Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5072, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417473

RESUMO

In vivo bioprinting has recently emerged as a direct fabrication technique to create artificial tissues and medical devices on target sites within the body, enabling advanced clinical strategies. However, existing in vivo bioprinting methods are often limited to applications near the skin or require open surgery for printing on internal organs. Here, we report a ferromagnetic soft catheter robot (FSCR) system capable of in situ computer-controlled bioprinting in a minimally invasive manner based on magnetic actuation. The FSCR is designed by dispersing ferromagnetic particles in a fiber-reinforced polymer matrix. This design results in stable ink extrusion and allows for printing various materials with different rheological properties and functionalities. A superimposed magnetic field drives the FSCR to achieve digitally controlled printing with high accuracy. We demonstrate printing multiple patterns on planar surfaces, and considering the non-planar surface of natural organs, we then develop an in situ printing strategy for curved surfaces and demonstrate minimally invasive in vivo bioprinting of hydrogels in a rat model. Our catheter robot will permit intelligent and minimally invasive bio-fabrication.


Assuntos
Bioimpressão , Cateteres , Imãs/química , Robótica , Animais , Linhagem Celular , Elasticidade , Condutividade Elétrica , Humanos , Hidrogéis/química , Fígado/diagnóstico por imagem , Ratos Sprague-Dawley , Suínos , Tomografia Computadorizada por Raios X , Viscosidade
2.
J Phys Chem Lett ; : 3038-3045, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33735572

RESUMO

Black phase CsPbI3 perovskites have emerged as one of the most promising materials for use in optoelectronic devices due to their remarkable properties. However, black phase CsPbI3 usually possesses poor stability and involves a phase change process, resulting in an undesired orthorhombic (δ) yellow phase. Here, the enhanced stability of CsPbI3 nanocrystals is achieved by incorporating the Cu2+ ion into the CsPbI3 lattice under mild conditions. In particular, the Cu2+-doped CsPbI3 film can maintain red luminescence for 35 days in air while the undoped ones transformed into the nonluminescent yellow phase in several days. Furthermore, first-principles calculations verified that the enhanced stability is ascribed to the increased formation energy due to the successful doping of Cu2+ in CsPbI3. Benefiting from such an effective doping strategy, the as-prepared Cu2+-doped CsPbI3 as an emitting layer shows much better performance compared with that of the undoped counterpart. The turn-on voltage of the Cu2+-doped quantum-dot light-emitting diode (QLED) (1.6 V) is significantly reduced compared with that of the pristine QLED (3.8 V). In addition, the luminance of the Cu2+-doped QLED can reach 1270 cd/m2, which is more than twice that of the pristine CsPbI3 QLED (542 cd/m2). The device performance is believed to be further improved by optimizing the purification process and device structure, shedding light on future applications.

3.
Nano Lett ; 20(12): 8739-8744, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33180509

RESUMO

Structural color has been particularly attractive as it provides a highly promising approach for next-generation color printing. Plasmonic nanostructures have been intensively investigated for color printing, while suffering from intrinsic loss that degrades the quality of the coloration. Dielectric materials have emerged as an alternative because of their high refractive index that enables highly confined optical modes within the nanostructure at the diffraction limit. Here, we demonstrate an all-dielectric nanoring metasurface for coloration. By harnessing the intrinsic nanoring structure design, vivid structural color has been achieved in the visible range. The color gamut is expected to occupy 115% of the standard color space (sRGB) on the chromaticity diagram of the International Commission on Illumination (CIE) 1931 in theory. Our structure can be applied to various complex devices and materials and find potential applications such as displays, information, and art works.

4.
Nat Commun ; 11(1): 1071, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103027

RESUMO

The adhesion of soft connective tissues (tendons, ligaments, and cartilages) on bones in many animals can maintain high toughness (∽800 J m-2) over millions of cycles of mechanical loads. Such fatigue-resistant adhesion has not been achieved between synthetic hydrogels and engineering materials, but is highly desirable for diverse applications such as artificial cartilages and tendons, robust antifouling coatings, and hydrogel robots. Inspired by the nanostructured interfaces between tendons/ligaments/cartilages and bones, we report that bonding ordered nanocrystalline domains of synthetic hydrogels on engineering materials can give a fatigue-resistant adhesion with an interfacial fatigue threshold of 800 J m-2, because the fatigue-crack propagation at the interface requires a higher energy to fracture the ordered nanostructures than amorphous polymer chains. Our method enables fatigue-resistant hydrogel coatings on diverse engineering materials with complex geometries. We further demonstrate that the fatigue-resistant hydrogel coatings exhibit low friction and low wear against natural cartilages.


Assuntos
Cartilagem/fisiologia , Hidrogéis/química , Teste de Materiais , Tíbia/fisiologia , Engenharia Tecidual/métodos , Animais , Adesão Celular/fisiologia , Galinhas , Modelos Moleculares , Propriedades de Superfície
5.
ACS Sens ; 5(5): 1305-1313, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31939287

RESUMO

Mental fatigue, characterized by subjective feelings of "tiredness" and "lack of energy", can degrade individual performance in a variety of situations, for example, in motor vehicle driving or while performing surgery. Thus, a method for nonintrusive monitoring of mental fatigue status is urgently needed. Recent research shows that physiological signal-based fatigue-classification methods using wearable electronics can be sufficiently accurate; by contrast, rigid, bulky devices constrain the behavior of those wearing them, potentially interfering with test signals. Recently, wearable electronics, such as epidermal electronics systems (EES) and electronic tattoos (E-tattoos), have been developed to meet the requirements for the comfortable measurement of various physiological signals. However, comfortable, effective, and nonintrusive monitoring of mental fatigue levels remains to be fulfilled. In this work, an EES is established to simultaneously detect multiple physiological signals in a comfortable and nonintrusive way. Machine-learning algorithms are employed to determine the mental fatigue levels and a predictive accuracy of up to 89% is achieved based on six different kinds of physiological features using decision tree algorithms. Furthermore, EES with the trained predictive model are applied to monitor in situ human mental fatigue levels when doing several routine research jobs, as well as the effect of relaxation methods in relieving fatigue.


Assuntos
Algoritmos , Aprendizado de Máquina , Eletrônica , Humanos , Fadiga Mental/diagnóstico , Monitorização Fisiológica
6.
Nanoscale ; 11(45): 21748-21758, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31498348

RESUMO

Efficiently identifying optical structures with desired functionalities, referred to as inverse design, can dramatically accelerate the invention of new photonic devices, and this is especially useful in the design of large scale integrated photonic chips. Structural color with high-resolution, high-saturation, and low-loss holds great promise in image display, data storage and information security. However, the inverse design of structural color remains an open challenge, and this impedes practical application. Here, we propose an inverse design strategy for structural color using machine learning (ML) technologies. The supervised learning (SL) models are trained with the geometries and colors of dielectric arrays to capture accurate geometry-color relationships, and these are then applied to a reinforcement learning (RL) algorithm in order to find the optical structural geometries for the desired color. Our work succeeds in finding simple and accurate models to describe geometry-color relationships, which significantly improves the efficiency of the design. This strategy provides a systematic method to directly encode generic functionality into a set of structures and geometries, paving the way for the inverse design of functional photonic devices.

7.
Adv Mater ; 31(7): e1807101, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30570776

RESUMO

Slippery and hydrophilic surfaces find critical applications in areas as diverse as biomedical devices, microfluidics, antifouling, and underwater robots. Existing methods to achieve such surfaces rely mostly on grafting hydrophilic polymer brushes or coating hydrogel layers, but these methods suffer from several limitations. Grafted polymer brushes are prone to damage and do not provide sufficient mechanical compliance due to their nanometer-scale thickness. Hydrogel coatings are applicable only for relatively simple geometries, precluding their use for the surfaces with complex geometries and features. Here, a new method is proposed to interpenetrate hydrophilic polymers into the surface of diverse polymers with arbitrary shapes to form naturally integrated "hydrogel skins." The hydrogel skins exhibit tissue-like softness (Young's modulus ≈ 30 kPa), have uniform and tunable thickness in the range of 5-25 µm, and can withstand prolonged shearing forces with no measurable damage. The hydrogel skins also provide superior low-friction, antifouling, and ionically conductive surfaces to the polymer substrates without compromising their original mechanical properties and geometry. Applications of the hydrogel skins on inner and outer surfaces of various practical polymer devices including medical tubing, Foley catheters, cardiac pacemaker leads, and soft robots on massive scales are further demonstrated.

8.
ACS Sens ; 3(5): 1048-1055, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29737152

RESUMO

Stretchable gas sensors that accommodate the shape and motion characteristics of human body are indispensable to a wearable or attachable smart sensing system. However, these gas sensors usually have poor response and recovery kinetics when operated at room temperature, and especially suffer from humidity interference and mechanical robustness issues. Here, we demonstrate the first fully stretchable gas sensors which are operated at room temperature with enhanced stability against humidity. We created a crumpled quantum dot (QD) sensing layer on elastomeric substrate with flexible graphene as electrodes. Through the control over the prestrain of the flexible substrate, we achieved a 5.8 times improvement in NO2 response at room temperature with desirable stretchability even under 1000 stretch/relax cycles mechanism deformation. The uniformly wavy structural configuration of the crumpled QD gas-sensing layer enabled an improvement in the antihumidity interference. The sensor response shows a minor vibration of 15.9% at room temperature from relative humidity of 0 to 86.7% compared to that of the flat-film sensors with vibration of 84.2%. The successful assembly of QD solids into a crumpled gas-sensing layer enabled a body-attachable, mechanically robust, and humidity-resistant gas sensor, opening up a new pathway to room-temperature operable gas sensors which may be implemented in future smart sensing systems such as stretchable electronic nose and multipurpose electronic skin.


Assuntos
Gases/análise , Umidade , Pontos Quânticos , Eletrodos , Grafite/química , Humanos , Cinética , Microscopia Eletrônica de Varredura , Dióxido de Nitrogênio/química , Temperatura , Dispositivos Eletrônicos Vestíveis
9.
Nat Commun ; 9(1): 1370, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636454

RESUMO

Topological elastic metamaterials offer insight into classic motion law and open up opportunities in quantum and classic information processing. Theoretical modeling and numerical simulation of elastic topological states have been reported, whereas the experimental observation remains relatively unexplored. Here we present an experimental observation and numerical simulation of tunable topological states in soft elastic metamaterials. The on-demand reversible switch in topological phase has been achieved by changing filling ratio, tension, and/or compression of the elastic metamaterials. By combining two elastic metamaterials with distinct topological invariants, we further demonstrate the formation and dynamic tunability of topological interface states by mechanical deformation, and the manipulation of elastic wave propagation. Moreover, we provide a topological phase diagram of elastic metamaterials under deformation. Our approach to dynamically control interface states in soft materials paves the way to various phononic systems involving thermal management and soft robotics requiring better use of energy.

10.
J Phys Condens Matter ; 30(9): 095702, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29350625

RESUMO

Optical interface states exhibit promising applications in nonlinear photonics, low-threshold lasing, and surface-wave assisted sensing. However, the further application of interface states in configurable optics is hindered by their limited tunability. Here, we demonstrate a new approach to generate dynamically tunable and angle-resolved interface states using graphene-embedded photonic crystal (GPC) heterostructure device. By combining the GPC structure design with in situ electric doping of graphene, a continuously tunable interface state can be obtained and its tuning range is as wide as the full bandgap. Moreover, the exhibited tunable interface states offer a possibility to study the correspondence between space and time characteristics of light, which is beyond normal incident conditions. Our strategy provides a new way to design configurable devices with tunable optical states for various advanced optical applications such as beam splitter and dynamically tunable laser.

11.
Nano Lett ; 18(2): 1435-1441, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29257697

RESUMO

Reliable and repeatable tunability gives functional diversity for reconfigurable plasmonics devices, while reversible and large mechanical deformation enabled by soft materials provides a new way for the global or partial regulation of metadevices. Here, we demonstrate a soft metasurface with an out-of-plane design for tuning the energy of surface plasmon polaritons (SPPs) bloch wave using theory, simulation, and experiments. Our metasurface is composed of two-layered gold nanoribbon arrays (2GNRs) on a soft substrate. The out-of-plane coupling mechanism is systematically analyzed in terms of separation height effect. Moreover, by harnessing mechanical deformation, continuously tunable plasmonic resonance has been achieved in the visible and near-infrared ranges. We further studied the angle-dependent reflection spectra of our metastructure. Compared with its planar counterpart, our soft and two-layered metastructure exhibits diverse tunability and significant field enhancement by out-of-plane interactions. Our approach in designing soft metasurface with out-of-plane structures can be extended to more-complex photonic devices and finds prominent applications such as biosensing, high-density plasmonic circuits, surface-enhanced luminescence, and surface-enhanced Raman scattering.

12.
Polymers (Basel) ; 10(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30960807

RESUMO

As one of the most interesting naturally-occurring geometries, micro-helical structures have attracted attention due to their potential applications in fabricating biomedical and microelectronic devices. Conventional processing techniques for manufacturing micro-helices are likely to be limited in cost and mass-productivity, while Spirulina, which shows natural fine micro-helical forms, can be easily mass-reproduced at an extremely low cost. Furthermore, considering the extensive utility of conducting polymers, it is intriguing to synthesize conducting polymer micro-helices. In this study, PPy (polypyrrole), PANI (polyaniline), and PEDOT (poly(3,4-ethylenedioxythiophene)) micro-helices were fabricated using Spirulinaplatensis as a bio-template. The successful formations of the conducting polymer micro-helix were confirmed using scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) and Raman and X-ray diffraction (XRD) were employed to characterize the molecular structures of the conducting polymer in micro-helical forms. In the electrochemical characterization, the optimized specific capacitances for the PPy micro-helix, the PANI micro-helix, and the PEDOT micro-helix were found to be 234 F/g, 238 F/g at the scan rate of 5 mV/s, and 106.4 F/g at the scan rate of 10 mV/s, respectively. Therefore, it could be expected that other conducting polymer micro-helices with Spirulina as a bio-template could be also easily synthesized for various applications.

13.
J Phys Chem Lett ; 8(24): 6211-6219, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29226679

RESUMO

Two-dimensional Ruddlesden-Popper type perovskites (2D perovskites) have recently attracted increasing attention. It is expected that 2D perovskite-based heterostructures can significantly improve the efficiency of the optoelectronic devices and extend the material functionalities; however, rational synthesis of such heterostructures has not been realized to date. We report on a general low-temperature synthetic strategy for the synthesis of 2D perovskite-based lateral and vertical (n-CH3(CH2)3NH3)2PbI4/(n-CH3(CH2)3NH3)2(CH3NH3)Pb2I7 heterostructures for the first time. A combination of solution synthesis and gas-solid phase intercalation approach allows us to efficiently synthesize both lateral and vertical heterostructures with great flexibility. X-ray diffraction, photoluminescence, and photoluminescence excitation mapping and electrical transport measurement studies reveal the successful synthesis of lateral and vertical heterostructures with precisely spatial-modulation control and distinguishable interfaces. Our studies not only provide an efficient synthetic strategy with great flexibility, enabling us to create 2D perovskite-based heterostructures, but also offer a platform to investigate the physical processes in those heterostructures.

14.
ACS Appl Mater Interfaces ; 9(46): 41078-41086, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29094923

RESUMO

Highly sensitive strain sensors that can detect small strain are in high demand in the fields of displays, robotics, fatigue detection, body monitoring, in vitro diagnostics, and advanced therapies. However, resistive-type sensors that are composed of electrically conductive sensing films coupled with flexible substrates suffer from the limits that their gauge factors (GFs) at small strains (e.g., 0.1-1%) are not high. Herein, through frictional direct-writing of graphite rod on the composite paper substrates, we produced strain sensors with extremely high gauge factor at small strains. The sensors exhibited a gauge factor of 9720 at a small strain of 0.9%, minimum strain detection up to 0.05%, strain resolution of 0.05%, response time of 40 ms, and high stability (>5000 bending-unbending cycles). Compared with the literature results so far, our sensors hold the highest GF value at small strains. Such high sensitivities are due to the precise control of narrow two-dimensional percolative conductive pathway, which means the content of conductive graphite sheets is close to the conductive percolation threshold. The strain sensors have a rapid response to microdeformation changes and can monitor various structural changes, including human motion, through facilitative and effective installation of device designs.

15.
Polymers (Basel) ; 9(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965991

RESUMO

As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm) hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm-1K-1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25⁻40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.

16.
Nanoscale ; 8(32): 14943-9, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27376455

RESUMO

Phononic (thermal) devices such as thermal diodes, thermal transistors, thermal logic gates, and thermal memories have been studied intensively. However, tunable thermal resistors have not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor based on folded graphene. Through theoretical analysis and molecular dynamics simulations, we study the phonon-folding scattering effect and the dependence of thermal resistivity on the length between two folds and the overall length. Furthermore, we discuss the possibility of realizing instantaneously adjustable thermal resistors in experiment. Our studies bring new insights into designing thermal resistors and understanding the thermal modulation of 2D materials by adjusting basic structure parameters.

17.
Sci Rep ; 4: 6492, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25270673

RESUMO

Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication process, and high cost. Here, we report a simple and low-cost method to fabricate extremely stretchable and high-performance electrodes for supercapacitors based on new crumpled-graphene papers. Electrolyte-mediated-graphene paper bonded on a compliant substrate can be crumpled into self-organized patterns by harnessing mechanical instabilities in the graphene paper. As the substrate is stretched, the crumpled patterns unfold, maintaining high reliability of the graphene paper under multiple cycles of large deformation. Supercapacitor electrodes based on the crumpled graphene papers exhibit a unique combination of high stretchability (e.g., linear strain ~300%, areal strain ~800%), high electrochemical performance (e.g., specific capacitance ~196 F g(-1)), and high reliability (e.g., over 1000 stretch/relax cycles). An all-solid-state supercapacitor capable of large deformation is further fabricated to demonstrate practical applications of the crumpled-graphene-paper electrodes. Our method and design open a wide range of opportunities for manufacturing future energy-storage devices with desired deformability together with high performance.

18.
Nano Lett ; 14(11): 6505-9, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25300009

RESUMO

By using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with density functional theory (DFT) calculations, we demonstrate the atomic-level imaging of cation ordering in inverse spinel Zn2SnO4 nanowires. This cation ordering was identified as 1:1 ordering of Zn(2+) and Sn(4+) at the octahedral sites of the inverse spinel crystal with microscopic symmetry transition from original cubic Fd3̅m to orthorhombic Imma group. This ordering generated a 67.8% increase in the elastic modulus and 1-2 order of magnitude lower in the electric conductivity and electron mobility compared to their bulk counterpart.

19.
Adv Mater ; 26(11): 1763-70, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24339233

RESUMO

A simple method for fabricating high-aspect-ratio, hierarchical, and dynamically tunable surface patterns is invented by harnessing localized-ridge instabilities in gold nanofilms coated on elastomer substrates (a); a theoretical model to calculate the critical parameters (e.g., wavelength and amplitude) for designing the new patterns is developed (b); and novel applications of the patterns as super-hydrophobic coatings (c) and biomimetic cell-culture substrates (d) capable of on-demand tunability are demonstrated.


Assuntos
Elastômeros/química , Compostos de Ouro/química , Nanoestruturas/química , Materiais Biomiméticos/química , Células Cultivadas , Análise de Elementos Finitos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Modelos Químicos , Nanotecnologia/métodos , Propriedades de Superfície , Tecidos Suporte/química , Molhabilidade
20.
Nano Lett ; 13(6): 2381-6, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23634844

RESUMO

This work demonstrates that metal nanowires in a percolating network can reversibly slide across one another. Reversible sliding allows networks of metal nanowires to maintain electrical contact while being stretched to strains greater than the fracture strain for individual nanowires. This phenomenon was demonstrated by using networks of nanowires as compliant electrodes for a dielectric elastomer actuator. Reversible nanowire sliding enabled actuation to a maximum area strain of 200% and repetitive cycling of the actuator to an area strain of 25% over 150 times. During actuation, the transmittance of the network increased 4.5 times, from 13% to 58%. Compared to carbon-based compliant electrodes, networks of metal nanowires can actuate across a broader range of optical transmittance. The widely tunable transmittance of nanowire-based actuators allows for their use as a light valve.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...