Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 319: 124109, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33035866

RESUMO

From the perspective of energy saving in the operation of microbial electrolysis cell assisted anaerobic digester (MEC-AD), this study focused on developing an intermittent power supply scheme. The applied potential was switched off for 12 and 6 hours/day during the operation of a laboratory-scale MEC-AD system fed with glucose. The results from the operation under continuous applied potential served as the control. The overall biomethane generation and net energy income from the process were unaffected when the applied potential turned off for 6 hours/day. Both quantitative and qualitative analyses of microbial communities suggested that a balanced microbiome could be maintained under short-term switching-off the applied potential. However, performance substantially deteriorated when the applied potential turned off for 12 hours/day. Overall, the results of this study suggest that MEC-AD operation does not need a continuous power supply, and higher energy efficiency can be effectively achieved by intermittently powering the reactor.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Fontes de Energia Elétrica , Eletrólise
2.
Sci Total Environ ; 734: 139395, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32454336

RESUMO

Understanding the toxic effect of silver nanoparticles (AgNPs) on various biological wastewater treatment systems is of significant interest to researchers. In recent years, microbial electrochemical technologies have opened up new opportunities for bioenergy and chemicals production from organic wastewater. However, the effects of AgNPs on microbial electrochemical systems are yet to be understood fully. Notably, no studies have investigated the impact of AgNPs on a microbial electrochemical system fed with a complex fermentable substrate. Here, we investigated the impact of AgNPs (50 mg/L) exposure to a biofilm anode in a microbial electrolysis cell (MEC) fed with glucose. The volumetric current density was 29 ± 2.0 A/m3 before the AgNPs exposure, which decreased to 20 ± 2.2 A/m3 after AgNPs exposure. The biofilms produced more extracellular polymeric substances (EPS) to cope with the AgNPs exposure, while carbohydrate to protein ratio in EPS considerably increased from 0.4 to 0.7. Scanning electron microscope (SEM) imaging also confirmed the marked excretion of EPS, forming a thick layer covering the anode biofilms after AgNPs injection. Transmission electron microscope (TEM) imaging showed that AgNPs still penetrated some microbial cells, which could explain the deterioration of MEC performance after AgNPs exposure. The relative expression level of the quorum signalling gene (LuxR) increased by 30%. Microbial community analyses suggested that various fermentative bacterial species (e.g., Bacteroides, Synergistaceae_vadinCA02, Dysgonomonas, etc.) were susceptible to AgNPs toxicity, which led to the disruption of their syntrophic partnership with electroactive bacteria. The abundance of some specific electroactive bacteria (e.g., Geobacter species) also decreased. Moreover, decreased relative expressions of various extracellular electron transfer associated genes (omcB, omcC, omcE, omcZ, omcS, and pilA) were observed. However, the members of family Enterobacteriaceae, known to perform a dual function of fermentation and anodic respiration, became dominant after biofilm anode exposed to AgNPs. Thus, EPS extraction provided partial protection against AgNPs exposure.


Assuntos
Nanopartículas Metálicas , Microbiota , Biofilmes , Eletrodos , Matriz Extracelular de Substâncias Poliméricas , Prata
3.
Water Environ Res ; 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32329182

RESUMO

Anaerobic bioreactors for source-separated blackwater are mostly operated at low organic loading rates (OLRs) due to low biodegradability and the potential of ammonia inhibition. In this study, an anaerobic biofilm reactor having conductive carbon fibers as the media was investigated for the high-rate treatment of blackwater collected from vacuum toilets. The bioreactor was operated at different OLRs ranged from 0.77 to 3.01 g COD/L-d in four stages for a total operating period of ~ 250 days. With the increase of OLRs, the specific methane production rate increased from 105.3 to 304.6 ml/L-d with high methane content in biogas (75.5%-83%). The maximum methane yield was achieved at hydraulic retention time (HRT) of 15 days. Highest organics and suspended solids removal (80%-83%) were achieved at 20-days HRT, while increased OLRs resulted in diminished removal efficiencies. The state variables, including pH, total ammonia nitrogen, short-chain volatile fatty acids, and soluble chemical oxygen demand, indicated the system had a great capability to withstand the high OLRs. Microbial community analysis revealed that the high performance might be attributed to direct interspecies electron transfer (DIET) facilitated by potentially electroactive bacteria (e.g., Syntrophomonas, Clostridium) and electrotrophic archaea (e.g., Methanosaeta and Methanosarcina species) enriched on the carbon fibers. PRACTITIONER POINTS: An anaerobic biofilm reactor was investigated for biomethane recovery from source-separated blackwater. Conductive carbon fibers were utilized as the media to stimulate enrichment of potentially electroactive methanogenic communities. The bioreactor was operated at ambient temperature for over 250 days. High methane production rate and high-quality biogas were achieved at OLRs ranged from 0.77 to 3.01 g COD/L-d. Microbial community analysis suggested direct interspecies electron transfer (DIET) between specific electroactive bacteria and electrotrophic archaea.

4.
Bioresour Technol ; 289: 121738, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31300305

RESUMO

Electro-methanogenesis represents an emerging bio-methane production pathway that can be achieved through integrating microbial electrolysis cell (MEC) with conventional anaerobic digester (AD). Since 2009, a significant number of publications have reported superior methane productivity and kinetics from MEC-AD integrated systems. The overall objective of this review is to communicate the recent advances towards promoting electro-methanogenesis in the anaerobic digestion process. Firstly, the electro-methanogenesis pathways and functional roles of key microbial members are summarized. Secondly, various extrinsic process parameters, such as applied voltage/potential, pH, and temperature are discussed with emphasis on process optimization. Moreover, available methods for the inoculation and start-up of MEC-AD process are critically reviewed. Finally, system design and scale-up considerations, such as the selection of electrode materials, surface area and surface chemistry of electrode materials, and electrode spacing are summarized.


Assuntos
Metano/metabolismo , Anaerobiose , Catálise , Eletrodos , Eletrólise , Metano/química
5.
Sci Total Environ ; 689: 691-699, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31280150

RESUMO

This study, for the first time, documented microbial community shifts in response to the changes in anode potential in a microbial electrolysis cell (MEC) operated with primary sludge. At an anode potential of -0.4 V vs. Ag/AgCl, the MEC showed COD and VSS removal efficiencies of 73 ±â€¯1% and 75 ±â€¯2%, respectively. The volumetric current density and specific hydrogen production rate were 23 ±â€¯1.2 A/m3, and 145 ±â€¯4.1 L/m3-d, respectively. The anodic microbial community was consisted of various fermentative/hydrolytic bacteria (e.g., Bacteroides and Dysgonomonas) and anode-respiring bacteria (Geobacter), while different hydrolytic/fermentative bacteria were abundant in suspension. The MEC showed substantially inferior performance along with a higher accumulation of various volatile fatty acids when the anode potential was switched to more positive values (0 V and +0.4 V). Both biofilms and suspended communities were also shifted when the anode potential was changed. Notably, at +0.4 V, Geobacter genus entirely disappeared from the biofilms, while Paludibacter species (known fermentative bacteria) were selectively enriched in biofilms. Also, the relative abundance of genus Bacteroides (known hydrolytic bacteria) substantially decreased in both biofilms and suspension, which was correlated with the inferior hydrolysis of VSS. Quantitative comparison of biofilms and suspended microbial communities at different anode potentials revealed a sharp decrease in bacterial cell numbers in anode biofilms after changing anode potential from -0.4 V to +0.4 V. By contrast, bacterial cell numbers in suspension were slightly decreased. Collectively, these results provide new insights into the role of anode potential in shaping key microbial players associated with hydrolysis/fermentation and anodic respiration processes when MECs are operated with real biowastes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Microbiota/fisiologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/isolamento & purificação , Eletrodos , Eletrólise
6.
Chemosphere ; 213: 259-267, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30223131

RESUMO

This study assessed the impact of antimicrobial AgNPs (50 mg L-1, 30-50 nm) on the electrocatalytic activity of a mixed-culture anode biofilm enriched with Geobacter species. The current densities and electrochemical kinetics were maintained after exposure to AgNPs in consecutive fed-batch cycles, despite significant changes in morphological structures and bacterial communities. Bacterial community analysis showed a substantial increase in the Geobacter population in response to AgNPs exposure, indicating their higher tolerance to AgNPs. In contrast, the population of other anode respiring bacteria (ARB) belongs to Acinetobacter, Dysgonomonas, and Cloacibacillus genera appeared to be very sensitive to AgNPs toxicity as their relative abundance significantly decreased. Microscopic imaging showed that AgNPs were accumulated within anode biofilm matrix without penetration inside the cells. Moreover, the anode biofilm became denser because of enhanced extracellular polymeric substances (EPSs) production by ARB after exposure of AgNPs, implying that EPS could protect ARB against AgNPs toxicity.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/química , Eletrólise/métodos , Nanopartículas Metálicas/química , Prata/química , Antibacterianos/farmacologia , Eletrodos
7.
Bioresour Technol ; 266: 259-266, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29982046

RESUMO

Recent studies have shown that the addition of conductive materials can promote direct interspecies electron transfer (DIET) between bacteria and methanoarchaea. This study demonstrated that carbon fibers could significantly stimulate methanogenic conversion of propionate and butyrate as co-substrate, while only butyrate was completely degraded in the unamended control bioreactor. In the carbon fibers-amended bioreactor, specific methane production (mL-CH4/g CODInitial) and methanogenesis rate (d-1) increased by around 2.4 and 6.7 times, respectively. Various electroactive bacteria were abundant in the carbon fibers-amended bioreactor, whereas different known fermentative bacteria were abundant in the control. Moreover, carbon fibers substantially increased the abundance of Methanosaeta species. These results suggest that electroactive bacteria could be involved in DIET with Methanosaeta species enabling co-degradation of propionate and butyrate. Additionally, electrical conductivities of the biomass were comparable in both configurations, indicating that carbon fibers were the primary route for DIET.


Assuntos
Reatores Biológicos , Microbiota , Propionatos/metabolismo , Carbono , Fibra de Carbono , Euryarchaeota , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA