Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Chem A ; 118(51): 12168-77, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25473760


The strength of conjugation between the diene moieties of 1-R-1,2-diphospholes and 1-R-phospholes and exocyclic phenyl groups of these P-heteroles has been quantitatively characterized by the use of Raman activities of the bands of the phenyl substituents. It is shown that conjugation in both types of phospholes is very similar to the conjugation of phenyl groups with the diene system of cyclopentadiene. Introduction of substituents (-OMe, -C(═O)H, -NO2, -NMe2, and -CH═CH2) in the para-position of the phenyl groups of 1-R-1,2-diphospholes extends π-delocalization of exocyclic groups into the electronic system of the 1,2-diphosphole ring, producing bathochromic shifts of the absorption bands up to 63 nm. In contrast, hypsochromic shifts up to 40 nm can be achieved by introduction of SnMe3 or SiMe3 groups at the phosphorus(III) atom of the 1,2-diphosphole and concomitant increase of aromaticity of the P-heterole. Conjugation shifts the "centre of gravity" of the whole electronic absorption spectrum, whereas positions of separate absorption bands are not simply dependent on conjugation lengths.

J Phys Chem A ; 117(31): 6827-34, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23841623


Twenty 3,4,5-triaryl-1-R-1,2-diphospholes were studied within the framework of density functional theory (DFT) and experimentally by UV/vis spectroscopy to check their suitability for opto-electronic applications. Time-dependent DFT (TD-DFT) calculations employing the PBE0 hybrid density functional combined with moderately sized def-TZVP basis set were shown to excellently reproduce the experimental absorption spectra of various 1,2-diphospholes. Frontier molecular orbital analysis reveals that HOMO and LUMO are mainly localized on the diphosphole ring and, to some extent, on the aryl moieties. The HOMO-LUMO energy gap can be easily tuned by variation of substituents introduced in para-positions of the aryl moieties and, to a lesser extent, by modification of the R group at phosphorus atom. As a result, both position and intensity of the absorption bands with highest wavelength are strongly influenced by the above structural changes. The UV-spectra simulations reveal that the introduction of donor groups like para-OMe, para-NMe2, and para-N(H)Ph, which are in n-π conjugation with the aryl moieties, should result in absorption of visible light by the corresponding 1,2-diphospholes, thus making them promising candidates for new functional materials.