Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Hum Mutat ; 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34747546

RESUMO

Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype-phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging. A third unrelated patient showed normal neurodevelopment, adolescence-onset seizures, and ataxia, shrunken cerebellum, and ultrastructural abnormalities on skin biopsy, representing the mildest form of NEDCAS hitherto described. Exome sequencing identified the c.638dup and the novel c.1395G>A BRAT1 variants, the latter causing exon 10 skippings. The p53-MCL test revealed normal ATM kinase activity. Our findings broaden the allelic and clinical spectrum of BRAT1-related disease, which should be suspected in presence of nonprogressive cerebellar signs, even without a neurodevelopmental disorder.

2.
Neurol Genet ; 7(6): e631, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34703884

RESUMO

Background and Objectives: To expand the clinical knowledge of GPAA1-related glycosylphosphatidylinositol (GPI) deficiency. Methods: An international case series of 7 patients with biallelic GPAA1 variants were identified. Clinical, biochemical, and neuroimaging data were collected for comparison. Where possible, GPI-anchored proteins were assessed using flow cytometry. Results: Ten novel variants were identified in 7 patients. Flow cytometry samples of 3 available patients confirmed deficiency of several GPI-anchored proteins on leukocytes. Extensive phenotypic information was available for each patient. The majority experienced developmental delay, seizures, and hypotonia. Neuroimaging revealed cerebellar anomalies in the majority of the patients. Alkaline phosphatase was within the normal range in 5 individuals and low in 1 individual, as has been noted in other transamidase defects. We notably describe individuals either less affected or older than the ones published previously. Discussion: Clinical features of the cases reported broaden the spectrum of the known phenotype of GPAA1-related GPI deficiency, while outlining the importance of using functional studies such as flow cytometry to aid in variant classification.

3.
J Med Genet ; 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675124

RESUMO

BACKGROUND: Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS: We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS: Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION: Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.

4.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576077

RESUMO

Kv1.2 channels, encoded by the KCNA2 gene, are localized in the central and peripheral nervous system, where they regulate neuronal excitability. Recently, heterozygous mutations in KCNA2 have been associated with a spectrum of symptoms extending from epileptic encephalopathy, intellectual disability, and cerebellar ataxia. Patients are treated with a combination of antiepileptic drugs and 4-aminopyridine (4-AP) has been recently trialed in specific cases. We identified a novel variant in KCNA2, E236K, in a Serbian proband with non-progressive congenital ataxia and early onset epilepsy, treated with sodium valproate. To ascertain the pathogenicity of E236K mutation and to verify its sensitivity to 4-AP, we transfected HEK 293 cells with Kv1.2 WT or E236K cDNAs and recorded potassium currents through the whole-cell patch-clamp. In silico analysis supported the electrophysiological data. E236K channels showed voltage-dependent activation shifted towards negative potentials and slower kinetics of deactivation and activation compared with Kv1.2 WT. Heteromeric Kv1.2 WT+E236K channels, resembling the condition of the heterozygous patient, confirmed a mixed gain- and loss-of-function (GoF/LoF) biophysical phenotype. 4-AP inhibited both Kv1.2 and E236K channels with similar potency. Homology modeling studies of mutant channels suggested a reduced interaction between the residue K236 in the S2 segment and the gating charges at S4. Overall, the biophysical phenotype of E236K channels correlates with the mild end of the clinical spectrum reported in patients with GoF/LoF defects. The response to 4-AP corroborates existing evidence that KCNA2-disorders could benefit from variant-tailored therapeutic approaches, based on functional studies.


Assuntos
4-Aminopiridina/uso terapêutico , Ataxia Cerebelar/congênito , Ataxia Cerebelar/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Canal de Potássio Kv1.2/genética , Sequência de Aminoácidos , Encéfalo/diagnóstico por imagem , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/tratamento farmacológico , Criança , Pré-Escolar , Epilepsia/diagnóstico por imagem , Humanos , Lactente , Canal de Potássio Kv1.2/química , Imageamento por Ressonância Magnética , Masculino , Simulação de Dinâmica Molecular , Adulto Jovem
5.
Front Neurol ; 12: 677551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248822

RESUMO

Autosomal recessive cerebellar ataxias (ARCAs) form an ultrarare yet expanding group of neurodegenerative multisystemic diseases affecting the cerebellum and other neurological or non-neurological systems. With the advent of targeted therapies for ARCAs, disease registries have become a precious source of real-world quantitative and qualitative data complementing knowledge from preclinical studies and clinical trials. Here, we review the ARCA Registry, a global collaborative multicenter platform (>15 countries, >30 sites) with the overarching goal to advance trial readiness in ARCAs. It presents a good clinical practice (GCP)- and general data protection regulation (GDPR)-compliant professional-reported registry for multicenter web-based capture of cross-center standardized longitudinal data. Modular electronic case report forms (eCRFs) with core, extended, and optional datasets allow data capture tailored to the participating site's variable interests and resources. The eCRFs cover all key data elements required by regulatory authorities [European Medicines Agency (EMA)] and the European Rare Disease (ERD) platform. They capture genotype, phenotype, and progression and include demographic data, biomarkers, comorbidity, medication, magnetic resonance imaging (MRI), and longitudinal clinician- or patient-reported ratings of ataxia severity, non-ataxia features, disease stage, activities of daily living, and (mental) health status. Moreover, they are aligned to major autosomal-dominant spinocerebellar ataxia (SCA) and sporadic ataxia (SPORTAX) registries in the field, thus allowing for joint and comparative analyses not only across ARCAs but also with SCAs and sporadic ataxias. The registry is at the core of a systematic multi-component ARCA database cluster with a linked biobank and an evolving study database for digital outcome measures. Currently, the registry contains more than 800 patients with almost 1,500 visits representing all ages and disease stages; 65% of patients with established genetic diagnoses capture all the main ARCA genes, and 35% with unsolved diagnoses are targets for advanced next-generation sequencing. The ARCA Registry serves as the backbone of many major European and transatlantic consortia, such as PREPARE, PROSPAX, and the Ataxia Global Initiative, with additional data input from SPORTAX. It has thus become the largest global trial-readiness registry in the ARCA field.

6.
J Med Genet ; 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34085948

RESUMO

BACKGROUND: Pontocerebellar hypoplasias (PCH) comprise a group of genetically heterogeneous disorders characterised by concurrent hypoplasia of the pons and the cerebellum and variable clinical and imaging features. The current classification includes 13 subtypes, with ~20 known causative genes. Attempts have been made to delineate the phenotypic spectrum associated to specific PCH genes, yet clinical and neuroradiological features are not consistent across studies, making it difficult to define gene-specific outcomes. METHODS: We performed deep clinical and imaging phenotyping in 56 probands with a neuroradiological diagnosis of PCH, who underwent NGS-based panel sequencing of PCH genes and MLPA for CASK rearrangements. Next, we conducted a phenotype-based unsupervised hierarchical cluster analysis to investigate associations between genes and specific phenotypic clusters. RESULTS: A genetic diagnosis was obtained in 43 probands (77%). The most common causative gene was CASK, which accounted for nearly half cases (45%) and was mutated in females and occasionally in males. The European founder mutation p.Ala307Ser in TSEN54 and pathogenic variants in EXOSC3 accounted for 18% and 9% of cases, respectively. VLDLR, TOE1 and RARS2 were mutated in single patients. We were able to confirm only few previously reported associations, including jitteriness and clonus with TSEN54 and lower motor neuron signs with EXOSC3. When considering multiple features simultaneously, a clear association with a phenotypic cluster only emerged for EXOSC3. CONCLUSION: CASK represents the major PCH causative gene in Italy. Phenotypic variability associated with the most common genetic causes of PCH is wider than previously thought, with marked overlap between CASK and TSEN54-associated disorders.

7.
Int J Mol Sci ; 22(9)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067185

RESUMO

KCND3 encodes the voltage-gated potassium channel KV4.3 that is highly expressed in the cerebellum, where it regulates dendritic excitability and calcium influx. Loss-of-function KV4.3 mutations have been associated with dominant spinocerebellar ataxia (SCA19/22). By targeted NGS sequencing, we identified two novel KCND3 missense variants of the KV4.3 channel: p.S347W identified in a patient with adult-onset pure cerebellar syndrome and p.W359G detected in a child with congenital nonprogressive ataxia. Neuroimaging showed mild cerebellar atrophy in both patients. We performed a two-electrode voltage-clamp recording of KV4.3 currents in Xenopus oocytes: both the p.G345V (previously reported in a SCA19/22 family) and p.S347W mutants exhibited reduced peak currents by 50%, while no K+ current was detectable for the p.W359G mutant. We assessed the effect of the mutations on channel gating by measuring steady-state voltage-dependent activation and inactivation properties: no significant alterations were detected in p.G345V and p.S347W disease-associated variants, compared to controls. KV4.3 expression studies in HEK293T cells showed 53% (p.G345V), 45% (p.S347W) and 75% (p.W359G) reductions in mutant protein levels compared with the wildtype. The present study broadens the spectrum of the known phenotypes and identifies additional variants for KCND3-related disorders, outlining the importance of SCA gene screening in early-onset and congenital ataxia.


Assuntos
Ativação do Canal Iônico , Mutação/genética , Canais de Potássio Shal/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Sequência de Aminoácidos , Animais , Criança , Feminino , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteostase , Ataxias Espinocerebelares/diagnóstico por imagem , Xenopus laevis
8.
Genome Med ; 13(1): 63, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874999

RESUMO

BACKGROUND: With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS: We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS: We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS: Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.

9.
Brain Sci ; 11(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669240

RESUMO

The molecular characterization of Hereditary Spastic Paraplegias (HSP) and inherited cerebellar ataxias (CA) is challenged by their clinical and molecular heterogeneity. The recent application of Next Generation Sequencing (NGS) technologies is increasing the diagnostic rate, which can be influenced by patients' selection. To assess if a clinical diagnosis of CA/HSP received in a third-level reference center might impact the molecular diagnostic yield, we retrospectively evaluated the molecular diagnostic rate reached in our center on 192 unrelated families (90 HSP and 102 CA) (i) before NGS and (ii) with the use of NGS gene panels. Overall, 46.3% of families received a genetic diagnosis by first-tier individual gene screening: 43.3% HSP and 50% spinocerebellar ataxias (SCA). The diagnostic rate was 56.7% in AD-HSP, 55.5% in AR-HSP, and 21.2% in sporadic HSP. On the other hand, 75% AD-, 52% AR- and 33% sporadic CA were diagnosed. So far, 32 patients (24 CA and 8 HSP) were further assessed by NGS gene panels, and 34.4% were diagnosed, including 29.2% CA and 50% HSP patients. Eleven novel gene variants classified as (likely) pathogenic were identified. Our results support the role of experienced clinicians in the diagnostic assessment and the clinical research of CA and HSP even in the next generation era.

10.
Eur J Paediatr Neurol ; 31: 61-69, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33640666

RESUMO

OBJECTIVE: CASK pathogenic variants are associated with variable features, as intellectual disability, optic atrophy, brainstem/cerebellar hypoplasia, and epileptic encephalopathy. Few studies describe the electroclinical features of epilepsy in patients with CASK pathogenic variants and their relationship with developmental delay. METHODS: this national multicentre cohort included genetically confirmed patients with different CASK pathogenic variants. Our findings were compared with cohorts reported in the literature. RESULTS: we collected 34 patients (29 females) showing from moderate (4 patients) to severe (22) and profound (8) developmental delay; all showed pontine and cerebellar hypoplasia, all except three with microcephaly. Seventeen out of 34 patients (50%) suffered from epileptic seizures, including spasms (11 patients, 32.3%), generalized (5) or focal seizures (1). In 8/17 individuals (47.1%), epilepsy started at or beyond the age of 24 months. Seven (3 males) out of the 11 children with spasms showed EEG features and a course supporting the diagnosis of a developmental and epileptic encephalopathy (DEE). Drug resistance was frequent in our cohort (52.9% of patients with epilepsy). EEG abnormalities included poorly organized background activity with diffuse or multifocal epileptiform abnormalities and sleep-activation, with possible appearance over the follow-up period. Developmental delay degree was not statistically different among patients with or without seizures but feeding difficulties were more frequent in patients with epilepsy. CONCLUSIONS: epilepsy is a frequent comorbidity with a high incidence of spasms and drug resistance. Overall developmental disability does not seem to be more severe in the group of patients with epilepsy nor to be linked to specific epilepsy/EEG characteristics. A childhood onset of epilepsy is frequent, with possible worsening over time, so that serial and systematic monitoring is mandatory.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia/genética , Guanilato Quinases/genética , Encefalopatias/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Mutação , Estudos Retrospectivos
11.
Epileptic Disord ; 23(1): 153-160, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33622667

RESUMO

Mutations in AarF domain-containing kinase 3 (ADCK3) are responsible for the most frequent form of hereditary coenzyme Q10 (CoQ10) deficiency (Q10 deficiency-4), which is mainly associated with autosomal recessive cerebellar ataxia type 2 (ARCA2). Clinical presentation is characterized by a variable degree of cerebellar atrophy and a broad spectrum of associated symptoms, including muscular involvement, movement disorders, neurosensory loss, cognitive impairment, psychiatric symptoms and epilepsy. In this report, we describe, for the first time, a case of photoparoxysmal response in a female patient with a mutation in ADCK3. Disease onset occurred in early childhood with gait ataxia, and mild-to-moderate degeneration. Seizures appeared at eight years and six months, occurring only during sleep. Photoparoxysmal response was observed at 14 years, almost concomitant with the genetic diagnosis (c.901C>T;c.589-3C>G) and the start of CoQ10 oral supplementation. A year later, disease progression slowed down, and photosensitivity was attenuated. A review of the literature is provided focusing on epileptic features of ADCK3-related disease as well as the physiopathology of photoparoxysmal response and supposed cerebellar involvement in photosensitivity. Moreover, the potential role of CoQ10 oral supplementation is discussed. Prospective studies on larger populations are needed to further understand these data.


Assuntos
Ataxia Cerebelar , Epilepsia Reflexa , Proteínas Mitocondriais/genética , Ubiquinona/análogos & derivados , Adolescente , Ataxia Cerebelar/complicações , Ataxia Cerebelar/tratamento farmacológico , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/etiologia , Epilepsia Reflexa/genética , Epilepsia Reflexa/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Ubiquinona/farmacologia
12.
J Med Genet ; 58(7): 475-483, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32737135

RESUMO

BACKGROUND: Dominant and recessive variants in the KIF1A gene on chromosome 2q37.3 are associated with several phenotypes, although only three syndromes are currently listed in the OMIM classification: hereditary sensory and autonomic neuropathy type 2 and spastic paraplegia type 30, both recessively inherited, and mental retardation type 9 with dominant inheritance. METHODS: In this retrospective multicentre study, we describe the clinical, neuroradiological and genetic features of 19 Caucasian patients (aged 3-65 years) harbouring heterozygous KIF1A variants, and extensively review the available literature to improve current classification of KIF1A-related disorders. RESULTS: Patients were divided into two groups. Group 1 comprised patients with a complex phenotype with prominent pyramidal signs, variably associated in all but one case with additional features (ie, epilepsy, ataxia, peripheral neuropathy, optic nerve atrophy); conversely, patients in group 2 presented an early onset or congenital ataxic phenotype. Fourteen different heterozygous missense variants were detected by next-generation sequencing screening, including three novel variants, most falling within the kinesin motor domain. CONCLUSION: The present study further enlarges the clinical and mutational spectrum of KIF1A-related disorders by describing a large series of patients with dominantly inherited KIF1A pathogenic variants ranging from pure to complex forms of hereditary spastic paraparesis/paraplegias (HSP) and ataxic phenotypes in a lower proportion of cases. A comprehensive review of the literature indicates that KIF1A screening should be implemented in HSP regardless of its mode of inheritance or presentations as well as in other complex neurodegenerative or neurodevelopmental disorders showing congenital or early onset ataxia.

13.
Eur J Paediatr Neurol ; 30: 144-154, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33349592

RESUMO

BACKGROUND: CACNA1A-related disorders present with persistent progressive and non-progressive cerebellar ataxia and paroxysmal events: epileptic seizures and non-epileptic attacks. These phenotypes overlap and co-exist in the majority of patients. OBJECTIVE: To describe phenotypes in infantile onset CACNA1A-related disorder and to explore intra-familial variations and genotype-phenotype correlations. MATERIAL AND METHODS: This study was a multicenter international collaboration. A retrospective chart review of CACNA1A patients was performed. Clinical, radiological, and genetic data were collected and analyzed in 47 patients with infantile-onset disorder. RESULTS: Paroxysmal non-epileptic events (PNEE) were observed in 68% of infants, with paroxysmal tonic upward gaze (PTU) noticed in 47% of infants. Congenital cerebellar ataxia (CCA) was diagnosed in 51% of patients including four patients with developmental delay and only one neurological sign. PNEEs were found in 63% of patients at follow-up, with episodic ataxia (EA) in 40% of the sample. Cerebellar ataxia was found in 58% of the patients at follow-up. Four patients had epilepsy in infancy and nine in childhood. Seven infants had febrile convulsions, three of which developed epilepsy later; all three patients had CCA. Cognitive difficulties were demonstrated in 70% of the children. Cerebellar atrophy was found in only one infant but was depicted in 64% of MRIs after age two. CONCLUSIONS: Nearly all of the infants had CCA, PNEE or both. Cognitive difficulties were frequent and appeared to be associated with CCA. Epilepsy was more frequent after age two. Febrile convulsions in association with CCA may indicate risk of epilepsy in later childhood. Brain MRI was normal in infancy. There were no genotype-phenotype correlations found.


Assuntos
Canais de Cálcio/genética , Ataxia Cerebelar/genética , Transtornos Cognitivos/genética , Distonia/genética , Epilepsia/genética , Criança , Feminino , Humanos , Lactente , Masculino , Fenótipo , Estudos Retrospectivos
14.
Brain Sci ; 10(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187326

RESUMO

7q11.23 Microduplication (dup7q11.23) syndrome is a rare autosomal dominant disorder due to a recurring 1.5 to 1.8 Mb duplication of the Williams-Beuren Syndrome critical region. Dup7q11.23 has been associated with several neuro-behavioral characteristics such as low cognitive and adaptive functioning, expressive language impairment, anxiety problems and autistic features. In the present study, we analyze the clinical features of ten individuals in which array-CGH detected dup7q11.23, spanning from 1.4 to 2.1 Mb. The clinical characteristics associated with dup7q11.23 are discussed with respect to its reciprocal deletion. Consistent with previous studies, we confirm that individuals with dup7q11.23 syndrome do not have a homogeneous clinical profile, although some recurring dysmorphic features were found, including macrocephaly, prominent forehead, elongated palpebral fissures, thin lip vermilion and microstomia. Minor congenital malformations include patent ductus arteriosus, cryptorchidism and pes planus. A common finding is hypotonia and joint laxity, resulting in mild motor delay. Neuropsychological and psychodiagnostic assessment confirm that mild cognitive impairment, expressive language deficits and anxiety are recurring neurobehavioral features. New insights into adaptive, psychopathological and neurodevelopmental profiles are discussed.

15.
Int J Mol Sci ; 21(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443735

RESUMO

Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.


Assuntos
Ataxia/genética , Coreia/genética , Fenótipo , Ataxia/classificação , Ataxia/diagnóstico , Coreia/classificação , Coreia/diagnóstico , Testes Genéticos/métodos , Humanos , Mutação
16.
Ann Neurol ; 88(2): 251-263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32337771

RESUMO

OBJECTIVE: To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS: Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS: Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION: This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.


Assuntos
Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Variação Genética/genética , Imageamento por Ressonância Magnética/métodos , Ubiquinona/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estrutura Secundária de Proteína , Ubiquinona/química , Adulto Jovem
18.
J Neurosci Methods ; 338: 108697, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32205159

RESUMO

BACKGROUND: Friedreich Ataxia (FRDA) and other inherited chronic ataxias (CAs) are common causes of early onset ataxias (EOA), a group of conditions still lacking effective therapies and biomarkers. Ocular saccades are considered a reliable paradigm of motor control, useful to track the functioning of underlying neural networks and serving as potential markers for neurological diseases. NEW METHOD: A non-invasive video-oculography device (EyeSeeCam) was used to test saccadic parameters (latency, amplitude, duration, velocity) and peak velocity/amplitude ratio ("main sequence") in pediatric patients with FRDA, CAs and healthy controls, providing correlations with standard clinical scores. RESULTS: Pattern of saccadic features differed between CA and FRDA. The main sequence analysis was impaired respectively in vertical saccades in CA, and in horizontal saccades in FRDA. In CA, the amplitude of vertical saccades was reduced, and the size inversely correlated with the Scale for the assessment and rating of ataxia (SARA) score. In FRDA the amplitude of horizontal saccades directly correlated with SARA score. COMPARISON WITH EXISTING METHOD: EyeSeeCam allowed testing saccades easily and quickly even in pediatric patients with EOA. CONCLUSIONS: The pattern of saccadic impairment differed between FRDA and CAs, resulting a prominent involvement of vertical saccades in CA and of horizontal ones in FRDA, which respectively correlated with SARA score. Since such differences may reflect distinct pathophysiological substrates, saccades emerged as a potential source of biomarkers in EOAs. Availability of handy tools, such as EyeSeeCam, may facilitate future research in this field.


Assuntos
Ataxia de Friedreich , Movimentos Sacádicos , Dispositivos Eletrônicos Vestíveis , Ataxia , Criança , Ataxia de Friedreich/diagnóstico , Humanos
19.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085672

RESUMO

Tubulinopathies are rare neurological disorders caused by alterations in tubulin structure and function, giving rise to a wide range of brain abnormalities involving neuronal proliferation, migration, differentiation and axon guidance. TUBB is one of the ten ß-tubulin encoding genes present in the human genome and is broadly expressed in the developing central nervous system and the skin. Mutations in TUBB are responsible for two distinct pathological conditions: the first is characterized by microcephaly and complex structural brain malformations and the second, also known as "circumferential skin creases Kunze type" (CSC-KT), is associated to neurological features, excess skin folding and growth retardation. We used a combination of immunocytochemical and cellular approaches to explore, on patients' derived fibroblasts, the functional consequences of two TUBB variants: the novel mutation (p.N52S), associated with basal ganglia and cerebellar dysgenesis, and the previously reported variant (p.M73T), linked to microcephaly, corpus callosum agenesis and CSC-KT skin phenotype. Our results demonstrate that these variants impair microtubule (MT) function and dynamics. Most importantly, our studies show an altered epidermal growth factor (EGF) and transferrin (Tf) intracellular vesicle trafficking in both patients' fibroblasts, suggesting a specific role of TUBB in MT-dependent vesicular transport.


Assuntos
Microtúbulos/metabolismo , Mutação/genética , Vesículas Transportadoras/metabolismo , Tubulina (Proteína)/genética , Sequência de Aminoácidos , Movimento Celular/efeitos dos fármacos , Criança , Análise Mutacional de DNA , Fator de Crescimento Epidérmico/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imageamento por Ressonância Magnética , Modelos Moleculares , Nocodazol/farmacologia , Fenótipo , Transporte Proteico , Transferrina/metabolismo , Tubulina (Proteína)/química
20.
Neurology ; 94(8): e797-e801, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31969461

RESUMO

OBJECTIVE: To estimate the prevalence of Joubert syndrome (JS) in Italy applying standards of descriptive epidemiology and to provide a molecular characterization of the described patient cohort. METHODS: We enrolled all patients with a neuroradiologically confirmed diagnosis of JS who resided in Italy in 2018 and calculated age and sex prevalence, assuming a Poisson distribution. We also investigated the correlation between proband chronological age and age at diagnosis and performed next-generation sequencing (NGS) analysis on probands' DNA when available. RESULTS: We identified 284 patients with JS: the overall, female- and male-specific population-based prevalence rates were 0.47 (95% confidence interval [CI] 0.41-0.53), 0.41 (95% CI 0.32-0.49), and 0.53 (95% CI 0.45-0.61) per 100,000 population, respectively. When we considered only patients in the age range from 0 to 19 years, the corresponding population-based prevalence rates rose to 1.7 (95% CI 1.49-1.97), 1.62 (95% CI 1.31-1.99), and 1.80 (95% CI 1.49-2.18) per 100,000 population. NGS analysis allowed identifying the genetic cause in 131 of 219 screened probands. Age at diagnosis was available for 223 probands, with a mean of 6.67 ± 8.10 years, and showed a statistically significant linear relationship with chronological age (r 2 = 0.79; p < 0.001). CONCLUSIONS: We estimated for the first time the age and sex prevalence of JS in Italy and investigated the patients' genetic profile. The obtained population-based prevalence rate was ≈10 times higher than that available in literature for children population.


Assuntos
Anormalidades Múltiplas/epidemiologia , Cerebelo/anormalidades , Anormalidades do Olho/epidemiologia , Doenças Renais Císticas/epidemiologia , Retina/anormalidades , Anormalidades Múltiplas/genética , Adolescente , Adulto , Fatores Etários , Idade de Início , Criança , Pré-Escolar , Bases de Dados Genéticas , Anormalidades do Olho/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Itália/epidemiologia , Doenças Renais Císticas/genética , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...