Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080708

RESUMO

The corpus callosum is the commissural bridge of white-matter bundles important for the human brain functions. Previous studies have analyzed the structural links between cortical gray-matter networks and subregions of corpus callosum. While meaningful white-matter functional networks (WM-FNs) were recently reported, how these networks functionally link with distinct subregions of corpus callosum remained unknown. The current study used resting-state functional magnetic resonance imaging of the Human Connectome Project test-retest data to identify 10 cerebral WM-FNs in 119 healthy subjects and then parcellated the corpus callosum into distinct subregions based on the functional connectivity between each callosal voxel and above networks. Our results demonstrated the reproducible identification of WM-FNs and their links with known gray-matter functional networks across two runs. Furthermore, we identified reliably parcellated subregions of the corpus callosum, which might be involved in primary and higher order functional systems by functionally connecting with WM-FNs. The current study extended our knowledge about the white-matter functional signals to the intrinsic functional organization of human corpus callosum, which could help researchers understand the neural substrates underlying normal interhemispheric functional connectivity as well as dysfunctions in various mental disorders.

2.
Cereb Cortex ; 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31799623

RESUMO

Evidence suggests that the basal forebrain (BF) cholinergic system degenerates early in the course of Alzheimer's disease (AD), likely due to the vulnerability of BF cholinergic neurons to tau pathology. However, it remains unclear whether the presence of tauopathy is the only requirement for initiating the BF degeneration in asymptomatic subjects at risk for AD (AR-AD), and how BF structural deficits evolve from normal aging to preclinical and prodromal AD. Here, we provide human in vivo magnetic resonance imaging evidence supporting that abnormal cerebrospinal fluid levels of phosphorylated tau (T+) are selectively associated with bilateral volume loss of the nucleus basalis of Meynert (nbM, Ch4) in AR-AD individuals. Spreading of atrophy to medial septum and vertical limb of diagonal band Broca (Ch1-Ch2) occurred in both preclinical and prodromal AD. With the exception of A+, all groups revealed significant correlations between volume reduction of BF cholinergic compartments and atrophy of their innervated regions. Overall, these results support the central role played by tauopathy in instigating the nbM degeneration in AR-AD individuals and the necessary coexistence of both AD proteinopathies for spreading damage to larger BF territories, thus affecting the core of the BF cholinergic projection system.

3.
Sci Rep ; 9(1): 1687, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737430

RESUMO

Ionic currents, whether measured as conductance amplitude or as ion channel transcript numbers, can vary many-fold within a population of identified neurons. In invertebrate neuronal types multiple currents can be seen to vary while at the same time their magnitudes are correlated. These conductance amplitude correlations are thought to reflect a tight homeostasis of cellular excitability that enhances the robustness and stability of neuronal activity over long stretches of time. Although such ionic conductance correlations are well documented in invertebrates, they have not been reported in vertebrates. Here we demonstrate with two examples, identified mouse hippocampal granule cells (GCs) and cholinergic basal forebrain neurons, that the correlation of ionic conductance amplitudes between different ionic currents also exists in vertebrates, and we argue that it is a ubiquitous phenomenon expressed by many species across phyla. We further demonstrate that in dentate gyrus GCs these conductance correlations are likely regulated in a circadian manner. This is reminiscent of the known conductance regulation by neuromodulators in crustaceans. However, in GCs we observe a more nuanced regulation, where for some conductance pairs the correlations are completely eliminated while for others the correlation is quantitatively modified but not obliterated.

4.
Neuroscientist ; 25(4): 288-297, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30051750

RESUMO

Deposition of amyloid plaques in limbic and associative cortices is amongst the most recognized histopathologic hallmarks of Alzheimer's disease. Despite decades of research, there is a lack of consensus over the impact of plaques on neuronal function, with their role in cognitive decline and memory loss undecided. Evidence has emerged suggesting complex and localized axonal pathology around amyloid plaques, with a significant fraction of swellings and dystrophies becoming enriched with putative synaptic vesicles and presynaptic proteins normally colocalized at hotspots of transmitter release. In the absence of hallmark active zone proteins and postsynaptic receptive elements, the axonal swellings surrounding amyloid plaques have been suggested as sites for ectopic release of glutamate, which under reduced clearance can lead to elevated local excitatory drive. Throughout this review, we consider the emerging data suggestive of amyloid plaques as hotspots of compulsive glutamatergic activity. Evidence for local and long-range effects of nonsynaptic glutamate is discussed in the context of circuit dysfunctions and neurodegenerative changes of Alzheimer's disease.

5.
Cereb Cortex ; 29(7): 2844-2858, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30137295

RESUMO

The heterogeneous neuronal subgroups of the basal forebrain corticopetal system (BFcs) have been shown to modulate cortical functions through their cholinergic, gamma-aminobutyric acid-ergic, and glutamatergic projections to the entire cortex. Although previous studies suggested that the basalo-cortical projection system influences various cognitive functions, particularly via its cholinergic component, these studies only focused on certain parts of the BFcs or nearby structures, leaving aside a more systematic picture of the functional connectivity of BFcs subcompartments. Moreover, these studies lacked the high-spatial resolution and the probability maps needed to identify specific subcompartments. Recent advances in the ultra-high field 7T functional magnetic resonance imaging (fMRI) provided potentially unprecedented spatial resolution of functional MRI images to study the subdivision of the BFcs. In this study, the BF space containing corticopetal cells was divided into 3 functionally distinct subdivisions based on functional connection to cortical regions derived from fMRI. The overall functional connection of each BFcs subdivision was examined with a test-retest study. Finally, a meta-analysis was used to study the related functional topics of each BF subdivision. Our results demonstrate distinct functional connectivity patterns of these subdivisions along the rostrocaudal axis of the BF. All three compartments have shown consistent segregation and overlap at specific target regions including the hippocampus, insula, thalamus, and the cingulate gyrus, suggesting functional integration and separation in BFcs.

6.
Hum Brain Mapp ; 40(2): 566-577, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30251753

RESUMO

Alpha rhythm (8 to 12 Hz) observed in EEG over human posterior cortex is prominent during eyes-closed (EC) resting and attenuates during eyes-open (EO) resting. Research shows that the degree of EC-to-EO alpha blocking or alpha desynchronization, termed alpha reactivity here, is a neural marker of cognitive health. We tested the role of acetylcholine in EC-to-EO alpha reactivity by applying a multimodal neuroimaging approach to a cohort of young adults and a cohort of older adults. In the young cohort, simultaneous EEG-fMRI was recorded from twenty-one young adults during both EO and EC resting. In the older cohort, functional MRI was recorded from forty older adults during EO and EC resting, along with FLAIR and diffusion MRI. For a subset of twenty older adults, EEG was recorded during EO and EC resting in a separate session. In both young and older adults, functional connectivity between the basal nucleus of Meynert (BNM), the major source of cortical acetylcholine, and the visual cortex increased from EC to EO, and this connectivity increase was positively associated with alpha reactivity; namely, the stronger the BNM-visual cortex functional connectivity increase from EC to EO, the larger the EC-to-EO alpha desynchronization. In older adults, lesions of the fiber tracts linking BNM and visual cortex quantified by leukoaraiosis volume, associated with reduced alpha reactivity. These findings support a role of acetylcholine and particularly cholinergic pathways in mediating EC-to-EO alpha reactivity and suggest that impaired alpha reactivity could serve as a marker of the integrity of the cholinergic system.

7.
J Neurosci ; 38(44): 9446-9458, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381436

RESUMO

Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.


Assuntos
Prosencéfalo Basal/metabolismo , Córtex Cerebral/metabolismo , Neurônios Colinérgicos/metabolismo , Cognição/fisiologia , Rede Nervosa/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Envelhecimento/psicologia , Animais , Prosencéfalo Basal/patologia , Córtex Cerebral/patologia , Neurônios Colinérgicos/patologia , Demência/diagnóstico , Demência/fisiopatologia , Demência/psicologia , Humanos , Rede Nervosa/patologia
8.
Neuropsychologia ; 119: 145-156, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30096414

RESUMO

OBJECTIVE: At the present, it is unclear whether association of basal forebrain cholinergic system (BFCS) volume with cognitive performance exists in healthy as well as in cognitively impaired elderly subjects. Whereas one small study reported an association of BFCS volume with general cognitive ability 'g' in healthy ageing, effects on specific cognitive domains have only been found in subjects with cognitive decline. Here we aim to clarify whether an association of BFCS volume and 'g' is present in a larger sample of elderly subjects without obvious symptoms of dementia and whether similar associations can also be observed in specific cognitive domains. METHODS: 282 pre-surgical patients from the BioCog study (aged 72.7 ±â€¯4.9 years with a range of 65-87 years, 110 women) with a median MMSE score of 29 points (range 24-30) were investigated. BFCS and brain volume as well as brain parenchymal fraction were assessed in T1-weighted MR images using SPM12 and a probabilistic map of the BFCS. Neuropsychological assessment comprised the CANTAB cognitive battery and paper-and-pencil based tests. For data analysis, generalised linear models and quantile regression were applied. RESULTS: Significant associations of BFCS volume with 'g' and several cognitive domains were found, with the strongest association found for 'g'. BFCS volume explained less variance in cognitive performance than brain volume. The association was not confounded by brain parenchymal fraction. Furthermore, the association of BFCS volume and 'g' was similar in high- and low-performers. CONCLUSION: Our results extend previous study findings on BFCS volume associations with cognition in elderly subjects. Despite the observed associations of BFCS volume and cognitive performance, this association seems to reflect a more general association of brain volume and cognition. Accordingly, a specific association of BFCS volume and cognition in non-demented elderly subjects is questionable.


Assuntos
Prosencéfalo Basal/diagnóstico por imagem , Cognição , Envelhecimento Cognitivo , Disfunção Cognitiva/diagnóstico por imagem , Envelhecimento Saudável/patologia , Idoso , Idoso de 80 Anos ou mais , Atrofia , Prosencéfalo Basal/patologia , Disfunção Cognitiva/patologia , Feminino , Humanos , Imagem por Ressonância Magnética , Masculino , Destreza Motora , Tamanho do Órgão , Tempo de Reação
9.
Alzheimers Dement ; 14(4): 502-513, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29494806

RESUMO

The synaptic vesicle cycle (SVC) holds center stage in the biology of presynaptic terminals. Through recurrent exocytosis and endocytosis, it facilitates a sequence of events enabling chemical neurotransmission between functionally related neurons. As a fundamental process that links the interior of nerve cells with their environment, the SVC is also critical for signaling and provides an entry route for a range of pathogens and toxins, enabling detrimental effects. In Alzheimer's disease, the SVC is both the prime site of amyloid ß production and toxicity. In this study, we discuss the emerging evidence for physiological and pathological effects of Aß on various stages of the SVC, from postfusion membrane recovery to trafficking, docking, and priming of vesicles for fusion and transmitter release. Understanding of the mechanisms of Aß interaction with the SVC within the unifying calcium hypothesis of aging and Alzheimer's disease should further elucidate the fundamental biology of the presynaptic terminal and reveal novel therapeutic targets for Alzheimer's disease and other age-related dementias.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Vesículas Sinápticas/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos
10.
J Neurosci ; 37(39): 9534-9549, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28874448

RESUMO

The basal forebrain (BF) receives afferents from brainstem ascending pathways, which has been implicated first by Moruzzi and Magoun (1949) to induce forebrain activation and cortical arousal/waking behavior; however, it is very little known about how brainstem inhibitory inputs affect cholinergic functions. In the current study, glycine, a major inhibitory neurotransmitter of brainstem neurons, and gliotransmitter of local glial cells, was tested for potential interaction with BF cholinergic (BFC) neurons in male mice. In the BF, glycine receptor α subunit-immunoreactive (IR) sites were localized in choline acetyltransferase (ChAT)-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs (sIPSCs; 0.81 ± 0.25 × 10-1 Hz) recorded in whole-cell conditions. Potential neuronal as well as glial sources of glycine were indicated in the extracellular space of cholinergic neurons by glycine transporter type 1 (GLYT1)- and GLYT2-IR processes found in apposition to ChAT-IR cells. Ultrastructural analyses identified synapses of GLYT2-positive axon terminals on ChAT-IR neurons, as well as GLYT1-positive astroglial processes, which were localized in the vicinity of synapses of ChAT-IR neurons. The brainstem raphe magnus was determined to be a major source of glycinergic axons traced retrogradely from the BF. Our results indicate a direct effect of glycine on BFC neurons. Furthermore, the presence of high levels of plasma membrane glycine transporters in the vicinity of cholinergic neurons suggests a tight control of extracellular glycine in the BF.SIGNIFICANCE STATEMENT Basal forebrain cholinergic (BFC) neurons receive various activating inputs from specific brainstem areas and channel this information to the cortex via multiple projections. So far, very little is known about inhibitory brainstem afferents to the BF. The current study established glycine as a major regulator of BFC neurons by (1) identifying glycinergic neurons in the brainstem projecting to the BF, (2) showing glycine receptor α subunit-immunoreactive (IR) sites in choline acetyltransferase (ChAT)-IR neurons, (3) demonstrating glycine transporter type 2 (GLYT2)-positive axon terminals synapsing on ChAT-IR neurons, and (4) localizing GLYT1-positive astroglial processes in the vicinity of synapses of ChAT-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs recorded in whole-cell conditions.


Assuntos
Neurônios Colinérgicos/metabolismo , Glicina/metabolismo , Prosencéfalo/metabolismo , Animais , Bicuculina/farmacologia , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/fisiologia , Feminino , Glicina/farmacologia , Glicinérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos , Neuroglia/metabolismo , Prosencéfalo/citologia , Estricnina/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia
11.
Cell Rep ; 18(7): 1817-1830, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28199851

RESUMO

Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.


Assuntos
Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Acetilcolina/metabolismo , Animais , Axônios/metabolismo , Axônios/fisiologia , Colinérgicos/metabolismo , Neurônios Colinérgicos/metabolismo , Feminino , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Sistema Nervoso Parassimpático/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Ratos
12.
Cereb Cortex ; 27(8): 3881-3889, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27371762

RESUMO

Extensive research suggests that basal forebrain (BF) cholinergic neurons are selectively vulnerable to Alzheimer's disease (AD). However, it remains unknown whether volume loss of BF cholinergic compartments parallels structural changes of their innervated regions in prodromal AD. To this aim, we have correlated volume of each BF compartment with cortical thickness and hippocampus/amygdala volume in 106 healthy older (HO) adults and 106 amnestic mild cognitive impairment (aMCI) patients. Correlations were limited to regions affected by atrophy in aMCI. The volume of the nucleus basalis of Meynert (NBM/Ch4) was positively correlated with thickness of the temporal cortex in aMCI, and with volume of amygdala in HO and aMCI, separately. Volume of the medial septum/diagonal band of Broca (Ch1-Ch3) was also positively correlated with volume of the hippocampus within the 2 groups. Only correlations between the NBM and their innervated regions showed diagnostic value. Unlike men, aMCI women showed a stronger association between volume of the NBM and thickness of the temporal lobe when compared with HO women. Altogether, these results reveal, for the first time in humans, that atrophy of NBM is associated with structural changes of their innervated regions in prodromal AD, being this relationship more evident in women.


Assuntos
Núcleo Basal de Meynert/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Idoso , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Atrofia , Núcleo Basal de Meynert/patologia , Disfunção Cognitiva/patologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imagem por Ressonância Magnética , Masculino , Tamanho do Órgão , Caracteres Sexuais , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia
13.
Cereb Cortex ; 27(3): 2335-2347, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27073229

RESUMO

Acetylcholine (ACh) release in the cortex is critical for learning, memory, attention, and plasticity. Here, we explore the cholinergic and noncholinergic projections from the basal forebrain (BF) to the auditory cortex using classical retrograde and monosynaptic viral tracers deposited in electrophysiologically identified regions of the auditory cortex. Cholinergic input to both primary (A1) and nonprimary auditory cortical (belt) areas originates in a restricted area in the caudal BF within the globus pallidus (GP) and in the dorsal part of the substantia innominata (SId). On the other hand, we found significant differences in the proportions of cholinergic and noncholinergic projection neurons to primary and nonprimary auditory areas. Inputs to A1 projecting cholinergic neurons were restricted to the GP, caudate-putamen, and the medial part of the medial geniculate body, including the posterior intralaminar thalamic group. In addition to these areas, afferents to belt-projecting cholinergic neurons originated from broader areas, including the ventral secondary auditory cortex, insular cortex, secondary somatosensory cortex, and the central amygdaloid nucleus. These findings support a specific BF projection pattern to auditory cortical areas. Additionally, these findings point to potential functional differences in how ACh release may be regulated in the A1 and auditory belt areas.


Assuntos
Acetilcolina/metabolismo , Córtex Auditivo/citologia , Vias Auditivas/citologia , Prosencéfalo Basal/citologia , Animais , Córtex Auditivo/metabolismo , Vias Auditivas/metabolismo , Prosencéfalo Basal/metabolismo , Contagem de Células , Feminino , Masculino , Técnicas de Rastreamento Neuroanatômico , Ratos Sprague-Dawley , Ratos Transgênicos
14.
Nicotine Tob Res ; 19(4): 452-459, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27613921

RESUMO

Introduction: Numerous studies have characterized impaired cerebral functioning in nicotine-addicted individuals. Whereas nicotine interacts with multiple neurotransmitters in cortical and subcortical circuits, it directly targets the cholinergic system, sourced primarily from the basal nucleus of Meynert (BNM). However, no studies have examined how this cholinergic system is influenced by cigarette smoking. Here, we addressed this gap of research. Methods: Using a dataset from the Functional Connectome Projects, we investigated this issue by contrasting seed-based BNM connectivity of 40 current smokers and 170 age- and gender-matched nonsmokers. We followed our data analytic routines in recent work and examined differences between smokers and nonsmokers in men and women combined as well as separately. Results: Compared to nonsmokers, female but not male smokers demonstrated greater positive BNM connectivity to the supplementary motor area, bilateral anterior insula, and right superior temporal/supramarginal gyri as well as greater negative connectivity to the posterior cingulate cortex and precuneus. Further, BNM connectivity to the supplementary motor area is negatively correlated to the Fagerström Test for Nicotine Dependence score in male but not female smokers. Conclusions: Along with a previous report of upregulated nicotinic acetylcholine receptor in male but not female smokers, these new findings highlight functional changes of the cholinergic systems in cigarette smokers. The results suggest sex-specific differences in cholinergic dysregulation and a need for multiple imaging modalities to capture the neural markers of nicotine addiction. Implications: Nicotine influences cognition via cholinergic projections of the basal forebrain to the cerebral cortex. This study examined changes in resting-state whole-brain functional connectivity of the BNM in cigarette smokers. The new findings elucidate for the first time sex differences in BNM-cerebral connectivity in cigarette smoking.


Assuntos
Núcleo Basal de Meynert/fisiologia , Descanso/fisiologia , Fumar/fisiopatologia , Tabagismo/fisiopatologia , Adulto , Feminino , Humanos , Masculino
15.
Front Hum Neurosci ; 10: 149, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148006

RESUMO

BACKGROUND: Methylphenidate (MPH) influences catecholaminergic signaling. Extant work examined the effects of MPH on the neural circuits of attention and cognitive control, but few studies have investigated the effect of MPH on the brain's resting-state functional connectivity (rsFC). METHODS: In this observational study, we compared rsFC of a group of 24 healthy adults who were administered an oral 45 mg dose of MPH with a group of 24 age and gender matched controls who did not receive MPH. We focused on three seed regions: basal nucleus of Meynert (BNM), locus coeruleus (LC), and ventral tegmental area/substantia nigra, pars compacta (VTA/SNc), each providing cholinergic, noradrenergic and dopaminergic inputs to the cerebral cortex. Images were pre-processed and analyzed as in our recent work (Li et al., 2014; Zhang et al., 2015). We used one-sample t-test to characterize group-specific rsFC of each seed region and two-sample t-test to compare rsFC between groups. RESULTS: MPH reversed negative connectivity between BNM and precentral gyri. MPH reduced positive connectivity between LC and cerebellum, and induced positive connectivity between LC and right hippocampus. MPH decreased positive VTA/SNc connectivity to the cerebellum and putamen, and reduced negative connectivity to left middle occipital gyrus. CONCLUSION: MPH had distinct effects on the rsFC of BNM, LC, and VTA/SNc in healthy adults. These new findings may further our understanding of the role of catecholaminergic signaling in Attention Deficit Hyperactivity Disorder (ADHD) and Parkinson's disease and provide insights into the therapeutic mechanisms of MPH in the treatment of clinical conditions that implicate catecholaminergic dysfunction.

16.
Brain Behav ; 6(1): e00421, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27110442

RESUMO

BACKGROUND: Cortical acetylcholine released from cells in the basal forebrain facilitates cue detection and improves attentional performance. Cholinergic fibres to the cortex originate from the CH4 cell group, sometimes referred to as the Nucleus basalis of Meynert and the Nucleus subputaminalis of Ayala. The aim of this work was to investigate the effects of volumes of cholinergic nuclei on attention and executive function. METHODS: The volumes of CH4 and CH4p subregions were measured in a subgroup of 38 subjects (33.5 ± 11 years, 20 females) from a population-based cohort study of smokers and never-smokers who have undergone additional MR imaging. To define regions of interest, we applied a DARTEL-based procedure implemented in SPM8 and a validated probabilistic map of the basal forebrain. Attention and executive function were measured with Trail-Making Test (TMT A+B) and Stroop-Task. RESULTS: We found a quadratic effect of the left CH4 subregion on performance of the TMT. Extremely small as well as extremely large volumes are associated with poor test performance. CONCLUSIONS: Our results indicate that a small CH4 volume predisposes for a hypocholinergic state, whereas an extremely large volume predisposes for a hypercholinergic state. Both extremes have detrimental effects on attention. Comparable nonlinear effects have already been reported in pharmacological studies on the effects cholinergic agonists on attention.


Assuntos
Núcleo Basal de Meynert/anatomia & histologia , Núcleo Basal de Meynert/fisiologia , Lateralidade Funcional/fisiologia , Teste de Sequência Alfanumérica/estatística & dados numéricos , Adulto , Animais , Estudos de Coortes , Feminino , Humanos , Masculino , Tamanho do Órgão
17.
J Comp Neurol ; 524(12): 2503-15, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780730

RESUMO

Previous studies have shown that the basal forebrain (BF) modulates cortical activation via its projections to the entire cortical mantle. However, the organization of these projections is only partially understood or, for certain areas, unknown. In this study, we examined the topographic organization of cholinergic and noncholinergic projections from the BF to the perirhinal, postrhinal, and entorhinal cortex by using retrograde tracing combined with choline acetyltransferase (ChAT) immunohistochemistry in rats. The perirhinal and postrhinal cortex receives major cholinergic and noncholinergic input from the caudal BF, including the caudal globus pallidus and substantia innominata and moderate input from the horizontal limb of the diagonal band, whereas the entorhinal cortex receives major input from the rostral BF, including the medial septum and the vertical and horizontal limbs of the diagonal band. In the perirhinal cases, cholinergic projection neurons are distributed more caudally in the caudal globus pallidus than noncholinergic projection neurons. Compared with the perirhinal cases, the distribution of cholinergic and noncholinergic neurons projecting to the postrhinal cortex shifts slightly caudally in the caudal globus pallidus. The distribution of cholinergic and noncholinergic neurons projecting to the lateral entorhinal cortex extends more caudally in the BF than to the medial entorhinal cortex. The ratio of ChAT-positive projection neurons to total projection neurons is higher in the perirhinal/postrhinal cases (26-48%) than in the entorhinal cases (13-30%). These results indicate that the organization of cholinergic and noncholinergic projections from the BF to the parahippocampal cortex is more complex than previously described. J. Comp. Neurol. 524:2503-2515, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Prosencéfalo Basal/fisiologia , Mapeamento Encefálico/métodos , Córtex Entorrinal/fisiologia , Córtex Perirrinal/fisiologia , Animais , Prosencéfalo Basal/citologia , Córtex Entorrinal/citologia , Humanos , Masculino , Vias Neurais/citologia , Vias Neurais/fisiologia , Córtex Perirrinal/citologia , Ratos , Ratos Sprague-Dawley
18.
Neuroscientist ; 22(3): 238-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26002948

RESUMO

Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid ß (Aß) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aß peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aß to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aß and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease.


Assuntos
Acetilcolina/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Córtex Cerebral/metabolismo , Transmissão Sináptica , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Gânglios da Base/metabolismo , Neurônios Colinérgicos/metabolismo , Humanos , Vias Neurais/metabolismo , Neurônios/metabolismo , Receptores Colinérgicos/metabolismo
19.
Prog Neurobiol ; 130: 29-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25857550

RESUMO

The ventral pallidum (VP) plays a critical role in the processing and execution of motivated behaviors. Yet this brain region is often overlooked in published discussions of the neurobiology of mental health (e.g., addiction, depression). This contributes to a gap in understanding the neurobiological mechanisms of psychiatric disorders. This review is presented to help bridge the gap by providing a resource for current knowledge of VP anatomy, projection patterns and subregional circuits, and how this organization relates to the function of VP neurons and ultimately behavior. For example, ventromedial (VPvm) and dorsolateral (VPdl) VP subregions receive projections from nucleus accumbens shell and core, respectively. Inhibitory GABAergic neurons of the VPvm project to mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area, and this VP subregion helps discriminate the appropriate conditions to acquire natural rewards or drugs of abuse, consume preferred foods, and perform working memory tasks. GABAergic neurons of the VPdl project to subthalamic nucleus and substantia nigra pars reticulata, and this VP subregion is modulated by, and is necessary for, drug-seeking behavior. Additional circuits arise from nonGABAergic neuronal phenotypes that are likely to excite rather than inhibit their targets. These subregional and neuronal phenotypic circuits place the VP in a unique position to process motivationally relevant stimuli and coherent adaptive behaviors.


Assuntos
Prosencéfalo Basal/fisiologia , Comportamento Animal/fisiologia , Neurônios GABAérgicos/citologia , Motivação/fisiologia , Atividade Motora/fisiologia , Núcleo Accumbens/fisiologia , Animais , Prosencéfalo Basal/anatomia & histologia , Humanos , Núcleo Accumbens/anatomia & histologia
20.
J Neurosci ; 35(2): 853-63, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589777

RESUMO

In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.


Assuntos
Tonsila do Cerebelo/metabolismo , Neurônios Colinérgicos/metabolismo , Potenciais Pós-Sinápticos Excitadores , Prosencéfalo/metabolismo , Acetilcolina/metabolismo , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Camundongos , Prosencéfalo/fisiologia , Receptor Muscarínico M1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA