Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20270, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642375

RESUMO

We provide the first unbiased evidence for a higher-order topological Mott insulator in three dimensions by numerically exact quantum Monte Carlo simulations. This insulating phase is adiabatically connected to a third-order topological insulator in the noninteracting limit, which features gapless modes around the corners of the pyrochlore lattice and is characterized by a [Formula: see text] spin-Berry phase. The difference between the correlated and non-correlated topological phases is that in the former phase the gapless corner modes emerge only in spin excitations being Mott-like. We also show that the topological phase transition from the third-order topological Mott insulator to the usual Mott insulator occurs when the bulk spin gap solely closes.

2.
Phys Rev Lett ; 126(15): 157202, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929225

RESUMO

Employing unbiased large-scale time-dependent density-matrix renormalization-group simulations, we demonstrate the generation of a charge-current vortex via spin injection in the Rashba system. The spin current is polarized perpendicular to the system plane and injected from an attached antiferromagnetic spin chain. We discuss the conversion between spin and orbital angular momentum in the current vortex that occurs because of the conservation of the total angular momentum and the spin-orbit interaction. This is in contrast to the spin Hall effect, in which the angular-momentum conservation is violated. Finally, we predict the electromagnetic field that accompanies the vortex with regard to possible future experiments.

3.
Phys Rev E ; 102(3-1): 032130, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075949

RESUMO

We investigate the phase transition of the dodecahedron model on the square lattice. The model is a discrete analog of the classical Heisenberg model, which has continuous O(3) symmetry. In order to treat the large on-site degree of freedom q=20, we develop a massively parallelized numerical algorithm for the corner transfer matrix renormalization group method, incorporating EigenExa, the high-performance parallelized eigensolver. The scaling analysis with respect to the cutoff dimension reveals that there is a second-order phase transition at T_{c}^{}=0.4398(8) with the critical exponents ν=2.88(8) and ß=0.21(1). The central charge of the system is estimated as c=1.99(6).

4.
Phys Rev E ; 101(6-1): 062111, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688529

RESUMO

We investigate the Berezinskii-Kosterlitz-Thouless transitions for the square-lattice six-state clock model with the corner-transfer matrix renormalization group (CTMRG). Scaling analyses for effective correlation length, magnetization, and entanglement entropy with respect to the cutoff dimension m at the fixed point of the CTMRG provide transition temperatures consistent with a variety of recent numerical studies. We also reveal that the fixed-point spectrum of the corner-transfer matrix in the critical intermediate phase of the six-state clock model is characterized by the scaling dimension consistent with the c=1 boundary conformal field theory associated with the effective Z_{6} dual sine-Gordon model.

5.
Nat Commun ; 10(1): 3167, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320623

RESUMO

Unconventional superconductivity in molecular conductors is observed at the border of metal-insulator transitions in correlated electrons under the influence of geometrical frustration. The symmetry as well as the mechanism of the superconductivity (SC) is highly controversial. To address this issue, we theoretically explore the electronic properties of carrier-doped molecular Mott system κ-(BEDT-TTF)2X. We find significant electron-hole doping asymmetry in the phase diagram where antiferromagnetic (AF) spin order, different patterns of charge order, and SC compete with each other. Hole-doping stabilizes AF phase and promotes SC with dxy-wave symmetry, which has similarities with high-Tc cuprates. In contrast, in the electron-doped side, geometrical frustration destabilizes the AF phase and the enhanced charge correlation induces another SC with extended-s + [Formula: see text]wave symmetry. Our results disclose the mechanism of each phase appearing in filling-control molecular Mott systems, and elucidate how physics of different strongly-correlated electrons are connected, namely, molecular conductors and high-Tc cuprates.

6.
Nanoscale ; 11(23): 11305-11314, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31165851

RESUMO

Considering the recent breakthroughs in the synthesis of novel two-dimensional (2D) materials from layered bulk structures, ternary layered transition metal borides, known as MAB phases, have come under scrutiny as a means of obtaining novel 2D transition metal borides, the so-called MBenes. Here, based on a set of phonon calculations, we show the dynamic stability of many Al-containing MAB phases, MAlB (M = Ti, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc), M2AlB2 (Sc, Ti, Zr, Hf, V, Cr, Mo, W, Mn, Tc, Fe, Rh, Ni), M3Al2B2 (M = Sc, T, Zr, Hf, Cr, Mn, Tc, Fe, Ru, Ni), M3AlB4 (M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe), and M4AlB6 (M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo). By comparing the formation energies of these MAB phases with those of their available competing binary M-B and M-Al, and ternary M-Al-B phases, we find that some of the Sc-, Ti-, V-, Cr-, Mo-, W-, Mn-, Tc-, and Fe-based MAB phases could be favorably synthesized under appropriate experimental conditions. In addition, by examining the strengths of various bonds in MAB phases via crystal orbital Hamilton population and spring constant calculations, we find that the B-B and then M-B bonds are stiffer than the M-Al and Al-B bonds. The different strengths between these bonds imply the etching possibility of Al atoms from MAB phases, consequently forming various 2D MB, M2B3, and M3B4 MBenes. Furthermore, we employ the nudged elastic band method to investigate the possibility of the structural phase transformation of the 2D MB MBenes into graphene-like boron sheets sandwiched between transition metals and find that the energy barrier of the transformation is less than 0.4 eV per atom.

7.
Sci Adv ; 5(5): eaav7282, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31093527

RESUMO

A Mott insulator sometimes induces unconventional superconductivity in its neighbors when doped and/or pressurized. Because the phase diagram should be strongly related to the microscopic mechanism of the superconductivity, it is important to obtain the global phase diagram surrounding the Mott insulating state. However, the parameter available for controlling the ground state of most Mott insulating materials is one-dimensional owing to technical limitations. Here, we present a two-dimensional ground-state mapping for a Mott insulator using an organic field-effect device by simultaneously tuning the bandwidth and bandfilling. The observed phase diagram showed many unexpected features such as an abrupt first-order superconducting transition under electron doping, a recurrent insulating phase in the heavily electron-doped region, and a nearly constant superconducting transition temperature in a wide parameter range. These results are expected to contribute toward elucidating one of the standard solutions for the Mott-Hubbard model.

8.
Phys Rev Lett ; 122(7): 077002, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848621

RESUMO

By employing unbiased numerical methods, we show that pulse irradiation can induce unconventional superconductivity even in the Mott insulator of the Hubbard model. The superconductivity found here in the photoexcited state is due to the η-pairing mechanism, characterized by staggered pair-density-wave oscillations in the off-diagonal long-range correlation, and is absent in the ground-state phase diagram; i.e., it is induced neither by a change of the effective interaction of the Hubbard model nor by simple photocarrier doping. Because of the selection rule, we show that the nonlinear optical response is essential to increase the number of η pairs and thus enhance the superconducting correlation in the photoexcited state. Our finding demonstrates that nonequilibrium many-body dynamics is an alternative pathway to access a new exotic quantum state that is absent in the ground-state phase diagram, and also provides an alternative mechanism for enhancing superconductivity.

9.
Phys Rev Lett ; 121(6): 066402, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141665

RESUMO

The phase diagram of isotropically expanded graphene cannot be correctly predicted by ignoring either electron correlations, or mobile carbons, or the effect of applied stress, as was done so far. We calculate the ground state enthalpy (not just energy) of strained graphene by an accurate off-lattice quantum Monte Carlo correlated ansatz of great variational flexibility. Following undistorted semimetallic graphene at low strain, multideterminant Heitler-London correlations stabilize between ≃8.5% and ≃15% strain an insulating Kekulé-like dimerized (DIM) state. Closer to a crystallized resonating-valence bond than to a Peierls state, the DIM state prevails over the competing antiferromagnetic insulating state favored by density-functional calculations which we conduct in parallel. The DIM stressed graphene insulator, whose gap is predicted to grow in excess of 1 eV before failure near 15% strain, is topological in nature, implying under certain conditions 1D metallic interface states lying in the bulk energy gap.

10.
Phys Chem Chem Phys ; 20(13): 8579-8592, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29557432

RESUMO

Chemical exfoliation of MAX phases into two-dimensional (2D) MXenes can be considered as a major breakthrough in the synthesis of novel 2D systems. To gain insight into the exfoliation possibility of MAX phases and to identify which MAX phases are promising candidates for successful exfoliation into 2D MXenes, we perform extensive electronic structure and phonon calculations, and determine the force constants, bond strengths, and static exfoliation energies of MAX phases to MXenes for 82 different experimentally synthesized crystalline MAX phases. Our results show a clear correlation between the force constants and the bond strengths. As the total force constant of an "A" atom contributed from the neighboring atoms is smaller, the exfoliation energy becomes smaller, thus making exfoliation easier. We propose 37 MAX phases for successful exfoliation into 2D Ti2C, Ti3C2, Ti4C3, Ti5C4, Ti2N, Zr2C, Hf2C, V2C, V3C2, V4C3, Nb2C, Nb5C4, Ta2C, Ta5C4, Cr2C, Cr2N, and Mo2C MXenes. In addition, we explore the effect of charge injection on MAX phases. We find that the injected charges, both electrons and holes, are mainly received by the transition metals. This is due to the electronic property of MAX phases that the states near the Fermi energy are mainly dominated by d orbitals of the transition metals. For negatively charged MAX phases, the electrons injected cause swelling of the structure and elongation of the bond distances along the c axis, which hence weakens the binding. For positively charged MAX phases, on the other hand, the bonds become shorter and stronger. Therefore, we predict that the electron injection by electrochemistry or gating techniques can significantly facilitate the exfoliation possibility of MAX phases to 2D MXenes.

11.
Nat Commun ; 8(1): 782, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978909

RESUMO

Strong spin-orbit coupling lifts the degeneracy of t 2g orbitals in 5d transition-metal systems, leaving a Kramers doublet and quartet with effective angular momentum of J eff = 1/2 and 3/2, respectively. These spin-orbit entangled states can host exotic quantum phases such as topological Mott state, unconventional superconductivity, and quantum spin liquid. The lacunar spinel GaTa4Se8 was theoretically predicted to form the molecular J eff = 3/2 ground state. Experimental verification of its existence is an important first step to exploring the consequences of the J eff = 3/2 state. Here, we report direct experimental evidence of the J eff = 3/2 state in GaTa4Se8 by means of excitation spectra of resonant inelastic X-ray scattering at the Ta L3 and L2 edges. We find that the excitations involving the J eff = 1/2 molecular orbital are absent only at the Ta L2 edge, manifesting the realization of the molecular J eff = 3/2 ground state in GaTa4Se8.The strong interaction between electron spin and orbital degrees of freedom in 5d oxides can lead to exotic electronic ground states. Here the authors use resonant inelastic X-ray scattering to demonstrate that the theoretically proposed J eff = 3/2 state is realised in GaTa4Se8.

12.
Phys Rev E ; 96(6-1): 062112, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347301

RESUMO

In the context of a discrete analog of the classical Heisenberg model, we investigate the critical behavior of the icosahedron model, where the interaction energy is defined as the inner product of neighboring vector spins of unit length pointing to the vertices of the icosahedron. The effective correlation length and magnetization of the model are calculated by means of the corner-transfer-matrix renormalization group (CTMRG) method. A scaling analysis with respect to the cutoff dimension m in CTMRG reveals a second-order phase transition characterized by the exponents ν=1.62±0.02 and ß=0.12±0.01. We also extract the central charge from the classical analog of entanglement entropy as c=1.90±0.02, which cannot be explained by the minimal series of conformal field theory.

13.
Phys Rev Lett ; 117(18): 187201, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835008

RESUMO

The t_{2g} orbitals of an edge-shared transition-metal oxide with a honeycomb lattice structure form dispersionless electronic bands when only hopping mediated by the edge-sharing oxygens is accessible. This is due to the formation of isolated quasimolecular orbitals (QMOs) in each hexagon, introduced recently by Mazin et al. [Phys. Rev. Lett. 109, 197201 (2012)], which stabilizes a band insulating phase for t_{2g}^{5} systems. However, with the help of the exact diagonalization method to treat the electron kinetics and correlations on an equal footing, we find that the QMOs are fragile against not only the spin-orbit coupling (SOC) but also the Coulomb repulsion. We show that the electronic phase of t_{2g}^{5} systems can vary from a quasimolecular band insulator to a relativistic J_{eff}=1/2 Mott insulator with increasing the SOC as well as the Coulomb repulsion. The different electronic phases manifest themselves in electronic excitations observed in optical conductivity and resonant inelastic x-ray scattering. Based on our calculations, we assert that the currently known Ru^{3+} and Ir^{4+} based honeycomb systems are far from the quasimolecular band insulator but rather the relativistic Mott insulator.

14.
Nat Commun ; 7: 12356, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27492864

RESUMO

It is widely recognized that the effect of doping into a Mott insulator is complicated and unpredictable, as can be seen by examining the Hall coefficient in high Tc cuprates. The doping effect, including the electron-hole doping asymmetry, may be more straightforward in doped organic Mott insulators owing to their simple electronic structures. Here we investigate the doping asymmetry of an organic Mott insulator by carrying out electric-double-layer transistor measurements and using cluster perturbation theory. The calculations predict that strongly anisotropic suppression of the spectral weight results in the Fermi arc state under hole doping, while a relatively uniform spectral weight results in the emergence of a non-interacting-like Fermi surface (FS) in the electron-doped state. In accordance with the calculations, the experimentally observed Hall coefficients and resistivity anisotropy correspond to the pocket formed by the Fermi arcs under hole doping and to the non-interacting FS under electron doping.

15.
Nat Commun ; 5: 3487, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24647280

RESUMO

The study of the high pressure phase diagram of hydrogen has continued with renewed effort for about one century as it remains a fundamental challenge for experimental and theoretical techniques. Here we employ an efficient molecular dynamics based on the quantum Monte Carlo method, which can describe accurately the electronic correlation and treat a large number of hydrogen atoms, allowing a realistic and reliable prediction of thermodynamic properties. We find that the molecular liquid phase is unexpectedly stable, and the transition towards a fully atomic liquid phase occurs at much higher pressure than previously believed. The old standing problem of low-temperature atomization is, therefore, still far from experimental reach.


Assuntos
Hidrogênio/química , Simulação de Dinâmica Molecular , Transição de Fase , Termodinâmica , Algoritmos , Modelos Químicos , Método de Monte Carlo , Pressão , Teoria Quântica , Temperatura
16.
Phys Rev Lett ; 110(2): 027002, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383933

RESUMO

Based on a microscopic theoretical study, we show that novel superconductivity is induced by carrier doping in layered perovskite Ir oxides where a strong spin-orbit coupling causes an effective total angular momentum J(eff)=1/2 Mott insulator. Using a variational Monte Carlo method, we find an unconventional superconducting state in the ground state phase diagram of a t(2g) three-orbital Hubbard model on the square lattice. This superconducting state is characterized by a d(x(2)-y(2))-wave "pseudospin singlet" formed by the J(eff)=1/2 Kramers doublet, which thus contains interorbital as well as both singlet and triplet components of t(2g) electrons. The superconducting state is found stable only by electron doping, but not by hole doping, for the case of carrier doped Sr2IrO4. We also study an effective single-orbital Hubbard model to discuss the similarities to high-T(c) cuprate superconductors and the multiorbital effects.

17.
Sci Rep ; 2: 992, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251778

RESUMO

A spin liquid is a novel quantum state of matter with no conventional order parameter where a finite charge gap exists even though the band theory would predict metallic behavior. Finding a stable spin liquid in two or higher spatial dimensions is one of the most challenging and debated issues in condensed matter physics. Very recently, it has been reported that a model of graphene, i.e., the Hubbard model on the honeycomb lattice, can show a spin liquid ground state in a wide region of the phase diagram, between a semi-metal (SM) and an antiferromagnetic insulator (AFMI). Here, by performing numerically exact quantum Monte Carlo simulations, we extend the previous study to much larger clusters (containing up to 2592 sites), and find, if any, a very weak evidence of this spin liquid region. Instead, our calculations strongly indicate a direct and continuous quantum phase transition between SM and AFMI.

18.
Phys Rev Lett ; 105(21): 216406, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231331

RESUMO

All known topological insulators are crystallographically related to either the noncentrosymmetric zinc-blende HgTe-type family or to the hexagonal centrosymmetric Bi2Se3 one. Through first-principles calculations, here we show evidence that under a proper uniaxial strain cubic ternary centrosymmetric antiperovskite compounds (M3N)Bi (M=Ca, Sr, and Ba) are three-dimensional topological insulators. This proposed family of materials is chemically inert and the lattice structure is well matched to important semiconductors, which provides a rich platform to easily integrate with electronic devices.

19.
Phys Rev Lett ; 105(21): 216410, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231335

RESUMO

Motivated by recent experiments of a novel 5d Mott insulator in Sr2IrO4, we have studied the two-dimensional three-orbital Hubbard model with a spin-orbit coupling λ. The variational Monte Carlo method is used to obtain the ground state phase diagram with varying an on-site Coulomb interaction U as well as λ. It is found that the transition from a paramagnetic metal to an antiferromagnetic insulator occurs at a finite U=U(MI), which is greatly reduced by a large λ, characteristic of 5d electrons, and leads to the "spin-orbit-induced" Mott insulator. It is also found that the Hund's coupling induces the anisotropic spin exchange and stabilizes the in-plane antiferromagnetic order. We have further studied the one-particle excitations by using the variational cluster approximation and revealed the internal electronic structure of this novel Mott insulator. These findings are in agreement with experimental observations on Sr2IrO4.

20.
Phys Rev Lett ; 103(12): 127201, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19792455

RESUMO

Exchange bias is usually rationalized invoking spin pinning effects caused by uncompensated antiferromagnetic interfaces. However, for compensated antiferromagnets other extrinsic factors, such as interface roughness or spin canting, have to be considered to produce a small uncompensation. As an alternative, here we propose two (related) possible mechanisms, driven by the intrinsic Dzyaloshinskii-Moriya interaction and ferroelectric polarization, for the explanation of exchange bias effects in perovskites with compensated G-type antiferromagnetism. One of the mechanisms is only active when a multiferroic material is involved and it is controllable by electric fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...