the precise mechanism for autophagy regulation in neurons is currently unclear, many studies demonstrate that autophagosomes form at the presynaptic terminal (Maday, S. & Holzbaur, E.L. 2014; Vanhauwaert, R., et al. 2017; reviewed in Yue, Z. 2007). Growing evidence has revealed overlapping genes involved in both SV recycling and autophagy, suggesting that the two membrane trafficking processes are inter-connected. Here we will review emergent evidence linking SV endocytic genes and autophagy genes at the presynaptic terminal. We will discuss their potential relevance to PD pathogenesis.

16.
Neurosci Lett ; 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29627340

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease characterized pathologically by the selective loss of dopaminergic neurons in the substantia nigra and the intracellular accumulation of α-synuclein in the Lewy bodies. While the pathogenic mechanisms of PD are poorly understood, many lines of evidence point to a role of altered autophagy and membrane trafficking in the development of the disease. Emerging studies show that connections between the deregulation of autophagy and synaptic vesicle (SV) trafficking may contribute to PD. Here we review the evidence that many PD related-genes have roles in both autophagy and SV trafficking and examine how deregulation of these pathways contributes to PD pathogenesis. This review also discusses recent studies aimed at uncovering the role of PD-linked genes in autophagy-lysosome function.

17.
Prog Neurobiol ; 163-164: 98-117, 2018 Apr - May.
Artigo em Inglês | MEDLINE | ID: mdl-29331396

RESUMO

Autophagy is a self-eating cellular catabolic pathway, through which long-lived proteins, damaged organelles and misfolded proteins are degraded and recycled for the maintenance of cellular homeostasis and normal cellular functions. Autophagy plays an important homeostatic role in the regulation of cell survival. Accumulating evidence shows that autophagy is activated in various cell types in the brain such as neurons, glia cells, and brain microvascular cells upon ischemic stroke. However, the exact role and molecular mechanisms of autophagy process that is implicated in ischemic stroke have yet to be elucidated. This review aims to provide a comprehensive view of the regulation of autophagy in neurons, glia cells, and brain microvascular cells in response to ischemia stress. We also review the recent advance on the understanding of the involvement of autophagy in the pathological process during cerebral ischemic preconditioning, perconditioning and postconditioning. We propose a crosstalk between autophagy, necroptosis, and apoptosis that contribute to ischemic stroke. In addition, we discuss the interactions between autophagy and oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress.

18.
Nat Commun ; 9(1): 81, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311685

RESUMO

Loss-of-function mutations in Parkin are the most common causes of autosomal recessive Parkinson's disease (PD). Many putative substrates of parkin have been reported; their pathogenic roles, however, remain obscure due to poor characterization, particularly in vivo. Here, we show that synaptotagmin-11, encoded by a PD-risk gene SYT11, is a physiological substrate of parkin and plays critical roles in mediating parkin-linked neurotoxicity. Unilateral overexpression of full-length, but not C2B-truncated, synaptotagmin-11 in the substantia nigra pars compacta (SNpc) impairs ipsilateral striatal dopamine release, causes late-onset degeneration of dopaminergic neurons, and induces progressive contralateral motor abnormalities. Mechanistically, synaptotagmin-11 impairs vesicle pool replenishment and thus dopamine release by inhibiting endocytosis. Furthermore, parkin deficiency induces synaptotagmin-11 accumulation and PD-like neurotoxicity in mouse models, which is reversed by SYT11 knockdown in the SNpc or knockout of SYT11 restricted to dopaminergic neurons. Thus, PD-like neurotoxicity induced by parkin dysfunction requires synaptotagmin-11 accumulation in SNpc dopaminergic neurons.


Assuntos
Doença de Parkinson/patologia , Sinaptotagminas/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Endocitose/fisiologia , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Nanopartículas , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Substância Negra/metabolismo , Substância Negra/patologia , Especificidade por Substrato , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
Sci Transl Med ; 10(423)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321258

RESUMO

Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.

20.
Trends Neurosci ; 41(2): 74-76, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29248177

RESUMO

Using induced human dopamine (DA) neurons, a study by Burbulla and colleagues demonstrated a toxic cascade of cellular dysfunctions which may underlie Parkinson's disease (PD) progression. Their findings reveal what could be the causal relationship between multiple pathogenic pathways in human neurons obtained from idiopathic and familial cases, and suggest novel targets for therapeutic intervention.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Progressão da Doença , Dopamina , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA